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ARV: EM DIREÇÃO A UMA IMPLEMENTAÇÃO ASSÍNCRONA DA
ARQUITETURA RISC-V

RESUMO

Processadores são excelentes candidatos para tirar proveito das características de
circuitos assíncronos. São circuitos complexos cujo caminho ativo é altamente dependente
do fluxo de instruções. Processadores assíncronos implementados em tecnologias QDI
podem ser vantajosos em uma gama de condições.

Este trabalho discute e propõe um modelo de alto nível funcional de um proces-
sador RISC-V assíncrono utilizando a linguagem de programação Go, uma linguagem mo-
derna desenvolvida pelo Google que incorpora princípios de modelagem derivadas do pa-
radigma de Processos Sequenciais Comunicantes. Até onde o autor sabe, esta é a primeira
implementação assíncrona da arquitetura RISC-V e o primeiro uso da linguagem Go como
uma linguagem de descrição de hardware.

O projeto e o modelo de alto nível do processador ARV em Go provaram que a lin-
guagem é adequada para modelar circuitos complexos baseados em canais de handshake.
O ambiente de software provido pela linguagem auxiliou na depuração do projeto. O Autor
acredita que as vantagens de uso de uma linguagem de alto nível para validação justificam
o uso da linguagem de programação Go como uma linguagem de descrição de hardware.

Palavras-Chave: Go, modelo de alto nível, circuitos assíncronos, projeto assíncrono, RISC-
V, arquitetura, processador.



ARV: TOWARDS AN ASYNCHRONOUS IMPLEMENTATION OF THE
RISC-V ARCHITECTURE

ABSTRACT

Processors are excellent candidates to take advantage of asynchronous circuit
technology. They are complex circuits which active paths are highly dependent on the in-
struction flow. Asynchronous processors implemented in QDI technology can be advanta-
geous in a variety of conditions.

This work discusses and proposes a functional high level model of an asynchronous
RISC-V processor using the Go programming language, a modern language designed by
Google and that incorporates modelling principles derived from the Communicating Sequen-
tial Processes paradigm. As far as the Author knows, this is both the first asynchronous
RISC-V implementation and the first use of Go as a hardware description language.

The design and high-level model of ARV in Go have proved the language is ad-
equate to model complex handshake channel-based circuits. The software environment
provided by the language aided debugging the design. The Author believes the advantages
in validation of using a high level language justify the use of the Go programming language
as a hardware description language.

Keywords: Go, high-level model, asynchronous circuit, asynchronous design, RISC-V, ar-
chitecture, processor.
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1. INTRODUCTION AND MOTIVATION

For years, processors have been the building blocks of the information age. The
flexibility and versatility provided by the abstraction they provide are essential to face the ever
increasing complexity of today’s problems. Since the dawn of the computer age, processors
ability to manipulate data proved useful for a huge variety of tasks.

Processors abstraction comes from the fact that although the processor’s physical
structure never changes, its functionality does depend on the sequence of instructions fed
into it. The sequence of instructions controlling the processor is called a program and its
instructions are defined in the so-called Instruction Set Architecture or ISA. An ISA is a
language used to communicate with hardware, a processor is able to execute a program
when if it recognises the instructions it is made up, i.e. if it implements the instruction set.

Most ISAs are proprietary. Those designing a processor that produces such ar-
chitectures are bound to pay royalties to the patent holders, which inhibits innovation and
creates barriers to market and research [AP14]. Open standards, on the other hand, create
rich environments that flourish with innovation, in which multiple parties can compete, grow
and thrive around a common technology [AP14].

RISC-V, a modern, open and extensible instruction set architecture was envisioned
to be a standard open instruction set. Unlike other open ISAs, like SPARC and OpenRISC,
RISC-V was designed to be simple, flexible and extensible, allowing a wide range of applica-
tions, from the smallest Internet of Things (or IoT) microcontroller to the largest multithread
data warehouse processor.

Asynchronous circuits may provide advantages over synchronous circuits in several
applications. They are self-clocked, meaning that they do not require an external clock signal
for synchronisation. Instead synchronisation is performed using local handshake channels
between storage elements in the circuit. Since synchronisation is local, the operation delay
is dependent only on the active path delays instead of the worst case of the whole data path,
yielding true operational delay and not a worst case delay.

There are two major families of asynchronous circuit design techniques, quasi-
delay-insensitive (or QDI) and bundled data (or BD). QDI circuits show robustness to process
variation, ageing and as such enable a wider range of operating conditions, which increases
circuit reliability at the expense of silicon area. BD design approaches may perform faster
using less area. The main difference compared to synchronous circuits are clock elimination
and possible power savings.
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1.1 Work goals

Processors are excellent candidates to take advantage of asynchronous circuit
technology. They are complex circuits which active paths are highly dependent on the in-
struction flow. Asynchronous processors implemented in QDI technology can be advanta-
geous in a variety of conditions.

Modelling a processor is an important design step. This no different if the design
targets an asynchronous implementation of a processor. The technology used to model
asynchronous circuits should typically reflect the behaviour of handshake channels. Asyn-
chronous circuits have traditionally been modelled at higher levels using message pass-
ing concurrent programming from the Communicating Sequential Processes or CSP fam-
ily [Hoa85].

This work discusses and proposes a functional high level model of an asynchronous
RISC-V processor using the Go language, a modern programming language designed by
Google and that incorporates modelling principles derived from CSP. As far as the Author
knows, this is both the first asynchronous RISC-V and the first use of Go as a hardware
description language.
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2. BACKGROUND

This Chapter provides an introduction on topics required to understand this work:
Section 2.1 introduces the RISC-V Instruction Set Architecture or ISA; Section 2.2 provides
an overview of asynchronous circuit design, highlighting differences from traditional syn-
chronous design and providing a notion on the alternative families of techniques employed
to design it; Section 2.3.1 introduces the Go programming language, with especial focus on
its use as a high-level hardware description language (HDL).

2.1 RISC-V Instruction Set Architecture

During the early years of computing, before the advent of VLSI circuits, memory
and logic were both slow and expensive resources. Software had to be coded with fewer,
denser instructions and processors often relied on microcode to decode and execute these
instructions in multiple steps, taking multiple cycles to execute a complex instruction. Often,
these instructions involved memory to memory operations and high level language con-
structs implemented directly in the architecture.

As Patterson and Ditzel stated [PD80], in modern VLSI technologies simpler in-
structions are executed faster, allowing the construction of pipelines and use of instruction
caches, resulting in overall improved performance. This led to the definition of the Reduced
Instruction Set Computer (RISC) strategy, moving complexity from hardware to software, as
an alternative to what became known as Complex Instruction Set Computers (CISCs).

The RISC strategy is defined by the use of a set of simple instructions with the
following characteristics: (i) instructions do not operate on data from memory, instead they
rely on explicit memory access instructions to move data between the processor registers
and memory, working only over data in registers instead; (ii) instruction encoding is simple,
often of fixed length; (iii) instructions perform only simple, generic tasks. Complex, high level
operations such as loop control, routine calling and stack management are performed in
software.

Most ISAs are proprietary. System design houses implementing such architectures
are often bound to pay royalties to the patent holders, which inhibits innovation and creates
barriers to market and research. On the other hand, open standards create rich environ-
ments that flourish with innovation, in which multiple parties can compete, grow and thrive
around a common technology [AP14]. RISC-V, a modern, open and extensible instruction
set architecture designed at the Berkeley University was envisioned to be an open standard
ISA.
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Different from other open ISAs, like SPARC and OpenRISC, RISC-V aims at being
simple, flexible and extensible, generic enough to be scalable for a huge variety of appli-
cations, from the smallest IoT microcontroller to the largest many-thread data warehouse
processor. RISC-V achieves this by defining a mandatory basic set of instructions and sev-
eral extensions.

RISC-V also defines an instruction encoding that allows variable-length instruc-
tions, breaking from the most traditional RISC approach, with a minimal length of 16 bits and
16-bit increments. This enables further extensions to the instruction set, eventually over-
coming limitations imposed on the number of available opcodes by fixed-length instruction
processors.

Defined in "The RISC-V Instruction Set Manual" [WLPA16], the basic instruction set
is a classical RISC load-and-store architecture with a 32-register bank, register-to-register
operations, explicit memory access and compare-and-branch instructions.

The basic (mandatory) instruction set defines 47 32-bit integer operations, where
all instructions are 32-bit long. This set can be extended to support 64-bit and 128-bit instruc-
tions without breaking the compatibility, by increasing the register bank width and including
appropriate instructions to load and store larger data values from memory.

It is also possible to extend the architecture in functionality, with instructions to per-
form hardware multiplication, atomic synchronisation for multiple threads, instruction stream
compression with 16-bit length instruction encoding, and floating-point instructions. Fur-
ther extensions are possible, enabling custom-application specific accelerators to be tightly
coupled into the processor core. This provides performance boost and power saving in
application-aware designs.

Three RISC-V reference implementations are provided in the Rocket Chip Gen-
erator [AAB+16], a parameterisable SoC Generator written in the Chisel language. These
implementations are reviewed in Section 3.2.1. Several other RISC-V implementations have
been proposed in recent years, some of which are briefly described in Section 3.2.

2.2 Asynchronous Circuit Design

Synchronous circuits rely on clock signals that provide a discrete common time
reference and delay estimations to ensure correct operation. Asynchronous circuits, on the
other hand, are digital circuits with no such discrete common time reference. Instead, in an
asynchronous design correct operation is accomplished using explicit handshake between
communicating entities [SF01].

Local handshake is used to signal when new data is ready and to signal back when
data can change after being received. Essentially, a handshake takes places in two steps:
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(i) An element announces data availability, by issuing a request to the consumer; (ii) when
ready, the consumer party acknowledges the request, storing the data and replying with an
acknowledge signal. If these two steps are effectively implemented in this manner, this is
called a two-phase handshake protocol. Subsequent data can immediately be sent after
the request is acknowledged. Another protocol that is also frequently used is the four-phase
handshake protocol, in which the request and acknowledge signals need to be reset in some
order before new data can be made available [SF01].

The use of a handshake protocol between storage elements form what is called
a handshake channel. Logic elements intended to transform data must be transparent to
the handshake mechanism. The combination of storage and logic elements forms a logical
stage. Logical stages are chained using channels to form a pipeline in which tokens flow in
wavefronts carrying data. There are different techniques to implement several variations of
2-phase or 4-phase handshake protocols.

A pipeline with feedback is called a loop. Loops can be used to store information
and perform iterative computation. Closed loops must have bubbles to allow token propaga-
tion, meaning that the number of tokens must be at most n−1 for 2-phase or n−1

2 for 4-phase
handshakes in an n-stage loop.

The next Sections depict the two main families of asynchronous circuit design tech-
niques. These techniques usually imply a choice of a communication handshake protocol
as well as the selection of some data encoding scheme to employ.

2.2.1 Bundled Data (BD) Design

In this family of asynchronous circuit design techniques, the combinational logic
can be implemented in a way similar to a synchronous counterpart; a request line is delay-
matched with the data channel, ensuring that when a request arrives data at the receiving
element input is valid.

Storage elements are usually implemented using latches, controlled by local hand-
shake protocol controllers. On a two-stage protocol this controller is often edge-sensitive,
with a transition indicating activation of the request or acknowledgement, while on a four-
stage protocol it is often level-sensitive.

It is worth noting that while the BD approach eliminates clock and the notion of
discrete time, this technique heavily relies on timing assumptions on signal propagation over
channels.
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2.2.2 Quasi Delay Insensitive (QDI) Design

Delay insensitive (DI) circuits are a family of asynchronous circuits (and an as-
sociated asynchronous design template) which eliminates channel timing assumptions, by
creating logically correct systems that do not present transitory invalid values.

This is achieved using a delay insensitive (DI) data encoding [Ver88]. DI codes
are codes where no codeword can be contained in another codeword. Depending on the
employed communication protocol, it may happen that an additional invalid codeword is
used to separate valid codewords, in what is known as a spacer. Some four-phase protocols
employ spacers to reset the path before the next valid codeword is issued. In these protocols
this certifies exactly when a valid codeword is received, it is known to be complete.

Logic elements designed for DI codes are logically complete, meaning that they
only yield results once all inputs are detected to be valid. It is also important to mention that
logic elements generate only valid DI encoded data. In this scenario, the explicit request
signal used in BD designs is not required, as completeness is guaranteed whenever valid
encoded data is yielded.

Unfortunately, the family of implementable truly DI circuits is quite limited [Mar90].
QDI design expands the class of practical circuits with the property of delay insensitivity
that can be implemented, by reinforcing timing assumptions only in a limited number of wire
forks, where the correctness of an output may rely upon the forked signal being available
simultaneously in all of its destinations. Except for those sensitive wire forks, QDI circuits
are insensitive to gate and wire delays. If the forks in question behave as expected, they are
called isochronic.

An advantage of DI circuits that is also retained to a great extent in QDI circuits is
their robustness against delay variations, ageing and process variations, due to their self-
timing characteristic.

2.3 High-Level design of asynchronous circuits

Martin et al. in [MBL+89] advised the use of a code transformation approach on
the design of asynchronous circuits: (i) first a high-level set of concurrent process commu-
nicating by message passing is designed; (ii) then, processes are transformed into a circuit
description (e.g. a gate netlist); (iii) the circuit description is then used in a VLSI flow of
choice.

The high-level modelling of asynchronous circuits is usually performed using one
of several available concurrent communicating processes languages. The basis for several
of these languages is the formalism proposed by C. A. R. Hoare known as Communicating
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Sequential Processes or CSP [Hoa85, Hoa78]. Since asynchronous circuits are highly con-
current and communication between components is based on handshake channels, CSP
provides a formally better representation of asynchronous circuits than traditional HDL lan-
guages like Verilog and VHDL, both deemed primarily to describe synchronous hardware.

Message passing concurrent programming abstracts the handshake protocol de-
tails, allowing behavioural validation and optimisation of complex asynchronous constructs,
and enabling the detection and elimination of deadlock conditions early in the design phase.
Also, the overall correctness of the design can be achieved in the first design steps.

Languages like Tangram [vBKR+91] and Balsa [EB02] provide automatic translation
from a CSP-like representation to circuits implementing handshake channels. In this work,
a high-level model was chosen for validation purposes. The next Section introduces the
use of Go, a programming language with concurrent primitives, as a modelling language for
asynchronous circuits.

2.3.1 High Level Hardware Modelling in the Go Language

Go is a new programming language developed by Google. Its designers were
Robert Pike, Ken Thompson and others. Its first version (Go 1) was introduced in March,
2012 [Goo12]. This is a compiled, structured, strongly typed, imperative language that im-
plements concurrency primitives based on CSP [PP16]. The CSP-like concurrency features
implemented in Go make it part of the CSP family of languages. Accordingly, Go constitutes
an interesting candidate to high-level modelling of asynchronous circuits.

Concurrency is built into Go using two primitives: Goroutines and Channels. Gor-
outines are a form of lightweight threads sharing the program address space managed by
the Go runtime environment, while channels are typed conduits in which data can be sent
and received as messages. Using the channel abstraction, Go provides synchronisation of
concurrent threads without explicit locks or condition variables.

The blocking channel synchronisation mechanism implies that a send-receive pair
of goroutines assume the following states: (i) if neither sender or receiver operates on the
channel, both goroutines are free to execute; (ii) if the sender goroutine wrote something on
the channel and the receiver has not yet read it, the sender is blocked until the receiver reads
the channel; (iii) if the receiver reads the channel and the sender has not written yet, the
receiver blocks until the senders writes to the channel; (iv) if both sender and receiver have
operated on the channel, the data is transferred from the sender to the receiver and both are
released to continue their concurrent execution. By default, sending and receiving messages
on channels blocks the execution of goroutines. Non-blocking channels are possible by using
buffered sends and conditional reading. However, this is not a feature coming from the CSP
formalism.
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The locking channel primitive provides synchronisation analogous to fully buffered
handshake channels. Goroutines concurrency is analogous to pipelining parallelism; mes-
sages are analogous to tokens flowing in a pipeline carrying data.

An asynchronous pipeline stage is modelled in Go using a goroutine performing
the following steps in loop: (i) read message from the input channel, optionally blocking
execution until the sender places a message on the channel; (ii) perform data transformation
on the input; (iii) writes data to the output channel, optionally blocking until the receiver reads
from the channel. A stage modelled in this manner implies a storage element, due to the
blocking model for sending data through a channel. An initial condition can be placed in
the implicit storage elements at reset time, by sending information to the output channels
of logical stages before entering the described loop (see below the s1 < −0 command in
Stage 0 of Figure 2.1).

The rest of this Section explores a few common asynchronous structures modelled
in Go.

Figure 2.1 presents a simple asynchronous counter as a loop, detailing the gorou-
tines implementation of each stage. Stage 0 initialises the counter, writing 0 to channel s1.
Stage 1 receives a value from channel s1 and writes it to channels s0 and s2 before reading
the next value from channel s1. Stage 0 receives data from s0, increments the value re-
ceived and sends the incremented value to channel s1. Stage 2 receives from s2 and prints
on the screen before reading the next value.

Figure 2.1 – Simple asynchronous pipeline loop implementing a counter with each stage
highlighting its Go source code.

Figure 2.2 introduces the use of blocking conditional reading, where the gorou-
tine blocks until one of the input channels is available. Once data becomes available on a
channel, the goroutine unblocks and reads data from one of the available channels. The
code block associated with the selected case is then executed. If multiple channels become
available simultaneously, an available channel is randomly selected to provide information
to the data signal. The select statement operates on a single input channel at a time. Unse-
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Figure 2.2 – Asynchronous merge component described in Go. The code uses a select
statement to listen on multiple channels.

lected available channels are ignored and waiting senders remain blocked until the channel
is successfully read.

Another use of conditional reading is to create non-blocking input channels, which
allows the stage to operate despite the completion of an input. This behaviour can be ob-
served in Figure 2.3. This is a model that could be used to describe a behaviour of a counter
with parallel load or set command. Here, the select statement in Stage 0 receives data from
channel set only if data is available, directing it to the output channel s1. When set is not
active, the select statement executes the default clause, incrementing the value received
from channel s0 and writing the result to channel s1. Channels presenting the behaviour de-
scribed for set are named in the scope of this work as uncoupled channels and are denoted
by a dashed line in diagrams.

The circuit shown in Figure 2.4 implements a 3-stage reordering buffer by using
two buffered multiplexers and three transparent buffer stages. The stages are the following:
(i) the first stage is a fan-out 1-to-3 demultiplexer; (ii) each of the first stage outputs connects
to a buffer that holds data until it is collected; (ii) the third stage is a fan-in 3-to-1 multiplexer
that drives the output from the selected buffer to the system output. It is worth noting that
only the data path is shown in this schematic, control is assumed to provide correct sel0 and
sel1 values.

The first multiplexer stage receives the control information from sel0 and data from
in, effectively synchronising both inputs, buffering the data before effectively writing to the
selected output. Each buffer in the second stage is a simple loop that receives data from
its input, effectively holding the data as it attempts to send on its output channel. The third
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Figure 2.3 – Asynchronous counter with a parallel load, implemented with an uncoupled set
channel in Go. It uses conditional reading with the select statement.

Figure 2.4 – Asynchronous reordering buffer using fan-in and fan-out multiplexers in Go.

stage receives control channel sel1 and from the channel selected by it forwards data from
the selected data input channel, ignoring any non-selected inputs.

It is worth mention that while real circuits perform read and write in parallel, Go
blocking receives are inherently sequential. This does not pose a problem, as long as com-
munication between two independent goroutines are performed over a single channel. How-
ever, when using multiple channels between to goroutines, caution must be taken to perform
the matching sends and receives in the same order.
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3. STATE OF THE ART

This Chapter reviews state of the art, introducing a few related works relevant to the
development of this proposal. The Chapter is divided into two Sections: Section 3.1 focus
on asynchronous processors implementations, while Section 3.2 explores applications of
the RISC-V ISA to date.

3.1 Asynchronous Processors

Asynchronous processors are not new, classic references exist to them in academic
works and even mention of commercially successful products based on these can be found.
The first asynchronous processor was developed at Caltech. The Caltech Asynchronous
Microprocessor, reviewed in Section 3.1.1, is not only the first asynchronous processor but
also a first encompassing QDI circuit design. The nature of QDI was claimed by the authors
not to be prohibitive in terms of area overhead with the design of MiniMIPS.

Apart from this QDI implementation, Manchester University developed Amulet, an
asynchronous implementation of an ARM ISA using Bundled Data techniques [Fur95], based
on the concept of micropipelines [Sut89]. This processor is briefly reviewed in Section 3.1.2.

Finally, Section 3.1.3 investigates a later QDI design designed at Caltech, the Min-
iMIPS.

3.1.1 The Caltech Asynchronous Microprocessor

In 1989, Martin et al. [MBL+89] described the design of the very first asynchronous
microprocessor, a simple, 16-bit, clockless, RISC microprocessor. Developed as a proof of
concept that asynchronous circuits are fit for complex data paths, it sets the cornerstone for
QDI design.

The design challenges faced at the time required a novel approach, and three de-
sign abstraction levels were used: first, a purely functional model using message passing
parallel programming with abstract channels was developed; next, abstract channels were
replaced with handshake protocol implementations; finally, a netlist level design was de-
rived from the handshake-aware model [Mar14]. This approach allows for optimisation and
verification at all three design levels.

Another milestone related to this work is the concept of QDI circuit design itself.
Initially, the intention of the authors was to design circuits completely insensitive to delay, but
it proved impossible to create anything useful respecting such a restrictive constraint. The
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QDI approach, developed along this design, relaxes this requirement by allowing specific
delay constraints on specific, sensitive forks.

3.1.2 The Amulet Family of Asynchronous ARM Processors

During the 90’s a series of three asynchronous processors implementing ARM ISAs
were developed at the Manchester University, using a BD template called micropipelines.
The Amulet series of processors and accompanying chips were created to explore the fea-
sibility and commercial potential of asynchronous circuits [GFTW09].

While previous notable works proved the feasibility of asynchronous circuits, they
did not provided real advantages over traditional synchronous counterparts, nor they imple-
mented a proven ISA from which comparisons could be drawn. The Amulet series attempt
tackling those issues, producing a low-power high-performance commercially viable ARM
processor.

Amulet 1, produced between 1991 and 1993 on a 1 µm process, implemented an
organisation similar to the ARM6 and yielded a performance of approximately 16 MIPS, as
described in reference [FDG+94]. It is a scalar pipeline with a register locking mechanism to
avoid hazards by bubble insertion. This simple mechanism guarantees the correct execution
of the instruction flow, albeit providing comparatively poor performance.

Amulet 2 is an improvement over the previous design. It was produced between
1994 and 1996 on a 0.5 µm process. It consists in an organisation similar to the ARM7 and
has a performance of 40 MIPS [FGT+97]. It featured a few organisational improvements over
Amulet 1, the main one being an asynchronous cache to speed memory access. Improve-
ments on hazard handling allows most common bubbles to be avoided.

Amulet 2 took advantage of the clock elimination to provide low power consumption
by halting whenever possible. Branch instructions are decoded as halt instruction fetch,
effectively halting the pipeline. The asynchronous nature provided the circuit with the ability
to halt and resume extremely fast.

The final design is Amulet 3 produced between 1996 and 2000. this is an out-
of-order asynchronous implementation of the ARMv4T ISA, similar to ARM9 [GFTW09].
It was developed to demonstrate the commercial viability of asynchronous processors on
embedded applications [FEG00]. It yielded a performance of over 100MIPS on a 0.35 µm
process and found commercial application on DRACO a DECT base stations due to its low
power consumption and advantageous low electromagnetic emission profile [GFTW09].

According to Garside et al. [GFTW09], at the time the lack of mature computer
aided design (CAD) tools and limited advantages made the complexity of designing asyn-
chronous circuits unappealing for further commercial applications.
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3.1.3 The Caltech MiniMIPS Processor

As a sequence of the work reviewed in Section 3.1.1, Martin et al. [MLM+97] pro-
posed the MiniMIPS asynchronous processor implementation, which builds on a few short-
comings from the design described in [MBL+89] and provides an answer to the critics that
QDI is not suitable for high-performance applications.

The MiniMIPS implements the MIPS R3000 ISA, but without the Memory Manage-
ment Unit (MMU) and accompanying Translation Lookaside Buffer (TLB). It was chosen due
to the fact that this a relatively straightforward, commercially available processor, making
it possible to benchmark performance comparisons of the design against its commercial
synchronous versions.

Figure 3.1 shows a block diagram of the MiniMIPS pipeline. Blocks in the Figure are
independent functional units operating in parallel. They communicate using channels, rep-
resented by lines connecting blocks. These are implemented using a four-phase handshake
protocol, where data is encoded using either dual-rail or one-hot encoding.

The pipeline design takes advantage of asynchronous circuits synchronisation pro-
prieties, making it different from traditional synchronous scalar pipelines. Instructions are
executed in parallel by independent execution units as soon as their operands are ready.
The writeback unit, supported by an external buffer, supervises execution and coordinates
the use of operand buses leading to the register bank. It thus coordinates the register access
by different execution units.

MiniMIPS was fabricated on a 0.6 µm process. Performance evaluation yielded the
following results: 180 MIPS and 4 W at 3.3 V; 100 MIPS and 850 mW at 2 V; 60 MIPS and
220 mW at 1.5 V [MNW03].

3.2 RISC-V Example Implementations

The RISC-V ISA has already been successfully implemented, and SoCs have been
fabricated with cores implementing this architecture on a variety of applications. As a rele-
vant example, NVidia announced it is replacing their GPU memory controller with a custom
architecture employing a RISC-V based processor [XN16]. Samsung, Google, HP and oth-
ers are following in the same path to employ this new ISA proposal.

This Section focus on a review of some relevant RISC-V implementations: Sec-
tion 3.2.1 reviews a family of reference synthesisable softcore implementing the RISC-V ISA;
Section 3.2.2 examines an application using the Rocket reference softcore with a custom
Vector acceleration extension fabricated using 45nm Silicon on Insulator (or SOI) process.
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Figure 3.1 – Block diagram of the MiniMIPS pipeline. Extracted from Martin’s patent on the
MiniMIPS asynchronous pipeline [MLM+02].

3.2.1 The Rocket Chip Generator

Asanović et al. [AAB+16] describe the Rocket Chip Generator, a SoC generator
that produces synthesizable RTL. The work employs Chisel, a language that allows building
a library of soft-cores, caches and interconnect generators. All hardware RTL generated
is synchronous and can be synthesised using industry tools that target either standard cell
libraries or FPGA implementations.

The work describes three families of soft-cores implementing the RISC-V archi-
tecture: (i) Rocket, an in-order, scalar, 6-stage parametrizable RISC-V core implementing
any of all extensions of the 32-bit and 64-bit architecture; (ii) BOOM, Berkeley Out of Or-
der Machine, an out-of-order, superscalar parametrizable RISC-V core, also implementing
all extensions of the RISC-V architecture; (iii) Z-Scale, a 3-stage, in-order, scalar pipeline
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implementing just the Integer and Multiple sets of the 32-bit RISC-V architecture, focused
on low power embedded applications.

Figure 3.2 presents an example organisation produced by the Rocket Chip Gener-
ator for a 3-stage, low power, in-order Z-Scale core implementing just the most basic 32-bit
integer RISC-V instruction set.

Figure 3.2 – Block diagram of the Z-Scale core organisation. Extracted from Berkeley’s
ucb-bar/riscv-sodor Github Repository [UoC14].

Figure 3.3 presents a 6-stage, scalar, in-order pipe of the Rocket Core, including
the optional IEEE754 double precision FPU with fuse-and-multiply.

Finally, Figure 3.4 depicts the superscalar, out-of-order pipe of the Berkeley Out of
Order Machine. It uses register renaming, multiple dispatch queues and a reorder buffer to
optimise instruction parallelism.

3.2.2 The Hwacha RISC-V Vector Processor

Lee et al. [LWA+14] describe the first manufactured dual-core implementation of the
RISC-V architecture. This SoC was designed using the Rocket Chip Generator in Chisel, it
includes two Rocket scalar in-order cores tightly coupled with a Hwacha vector accelerator.
The chip takes advantage of the RISC-V instruction set extensibility feature.

Each core, paired with its vector accelerator is tied by caches to a coherency inter-
connect that attaches to 1MB of SRAM Memory, and a custom FSB interconnect.
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Figure 3.3 – Pipeline diagram of the Rocket Core extracted from lowRisc Rocket Core
Overview web page [low15].
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Figure 3.4 – Block diagram of Boom superscalar core. Extracted from Celio’s ccelio/riscv-
boom-doc Github Repository [Cel16].

A chip was fabricated using a 45nm SOI CMOS process with 11 metal layers. The
entire processor occupies approximately 3mm2. At nominal 1V supply it runs with a 1Ghz
clock frequency and consumes 430mW .
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4. THE ASYNCHRONOUS RISC-V (ARV) PROCESSOR

This Section proposes the Asynchronous RISC-V (or ARV) processor and provides
a high level overview of the organisation. Chapter 2.3.1 explores the modelling of this or-
ganisation in Go and its validation.

The overall block diagram of this processor appears in Figure 4.1. It is an asyn-
chronous, superscalar pipeline implementing the RISC-V 32-bit Integer Architecture, also
known as RV32I. The pipeline employs speculative execution and a register locking scheme
to deal with branches and hazards.

The high level model is designed assuming a full-buffer [SF01] pipeline implemen-
tation, which is easier to model using Go primitives. However, this do not mean that the
same model cannot be used as the starting point for half-buffer QDI implementations such
as those using templates like PreCharged Half Buffer (PCHB) or Weak-Conditioned Half
Buffer (WCHB) [BOF10]. A smart asynchronous synthesis tool can extract the intended
behaviour from the high level model and implement it in any such template.

Figure 4.1 – Block diagram representation of the ARV execution pipeline organisation. Ar-
rows represent handshake channels and blocks represent pipeline stages.

ARV is composed by communicating elements organised in two nested loops, form-
ing the Execution Pipeline: (i) the outermost loop is an uncoupled Control Loop (CL), respon-
sible for fetching, decoding and terminates instructions; (ii) The Datapath Loop (DL), which
retrieves, manipulates and stores data.

Additionally three other auxiliary loops are present: (i) the Program Counter Loop
is responsible for keeping track of the Program Counter (PC) and stream tag; (ii) the Valid
Tag Loop is responsible for holding the valid tag identifying the current valid instruction flow;
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(iii) and the Register Locking Loop (RLL), responsible for identifying registers being modified
by instructions currently under execution

As usual, the PC is used to fetch new instructions and as an operand in some
instructions, while the valid tag is used by the Retire Unit to identify and cancel instructions
that have been invalidated by branches or exceptions.

The basic flow of instructions in the pipeline occur in this order: (i) first the fetch
address is fed into the Memory Instruction Port; (ii) then, the fetched opcode, PC and stream
tag values associated with the instruction are fed into the Decoder Unit, which identify the
operands and operation; (iii) next, the Operand Fetch Unit is fed. It reads the operands
from registers, possibly holding the instruction execution to avoid hazards. Once ready,
the instruction target register address is fed to Target Register Unit, which locks the target
register for reading, while the operation is fed to the Dispatcher Unit; (iv) the Dispatcher
Unit records the instruction in the Program Ordering Queue and sends the instruction to the
appropriated Execution Unit; (v) the selected Execution Unit is where the instruction is in fact
executed and results wait to be collected; (vi) as a sequence, comes the Retire Unit, which
reorders instructions as defined by the Program Ordering Queue and verify conditions for the
achievement of instructions by asserting their validity tag; (vii) finally, the instruction finishes
execution as the Register Access Controller writes the result to the address read from the
Target Register Queue, unlocking the target register for reading; (viii) optionally, branches
are taken, updating the PC and the Tag.

The Execution of instructions is further detailed as each component is explored in
the next Sections. In these Sections, each loop and their interactions are described.

4.1 The Control Loop (CL)

The Control Loop (CL), depicted in Figure 4.2, is the outermost loop of the sys-
tem, and is responsible for controlling the execution flow of programs. Its entry point is the
Program Counter Loop and its end point is the Valid Tag Loop. It shares a path with the
Datapath Loop (DL) from the Operand Fetch Unit to the Retire Unit.

Every instruction is associated with a PC and Stream Tag value. The PC is used
as address to fetch instructions from memory and as an operand in some instructions. The
Stream Tag identifies instructions that must be cancelled due to branching and/or excep-
tions. It does so by counting the number of times the program counter is set at both ends,
sending the value kept at the Program Counter Loop along the instruction in the pipeline, and
comparing the tag received with the instruction to the tag kept in the Valid Tag Loop. If the
Stream Tag received from the Program Ordering Queue by the Retire Unit do not match the
updated value kept by the Valid Tag Loop, any program counter updates, memory or register
writes performed by the instruction are not issued, effectively cancelling the instruction.
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Figure 4.2 – Block diagram representation of the ARV Control Loop, extracted from the ARV
organisation.

The Retire Unit is responsible for incrementing the valid tag and issuing the branch
target to the Next Program Counter and Tag Calculator (NPC) through a buffered uncoupled
channel when a branch or exception occurs. When the NPC receives the branch target, it
increments the Stream Tag and sets the PC accordingly.

The branch target channel is uncoupled, since NPC checks the validity of the input
and acts accordingly, instead of blocking while it waits for a valid input. As the path closing
the loop contains an uncoupled channel, the loop itself is called an uncoupled loop. A buffer
is used in the branch target channel to avoid deadlocks created by race conditions in the
uncoupled input, possibly eliminating the available bubble that allows token mobility in the
loop.

It is important to use an uncoupled loop to model CL1, due to how the DL deals with
pipeline hazards. This occurs because the DL stalls decoding and fetching of instructions
while it inserts bubble pseudo-instructions, increasing the number of tokens and saturating
the CL.

The cancellation mechanism incurs in a branch penalty of at least 7 instructions as
this is the pipeline depth from the fetch stage to the retire unit.

4.1.1 Instruction Decoding

Instruction decoding is performed by the Decoder Unit, which is responsible for
three tasks: (i) determining the instruction format, used by the Operand Fetch Unit to identify
the instruction operands; (ii) decoding the three register fields to a one-hot register address
used by the Execution Pipeline; (iii) identifying the instruction operation to be performed in
the Execution Unit.

1Remember that, as said in Section 2.3.1 an uncoupled loop comprises at least on non-blocking channel,
represented as dotted arrows in the block diagrams presented here.
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The instruction format is encoded in a one-hot representation with seven possi-
ble values: (i) opFormatR is used for most register-to-register instructions, it instructs the
Operand Fetch Unit to retrieve two operands from the register bank; (ii) opFormatI is a the
format used by the variant of register-to-register instructions that includes a 12-bit signed
immediate. The Operand Fetch Unit is instructed to fetch one operand from the register
bank and to sign-extend the immediate value embedded in the instruction as the second
operand; (iii) opFormatS is the format used by the memory store instructions. It tells the
Operand Fetch Unit to retrieve two register operands and sign extend the 12-bit immediate
offset value; (iv) opFormatB is used for conditional branch instructions. Here, the Operand
Fetch Unit is instructed to read two operands from registers and sign extend the 12-bit jump
offset; (v) opFormatU is used by LUI and AUIPC and consists in sign-extending the 20-bit
immediate as one operand and using the instruction PC as the other; (vi) opFormatJ is
similar to opFormatU, but the sign-extension of the 20-bit immediate is specific to the JAL
instruction; (vii) opFormatNop is used by the decoder on invalid and the optional FENCE
instructions. It signals the Operand Fetch Unit to insert a bubble.

The instruction operation is encoded in two one-hot variables. The first encodes
which execution unit is responsible for executing the instruction. The second variable is
specific to the execution unit and encodes what operation should the latter perform on the
received operands.

This simplifies the design of further stages, since the required control information
regarding the instruction is already decoded and readily available.

4.2 Datapath Loop (DL)

The Datapath Loop (DL), depicted in Figure 4.3, is a closed loop composed by 6
logical stages: (i) the Operand Fetch Unit; (ii) the Dispatcher; (iii) the first, and (iv) second
stages of the Execution Units and Program Ordering Queue; (v) the Retire Unit; (vi) the
Register Access Controller.

The DL holds a constant amount of 5 tokens. New instructions are admitted in the
loop as old instructions are retired.

The Register Access Controller implements register bypassing to avoid write-after-
read hazards. This implies that every register read must be matched with a register write.
Cancelled instructions and instructions not operating on the register bank explicitly inform
the Register Access Controller.

When instruction enters the DL, hazards are treated using the Register Locking
mechanism and operands are fetched. The instruction follows to the parallel execution en-
gine. These mechanisms are detailed in the next Sections.
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Figure 4.3 – Block diagram representation of the ARV Datapath Loop, extracted from the
ARV organisation.

4.2.1 Register Locking and Operand Fetching

The Operand Fetch Unit is the entry point of instructions into the DL. This unit
is responsible for retrieving data from the Register Access Controller and for completing
immediate operands. It is also responsible for stalling the pipeline in case of data hazards.

Data hazards are avoided by locking registers that are waiting for data to be writ-
ten. If an instruction attempts to read a locked register, the Operand Fetch Unit stalls the
decoding of new instructions and inserts bubbles in the pipeline.

The Register Locking Loop (RLL), detailed in Figure 4.4, is responsible for tracking
currently locked registers. It is composed by a 4-stage Target Register Queue, an OR logical
stage and the Operand Fetch Unit. The DL and RLL are closed loops of the same length,
running in parallel. Every token in the RLL corresponds to a token in the DL.

Each stage in the Target Register Queue holds the target register of an instruction
in execution stages: Stage 0 holds the target register of the instruction currently in the
Dispatcher Unit; Stages 1 and 2 holds the target register of the two instructions present
in Execution Units; and Stage 3 holds the target register of the instruction in the Retire Unit.
The Target Register queue is fed by the Operands Fetch Unit and consumed by the Register
Access Controller.
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Figure 4.4 – Block diagram detailing the Register Locking Loop and the Operand Fetch
mechanism.

Register Addresses employs a one-hot code, which allows the use of a simple OR
to sum all registers in the Target Register Queue to produce the Locked Register Mask. This
is employed by the Operand Fetch Unit to determine whether the register the instruction is
currently attempting to read is currently locked. If any of the registers being read are locked,
the Operand Fetch Unit stalls fetching and decoding of instructions, by not handshaking with
its input channel. It then inserts bubbles in the pipeline that behave like no-operation (NOP)
instructions until the register in question is unlocked.

The insertion of bubble pseudo-instructions is important: (i) to avoid stalling RLL,
since the OR logical stage uses channels to feed all stages of the Target Register Queue,
it must be always full to generate a mask; (ii) to keep the correlation of an address in the
Target Register Queue with an instruction in some execution stage; (iii) to allow correct
operation of the Register Access Controller, which synchronises read and write operations
to the Register Bank.

The Operand Fetch Unit retrieves register operands using two register read ports
in the Register Access Controller. Each read port comprises a register address channel and
a register data channel. The diagram shown in Figure 4.4 aggregates the address channels
and the data channels in a single entity for the sake of simplifying the Figure.

To avoid write-after-read hazards of instructions concurrently operating on the reg-
ister bank, a register read is always matched with a register write. If the address of the
register being written is equal to the address of a register being read, data is bypassed from
the write port to the matching read ports, while register write takes place simultaneously.

This synchronisation implies that instructions not reading from registers should in-
form this to the Register Access Controller, by sending a special no read code instead of a
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register address. The no read code clears the responsibility of sending register data from
the Register Access Unit to the Operand Fetch Unit.

The Operand Fetch Unit is also responsible for sign-extending immediate values
from fields of an instruction code, according to the ISA specification.

Once all operands are retrieved, the instruction follows to the Dispatcher for execu-
tion.

4.2.2 Parallel Execution and Instruction Retiring

Once an instruction enters the Dispatcher, it has all required operands available to
complete execution. The pipeline uses a fan-out distribution characteristic of asynchronous
circuits. Instructions are only sent to units involved in their execution. This diverges from
the traditional ALU design of synchronous processors, where data is sent to all units and
results are collected by a multiplexer. An interesting aspect of this approach is the potential
for energy saving, since units not operating on an instruction need not produce switching
activity.

Figure 4.5 – Block diagram representation of the ARV parallel execution engine with the
instruction Dispatcher and Retire Unit, extracted from the ARV organisation.
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The fan-out unit selection scheme introduces problems when there is a discrepancy
in the individual delays of distinct units. This may cause instructions to execute out of order.
As consequence, instruction reordering techniques are required for correct execution.

Reordering is performed with the aid of the Program Ordering Queue. When the
Dispatcher issues an instruction to one of the execution units, it records which unit was
selected along with the stream tag in the Program Ordering Queue.

Since an instruction reordering mechanism is used, it becomes simple to imple-
ment parallel execution units to improve throughput. To achieve a theoretical best case of
2-instruction parallelism, the Program Ordering Queue is two-stage deep. Besides, to ac-
commodate the scenario of two instructions being dispatched to a same Execution Unit in
sequence, units are each two-stage long.

Execution itself is carried by six parallel specialised Execution Units: (i) the Bypass
Buffers, simply send the single input from operand to the result output; (ii) the Adder Stages
implement addition, subtraction and comparison operations in two stages; (iii) the Logic
Stage performs the bit-wise XOR, AND and OR operations; (iv) the Shifter Stage is a barrel
shifter capable of arithmetic right, logic right and left shifts; (v) the Branch Stages compute
the target PC and perform comparisons to determine if the branch is to be taken; (vi) the
Memory Stages compute memory access addresses, command the memory access ports
and sign-extend the returned data. Each execution unit operates on data, holding the results
for collection by the Retire Unit.

The Memory Stages are responsible for memory reads and writes. Access is per-
formed using a read-then-write memory port, allowing future implementation of atomic mem-
ory instructions.

A memory read operation is performed with the following steps: (i) Memory Stage
1 calculates the memory access address from the base and offset values; (ii) The desired
operation is sent to Memory Stage 2; (iii) Concurrently, the address and a flag indicating a
read-only operation are sent to Memory Data Port; (iv) Memory Stage 2 receives the data
from Memory Data Port, sign-extends it accordingly and holds the result for later collection
by the Retire Unit.

Memory write operations follow the basic flow of a memory read with slight modi-
fications: (i) Memory Stage 1 is responsible for calculating the memory access address; (ii)
The desired operation is also sent to Memory Stage 2; (iii) Concurrently the address, data an
a flag indicating the write intention are sent to the Memory Data Port; (iv) The memory data
port is blocked, waiting for a write enable command to perform the memory write operation;
(v) Memory Stage 2 then holds a flag indicating a memory write is pending for collection by
the Retire Unit; (vi) The Retire Unit eventually collects the flag and sends the write enable to
the Memory Data Port, enabling the pending memory write and completing the operation.
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The Retire Unit reorders instructions by collecting results from the Execution Units
in the order determined by the Program Ordering Queue. The mechanism described in
Section 4.1 determines if the instruction is cancelled or not. If the instruction has not been
cancelled, the Retire Unit performs the following operations depending on the instruction
received: (i) sends the result to the Register Access Controller for writing back to the target
register; (ii) authorises a pending memory write in the Memory Data Port; (iii) increments
the valid tag value and sends the branch target to the NPC.

For the register writeback, the Register Access Controller receives the result from
the Retire Unit and writes it to the register addressed by the tail of the Target Register Queue.
A register write enable channel is used to signal the Register Access Controller if the write
should be performed or not. On an instruction cancellation, the flag is set low and the result
is ignored by the Register Access Controller. This is necessary to synchronise the RLL and
the DL since the target register address is consumed from the Target Register Queue only
when the Retire Unit finishes the instruction execution.

4.3 Initialisation

All sequential circuits require some initialisation to a known starting state. Since
ARV comprises closed loops, the initialisation process must place tokens in the correct logi-
cal stages to fill the loops. This guarantees a stable and expected start of operation.

Figure 4.6 – Block diagram representation of the ARV organisation, with logical units ini-
tialised with tokens highlighted in dark grey.

The logical stages marked with dark grey in Figure 4.6 must be initialised with
tokens. Stages not marked are initialised to a empty state, waiting for tokens in their inputs.
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The Next Program Counter and Tag Calculator is initialised with the initial Program
Counter value. This initiates the fetching of instructions.

The DL and RLL must be initialised with tokens for correct operation. The tokens
placed initialise the DL to a state where it is full of bubbles, each acting as an NOP instruc-
tion. The Stream Tag of the bubbles is set to 0, but they are irrelevant, since bubbles commit
to neither memory or registers, nor they modify the program counter.

The Stream Tag and Valid Tag values are set by the NPC and the Retire Unit to 0
on initialisation. The PC is set to 0 and the first instruction is fetched from memory location
0.
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5. THE ARV ORGANISATION MODELLING AND VALIDATION

The ARV organisation was modelled using the Go programming language, applying
techniques like those described in Section 2.3.1. The model is executable and acts as a
simulator capable of running code compiled for the RISC-V 32-bit integer architecture, the
RV32I ISA. This approach allows the use of software tools to detect race conditions and
deadlocks, making it easier to correct the design.

This Chapter describes how the processor and the simulation platform was mod-
elled using Go, the software used for validation, how the software is executed in the simu-
lated platform and how validation in Go may help in designing complex circuits.

5.1 The ARV Go Model and Simulator

The processor model is composed of a series of goroutines communicating through
channels and a model object holding persistent information about the state of the model.
The model object holds reference to the memory model used by the simulated processor,
the register bank and a flag used to synchronise the start of simulation after the model is
constructed.

The model components are initiated by a set of hierarchical constructors. Each
constructor is responsible for creating the goroutine representing the logical stages and the
channels connecting logical stages. The goroutines are instantiated using inline anonymous
functions.

The topmost constructor initialises the state structure and the channels intercon-
necting the stages before calling child constructors. Each constructor is responsible for
launching goroutines implementing the logical stage.

Logical stages that initialise to a specific state, as described in Section 4.3 wait for
the common start flag before sending initial data to the channel. This guarantees that upon
construction the model waits for a start signal before operating.

The processor model constructor expects a memory model reference as argument.
This is an object providing constructors for the memory read and write ports that create
goroutines behaving as memory access ports.

The memory model adopted in simulation accesses a memory mapped file and
a simulated register for controlling the simulation. A file is mapped using the mmap system
call of Unix operation systems to the beginning of the memory address, starting at address
0x0. The upper memory area is reserved for two simulated register that control the simu-
lation platform: (i) When writing to address range 0x80001000-0xFFFFFFFF, all bytes are
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interpreted as characters and outputted to the terminal; (ii) Writing any value to address
0x80000000 terminates the simulation.

To aid debugging, the instruction flow in the pipeline can be logged to the output.
This behaviour is optionally enabled by setting a flag when invoking the platform.

The model and simulation platform are all written in Go and it is expected from
the reader willing to use the platform to have available a proper working Go development
environment. The Go package name is bitbucket.org/marcos_sartori/qdi-riscv and it
is beyond the scope of this work describing how to install and compile Go packages and
their dependencies. Instructions on how to install and use the Go environment can be found
in the official documentation (https://golang.org/doc).

It is worth noting that due to the use of the mmap system call, the simulation is
adapted to only run in Unix-like platforms. The version described herein has been success-
fully validated and tested using Go version 1.7.5 on Fedora 25 and Go 1.8.1 on Ubuntu 16.04
LTS.

5.2 Validation Software

The validation was performed using software compiled for RV32I architecture. A
port of the RISC-V Foundation unit tests for RISC-V processors is used to test conformity
to the RISC-V ISA [RIS15b]. A port of bareOS for the RISC-V, a minimalist baremetal C
runtime and library used by Aguiar, Moratelli, Sartori et al. to validate a hypervisor for MIPS-
based MPSoCs [AMSH13] was also used to test ARV’s capability to run code generated by
high-level compilers.

The unit test for RISC-V is a set of assembly programs designed to test individual
instruction compliance to the RISC-V specifications. It tests general and corner cases for
each instruction, comparing the execution result to an expected value.

The code itself is written using assembly macros and it can be easily ported to
different execution environments by modifying stubs implementing communication with the
outside world and linking to the appropriated memory location. The unit test used target
RV32I, the basic subset of the ISA, which is implemented in the proposed organisation.

To further validate the processor, code generated by a C compiler is used. Since
the simulation environment has no operating system, bareOS was ported to the RISC-V ar-
chitecture. It is responsible for interfacing with the hardware. It initialises a sane C execution
environment expected by GCC and provides support libraries, including a basic C library
and software multiply functions.

A small application in C implementing a non-recursive resolution algorithm to solve
the Tower of Hanoi problem was compiled for bareOS and used for compiled code validation.

https://golang.org/doc
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This application was chosen due to its use of branches, function calls and memory accesses,
being similar to a regular structured memory-bound application. This tests aims at stressing
the pipeline to check for bugs in the branching and hazard avoidance mechanism.

5.3 Running Code on the Simulated Platform

The platform runs real code placed into its memory starting at address 0. All gen-
eral purpose registers start with an unknown value. To run software on the platform, the
object code must be preloaded to the required position in a flat binary file representing the
memory contents and it should perform any initialisation of the environment.

Also a tool chain capable of generating code for the RISC-V architecture is required
to compile code for the platform. In this work, the official The RISC-V Foundation Toolchain
is used to generate code [RIS15a]. Instructions to download and compile this tool chain can
be found at https://github.com/riscv/riscv-gnu-toolchain.

Since ARV does not implement the 64-bit variant of the ISA which is built by default,
it is important to use the following commands to build the compiler once its source code is
downloaded:

$ mkdir build

$ cd build

$ ../configure --with-arch=rv32ima --with-abi=ilp32

$ sudo make

These steps build and install the riscv32 Toolchain in the /usr/local prefix, elimi-
nating the requirement to adjust PATH variables.

Directory samplecode in the source code distribution contains: (i) a copy of bareOS,
responsible for initialising the C execution environment; (ii) a linker script, defining the mem-
ory layout; (iii) a makefile which invokes the compiler and strips the binary headers to create
the required flat memory image required by the Simulation Platform.

New code can be easily ported to the platform using bareOS. File dummy.c provides
a template for new projects, it contains function kmain which should never return and is called
once the C runtime environment finishes initialisation. Function halt provides a clean way
of finishing execution.

To compile and run new code on the platform, copy dummy.c to a new file terminat-
ing in .c. Edit the file to provide the source code of the new program. Include the chosen
file name in the PROGNAME list in the Makefile, i.e. test_hannoi.c becomes test_hannoi

Running make on the samplecode directory should create a .lst and a .bin file for
every entry in PROGNAME. The .lst file is the assembly listing of the compiled program, which
helps during debugging. Finally, the .bin file is the memory image file used by the simulator.

https://github.com/riscv/riscv-gnu-toolchain
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To launch the compiler in the simulator invoke qdi-riscv supplying the memory
image file name as argument to the -memfile flag. Other flags are present and relate to the
process of debugging the processor model. Invoking compilation with -h provides a brief
description on how to use them.

5.4 Advantages of Using Go for Asynchronous Circuit Validation

The main advantage of using Go when designing complex asynchronous circuits
is the easy detection and visualisation of deadlock conditions at the message passing ab-
straction level. This helps in managing complexity, since predicting deadlock conditions at
early design stages can be difficult. This occurs due to the high parallelism of asynchronous
circuits and the interaction of units at the system level leading to unexpected scenarios.

Once a deadlock condition occurs, the state of each goroutine is displayed in an
on-screen panic trace. The panic trace shows the state of each goroutine, if it is locked
waiting to send or receive on a channel and the line of code it is currently locked on. This
information is enough to identify in the source code the goroutines involved in the production
of a deadlock.

If further information about the state of the program is required when the deadlock
occurs, logging instructions can be inserted in the source code to examine the execution
flow in key goroutines.

To demonstrate it, a step of the validation where design changes were introduced
due to a deadlock condition is presented herein. The deadlock occurred due to the CL
saturation that occurred intermittently on branch instructions. The cause was identified to
be a race condition on the uncoupled branch target channel from the Retire Unit to the
NPC. The solution was the introduction of a buffer stage on the output of the Retire Unit to
accommodate the token during extra handshake cycles without locking the Retire Unit.

Appendix A.1 includes the panic trace for the described deadlock. A designer fa-
miliar with the organisation knows how units are connected. He can then look at the state
of goroutines to identify the nature of the deadlock. In the example, all stages of the Con-
trol Loop are locked in send operations, meaning that it is saturated. The Retire Unit in
goroutine 38 is blocked sending the branch target, while the NPC is blocked trying to send
the next PC value to the memory instruction port. The expected behaviour is that the NPC
should receive the branch target if one is available, before trying to fetch the next instruction.
However, a race condition occurred and the NPC advanced, inserting a token that saturates
the control loop. To solve the problem, a buffer stage is inserted to hold the branch target,
effectively inserting a second bubble in the loop to accommodate the token inserted when
the race condition occurs.
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6. RESULTS AND FINAL THOUGHTS

This Chapter presents the result of each test and briefly discusses them. Later,
it discusses the merits and shortcomings of this work, followed by the proposition of future
work to continue, extend and/or improve this initial work.

6.1 Validation Results

After iterations of validation and corrections, the developed model passed all pro-
posed tests. This Section presents and discuses the results.

The results mentioned in this Section are the output of the simulation platform for
each test. It includes messages from the simulation platform and the output of the program
running in the simulated environment. At the end, metrics of the execution regarding pipeline
usage are shown.

6.1.1 Unit Test for RISC-V Processors

The Unit Test for RISC-V Processors checks the processors compliance to the
RISC-V ISA specification. The simulator output in Appendix A.2 shows the results for the
compliance test to the RV32I subset of the ISA.

Each instruction is tested for compliance and OK or ERROR is printed to indicate
whether it passed or failed the test. The proposed organisation passed every individual
instruction test, indicating compliance to the ISA specification. However, compliance to the
standard does not guarantee the processor is free of bugs.

The performance at first appears sub-optimal, with 17,285 bubbles inserted due to
pipeline hazards for 14,729 decoded instructions. Instruction cancellation due to branches
also display a relatively high figure of 6,588 instructions for a simple assembly program, but
this is expected, since no branch prediction mechanism was implemented.

6.1.2 High Level Compiled Code

The Tower of Hanoi test further stresses the pipeline and certifies the correct exe-
cution of compiled C code. The simulator output in Appendix A.3 shows the computed steps
required to solve the Tower of Hanoi puzzle.
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It computes the 127 steps required to solve the puzzle with 7 disks, with rods num-
bered from 0 to 2. The code calls printf routine to print the instructions of each step after
calculating the move. This test uses memory accesses and function calls extensively. This
stresses the branch, hazard-avoidance and memory access mechanisms.

To assert correction execution, the test program was compiled and run for both the
simulated and host platforms and their outputs were compared. The outputs were identical,
proving that the design is capable of correctly executing software compiled for the RISCV32I
ISA.

The performance was again sub-optimal, inserting 145,835 bubbles for 154,943 de-
coded instructions to avoid pipeline hazards. Instruction cancellation accounted for 125,920
instructions and bubbles reaching the Retire Unit, with 174,856 instructions completing exe-
cution.

6.2 Conclusion and Future Works

This work satisfied its goal of implementing a high-level functional model of the ARV
asynchronous processor. Validation results strongly indicate that the ARV model correctly
implements the RISC-V RV32I architecture.

The design and high-level model of ARV in Go have proved the language is ad-
equate to model complex handshake channel-based circuits. The software environment
provided by the language helped during the design debugging process. The author be-
lieves the advantages of using a high level language for validation justify the use of the Go
programming language as a hardware description language.

Of course, to implement hardware modelled in Go, it is necessary to develop tech-
niques to translate the Go high level description to lower level descriptions. Future work
includes developing tools to automatically transform the high level Go description into a
lower level netlist using asynchronous templates.

Performance of the described implementation seems rather poor at first, albeit no
precise timing measurements can in fact be extracted as the model proposed contains not
even delay estimations. Future work is also expected to improve the pipeline performance
by exploring optimisation techniques such as hazard resolution units, out-of-order execution
and branch prediction units.

The preliminary instruction cancellation measurements presented in this work strongly
indicate the need for a branch prediction unit as a primary organisation optimisation. Due to
the nature of asynchronous circuits, the cost of bubbles need to be evaluated, comparing it
to the cost of implementing alternative solutions.
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The timing analysis required for performance evaluation depends upon proposing
a more detailed model, with features that allow estimating signal propagation delays. Such
finer-grain models are the target of future work, and will be developed with the aid of asyn-
chronous templates and specific standard-cell level descriptions. A finer-grain timed model
will also allow the use of industry standard benchmarks to estimate performance.

The Author is currently continuing this work, to explore the necessary steps to
implement the organisation proposed here in silicon using asynchronous design techniques.
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[AP14] Asanović, K.; Patterson, D. A. “Instruction Sets Should Be Free: The Case
for RISC-V”, Technical Report UCB/EECS-2014-146, University of California,
Berkeley, 2014, 7p.

[BOF10] Beerel, P.; Ozdag, R. O.; Ferretti, M. “A Designer´s Guide to Asynchronous
VLSI”. Cambridge University Press, 2010, 353p.

[Cel16] Celio, C. “ccelio/riscv-boom-doc Github repository”. Source: https://github.com/
ccelio/riscv-boom-doc, 2017-06-30.

[EB02] Edwards, D.; Bardsley, A. “Balsa: An asynchronous Hardware Synthesis
Language”, The Computer Journal, vol. 45–1, 2002, pp. 12–18.

[FDG+94] Furber, S. B.; Day, P.; Garside, J. D.; Paver, N. C.; Woods, J. V. “AMULET1: a
micropipelined ARM”. In: Compcon, 1994, pp. 476–485.

[FEG00] Furber, S. B.; Edwards, D. A.; Garside, J. D. “AMULET3: A 100 MIPS
Asynchronous Embedded Processor”. In: IEEE International Conference on
Computer Design (ICCD), 2000, pp. 329–334.

[FGT+97] Furber, S. B.; Garside, J. D.; Temple, S.; Liu, J.; Day, P.; Paver, N. C.
“AMULET2e: An Asynchronous Embedded Controller”. In: International
Symposium on Advanced Research in Asynchronous Circuits and Systems
(ASYNC), 1997, pp. 290–299.

[Fur95] Furber, S. “Computing without Clocks: Micropipelining the ARM Processor”.
London: Springer London, 1995, chap. 5, pp. 211–262.

[GFTW09] Garside, J. D.; Furber, S. B.; Temple, S.; Woods, J. V. “The Amulet
Chips: Architectural Development for Asynchronous Microprocessors”. In: IEEE

https://github.com/ccelio/riscv-boom-doc
https://github.com/ccelio/riscv-boom-doc


45

Internation Conference on Electronics, Circuits and Systems (ICECS), 2009, pp.
343–346.

[Goo12] Google Inc. “The Go Programming Language”. Source: https://golang.org, 2017-
05-22.

[Hoa78] Hoare, C. A. R. “Communicating Sequential Processes”, Communications of the
ACM, vol. 21–8, Aug 1978, pp. 666–677.

[Hoa85] Hoare, C. A. R. “Communicating Sequential Processes”. Prentice Hall
International, 1985, 260p.

[low15] lowRisc. “Rocket Core Overview”. Source:
http://www.lowrisc.org/docs/untether-v0.2/rocket-core/,
2017-06-30.

[LWA+14] Lee, Y.; Waterman, A.; Avizienis, R.; Cook, H.; Sun, C.; Stojanović, V.; Asanović,
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APPENDIX A – SIMULATION OUTPUT

A.1 Deadlock panic trace

2017/06/05 19:07:42 Memdump file opened

2017/06/05 19:07:42 Memory model created from file

2017/06/05 19:07:42 Processor model instantiated

2017/06/05 19:07:42 Simulation started

lui..OK

fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan receive]:

main.main

main.go:61

goroutine 5 [chan send]:

processor.(*processor).nextPcUnit.func1

processor/fetch.go:42

created by processor.(*processor).nextPcUnit

processor/fetch.go:46

goroutine 6 [chan send]:

processor.(*processor).fetchUnit.func1

processor/fetch.go:71

created by processor.(*processor).fetchUnit

processor/fetch.go:73

goroutine 7 [chan send]:

processor.(*processor).fetchUnit.func2

processor/fetch.go:81

created by processor.(*processor).fetchUnit

processor/fetch.go:83

goroutine 8 [select]:

processor.(*processor).fetchUnit.func3

processor/fetch.go:88

created by processor.(*processor).fetchUnit

processor/fetch.go:94
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goroutine 9 [chan send]:

memory.(*memoryArray).ReadPort.func1

memory/memory.go:61

created by memory.(*memoryArray).ReadPort

memory/memory.go:66

goroutine 10 [chan send]:

processor.(*processor).decoderUnit.func1

processor/decoder.go:266

created by processor.(*processor).decoderUnit

processor/decoder.go:268

goroutine 11 [chan send]:

processor.(*processor).operandFetchUnit.func1

processor/operandfetch.go:96

created by processor.(*processor).operandFetchUnit

processor/operandfetch.go:211

goroutine 12 [chan receive]:

processor.(*processor).reglockEl.func1

processor/registerlock.go:19

created by processor.(*processor).reglockEl

processor/registerlock.go:23

goroutine 13 [chan send]:

processor.(*processor).reglockEl.func1

processor/registerlock.go:20

created by processor.(*processor).reglockEl

processor/registerlock.go:23

goroutine 14 [chan send]:

processor.(*processor).reglockEl.func1

processor/registerlock.go:20

created by processor.(*processor).reglockEl

processor/registerlock.go:23

goroutine 15 [chan send]:

processor.(*processor).reglockEl.func1

processor/registerlock.go:20
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created by processor.(*processor).reglockEl

processor/registerlock.go:23

goroutine 16 [chan receive]:

processor.(*processor).registerLock.func1

processor/registerlock.go:61

created by processor.(*processor).registerLock

processor/registerlock.go:69

goroutine 17 [chan receive]:

processor.(*regFile).WritePort.func1

processor/registerbank.go:38

created by processor.(*regFile).WritePort

processor/registerbank.go:50

goroutine 18 [chan receive]:

processor.(*regFile).ReadPort.func1

processor/registerbank.go:19

created by processor.(*regFile).ReadPort

processor/registerbank.go:32

goroutine 19 [chan receive]:

processor.(*regFile).ReadPort.func1

processor/registerbank.go:19

created by processor.(*regFile).ReadPort

processor/registerbank.go:32

goroutine 20 [chan receive]:

processor.(*processor).registerBypass.func1

processor/registerbypass.go:44

created by processor.(*processor).registerBypass

processor/registerbypass.go:96

goroutine 21 [chan send]:

processor.(*processor).dispatcherUnit.func1

processor/dispatcher.go:92

created by processor.(*processor).dispatcherUnit

processor/dispatcher.go:95

goroutine 22 [chan send]:
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processor.(*processor).bypassEl.func1

processor/bypassunit.go:14

created by processor.(*processor).bypassEl

processor/bypassunit.go:16

goroutine 23 [chan send]:

processor.(*processor).bypassEl.func1

processor/bypassunit.go:14

created by processor.(*processor).bypassEl

processor/bypassunit.go:16

goroutine 24 [chan send]:

processor.(*processor).prgQElement.func1

processor/programqueue.go:42

created by processor.(*processor).prgQElement

processor/programqueue.go:44

goroutine 25 [chan send]:

processor.(*processor).prgQElement.func1

processor/programqueue.go:42

created by processor.(*processor).prgQElement

processor/programqueue.go:44

goroutine 26 [chan send]:

processor.(*processor).adderUnit.func1

processor/adder.go:17

created by processor.(*processor).adderUnit

processor/adder.go:19

goroutine 27 [chan receive]:

processor.(*processor).adderUnit.func2

processor/adder.go:23

created by processor.(*processor).adderUnit

processor/adder.go:43

goroutine 28 [chan receive]:

processor.(*processor).logicUnit.func1

processor/logicunit.go:16

created by processor.(*processor).logicUnit

processor/logicunit.go:19
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goroutine 29 [chan receive]:

processor.(*processor).logicUnit.func2

processor/logicunit.go:23

created by processor.(*processor).logicUnit

processor/logicunit.go:33

goroutine 30 [chan receive]:

processor.(*processor).shifterUnit.func1

processor/shiftUnit.go:16

created by processor.(*processor).shifterUnit

processor/shiftUnit.go:19

goroutine 31 [chan receive]:

processor.(*processor).shifterUnit.func2

processor/shiftUnit.go:24

created by processor.(*processor).shifterUnit

processor/shiftUnit.go:34

goroutine 32 [chan receive]:

memory.(*memoryArray).ReadWritePort.func1

memory/memory.go:79

created by memory.(*memoryArray).ReadWritePort

memory/memory.go:130

goroutine 33 [chan receive]:

processor.(*processor).memoryUnit.func1

processor/memoryunit.go:39

created by processor.(*processor).memoryUnit

processor/memoryunit.go:70

goroutine 34 [chan receive]:

processor.(*processor).memoryUnit.func2

processor/memoryunit.go:77

created by processor.(*processor).memoryUnit

processor/memoryunit.go:102

goroutine 35 [chan receive]:

processor.(*processor).branchUnit.func1

processor/branchunit.go:21
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created by processor.(*processor).branchUnit

processor/branchunit.go:24

goroutine 36 [chan receive]:

processor.(*processor).branchUnit.func2

processor/branchunit.go:29

created by processor.(*processor).branchUnit

processor/branchunit.go:57

goroutine 37 [chan send]:

processor.(*processor).retireUnit.func1

processor/retire.go:34

created by processor.(*processor).retireUnit

processor/retire.go:36

goroutine 38 [chan send]:

processor.(*processor).retireUnit.func2

processor/retire.go:122

created by processor.(*processor).retireUnit

processor/retire.go:125

A.2 Unit Test for RISC-V Processors

2017/06/06 11:16:44 Memdump file opened

2017/06/06 11:16:44 Memory model created from file

2017/06/06 11:16:44 Processor model instantiated

2017/06/06 11:16:44 Simulation started

lui..OK

auipc..OK

j..OK

jal..OK

jalr..OK

beq..OK

bne..OK

blt..OK

bge..OK

bltu..OK

bgeu..OK
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lb..OK

lh..OK

lw..OK

lbu..OK

lhu..OK

sb..OK

sh..OK

sw..OK

addi..OK

slti..OK

xori..OK

ori..OK

andi..OK

slli..OK

srli..OK

srai..OK

add..OK

sub..OK

sll..OK

slt..OK

xor..OK

srl..OK

sra..OK

or..OK

and..OK

simple..OK

DONE

2017/06/06 11:16:44 Finishing Simulation

2017/06/06 11:16:44 Decoded: 14729 instructions

2017/06/06 11:16:44 Inserted: 17285 bubbles

2017/06/06 11:16:44 Retired: 25424 instructions

2017/06/06 11:16:44 Cancelled: 6588 instructions

A.3 Tower of Hanoi

2017/06/06 16:26:09 Memdump file opened

2017/06/06 16:26:09 Memory model created from file

2017/06/06 16:26:09 Processor model instantiated
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2017/06/06 16:26:09 Simulation started

init Hanoi

Resolving Hanoi

0: Move from 0 to 2

1: Move from 0 to 1

2: Move from 2 to 1

3: Move from 0 to 2

4: Move from 1 to 0

5: Move from 1 to 2

6: Move from 0 to 2

7: Move from 0 to 1

8: Move from 2 to 1

9: Move from 2 to 0

10: Move from 1 to 0

11: Move from 2 to 1

12: Move from 0 to 2

13: Move from 0 to 1

14: Move from 2 to 1

15: Move from 0 to 2

16: Move from 1 to 0

17: Move from 1 to 2

18: Move from 0 to 2

19: Move from 1 to 0

20: Move from 2 to 1

21: Move from 2 to 0

22: Move from 1 to 0

23: Move from 1 to 2

24: Move from 0 to 2

25: Move from 0 to 1

26: Move from 2 to 1

27: Move from 0 to 2

28: Move from 1 to 0

29: Move from 1 to 2

30: Move from 0 to 2

31: Move from 0 to 1

32: Move from 2 to 1

33: Move from 2 to 0

34: Move frrm 1 to 0

35: Move from 2 to 1

36: Move from 0 to 2
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37: Move from 0 to 1

38: Move from 2 to 1

39: Move from 2 to 0

40: Move from 1 to 0

41: Move from 1 to 2

42: Move from 0 to 2

43: Move from 1 to 0

44: Move from 2 to 1

45: Move from 2 to 0

46: Move from 1 to 0

47: Move from 2 to 1

48: Move from 0 to 2

49: Move from 0 to 1

50: Move from 2 to 1

51: Move from 0 to 2

52: Move from 1 to 0

53: Move from 1 to 2

54: Move from 0 to 2

55: Move from 0 to 1

56: Move from 2 to 1

57: Move from 2 to 0

58: Move from 1 to 0

59: Move from 2 to 1

60: Move from 0 to 2

61: Move from 0 to 1

62: Move from 2 to 1

63: Move from 0 to 2

64: Move from 1 to 0

65: Move from 1 to 2

66: Move from 0 to 2

67: Move from 1 to 0

68: Move from 2 to 1

69: Move from 2 to 0

70: Move from 1 to 0

71: Move from 1 to 2

72: Move from 0 to 2

73: Move from 0 to 1

74: Move from 2 to 1

75: Move from 0 to 2

76: Move from 1 to 0
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77: Move from 1 to 2

78: Move from 0 to 2

79: Move from 1 to 0

80: Move from 2 to 1

81: Move from 2 to 0

82: Move from 1 to 0

83: Move from 2 to 1

84: Move from 0 to 2

85: Move from 0 to 1

86: Move from 2 to 1

87: Move from 2 to 0

88: Move from 1 to 0

89: Move from 1 to 2

90: Move from 0 to 2

91: Move from 1 to 0

92: Move from 2 to 1

93: Move from 2 to 0

94: Move from 1 to 0

95: Move from 1 to 2

96: Move from 0 to 2

97: Move from 0 to 1

98: Move from 2 to 1

99: Move from 0 to 2

100: Move from 1 to 0

101: Move from 1 to 2

102: Move from 0 to 2

103: Move from 0 to 1

104: Move from 2 to 1

105: Move from 2 to 0

106: Move from 1 to 0

107: Move from 2 to 1

108: Move from 0 to 2

109: Move from 0 to 1

110: Move from 2 to 1

111: Move from 0 to 2

112: Move from 1 to 0

113: Move from 1 to 2

114: Move from 0 to 2

115: Move from 1 to 0

116: Move from 2 to 1
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117: Move from 2 to 0

118: Move from 1 to 0

119: Move from 1 to 2

120: Move from 0 to 2

121: Move from 0 to 1

122: Move from 2 to 1

123: Move from 0 to 2

124: Move from 1 to 0

125: Move from 1 to 2

126: Move from 0 to 2

Solved Hanoi :)

2017/06/06 16:26:15 Finishing Simulation

2017/06/06 16:26:15 Decoded: 154943 instructions

2017/06/06 16:26:15 Inserted: 145835 bubbles

2017/06/06 16:26:15 Retired: 174856 instructions

2017/06/06 16:26:15 Cancelled: 125920 instructions
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