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PROJETO ASSÍNCRONO QDI E ESCALAMENTO DA TENSÃO DE
ALIMENTAÇÃO

RESUMO

Circuitos quasi-delay insensitive (QDI) são uma solução promissora para lidar com
variações significativas de processo em tecnologias modernas, já que suas características
acomodam variações significativas de atraso de fios e portas lógicas. Além disso, com
as novas tendências de dispositivos móveis e a Internet das Coisas (IoT), o projeto QDI
apresenta-se como um alternativa de implementação para aplicações operando em tensão
baixa ou muito baixa. Como principal desvantagem, o projeto QDI conduz a um aumento
significativo no consumo de área e potência, o que pode comprometer seu emprego. Este
trabalho investiga a compatibilidade de projeto QDI sob escalamento de tensão, explorando
e analisando templates QDI disponíveis na literatura. Entre estes templates, seleciona-se
o template SCL como um opção interessante para amenizar consumo de área e potên-
cia. Contudo, a proposta original deste template, demonstra-se aqui, apresenta problemas
temporais. Devido a estes problemas, propõe-se aqui um template alternativo. Usando o
fluxo de projeto ASCEnD, bibliotecas de standard cells para os templates em questão foram
geradas a fim de avaliar os benefícios e desvantagens destes.

Palavras-Chave: Circuitos assíncronos, projeto assíncrono, quasi-delay insensitive, projeto
QDI, escalamento de tensão, tensão de limiar, tensão quase-limiar, tensão sub-limiar.



QDI ASYNCHRONOUS DESIGN AND VOLTAGE SCALING

ABSTRACT

Asynchronous quasi-delay-insensitive (QDI) circuits are a promising solution to
cope with aggressive process variations faced by circuit design in modern technologies,
as these can gracefully accommodate a wide range of gate and wire delay variations. More-
over, with the trend for mobile devices and the Internet of Things (IoT), QDI design presents
itself as an interesting circuit implementation alternative for use in conjunction with aggres-
sive low-power techniques such as deep voltage scaling (VS). The main drawback of QDI
design is often cited as the fact that it leads to significant area and power overheads, which
can compromise its adoption. This work investigates the compatibility of QDI design with
voltage scaling, by exploring and analyzing several available QDI templates. Among these,
this work selects the SCL template as an interesting option to reduce area and power over-
heads. However, as this Dissertation demonstrates, SCL current implementation presents
serious timing issues. Because of these, an alternative asynchronous design template is
proposed. Using the ASCEnD Design Flow, standard cell libraries for the studied templates
are generated, to evaluate the benefits and overheads of the newly proposed template.

Keywords: Asynchronous circuits, asynchronous design, quasi delay insensitive, QDI de-
sign, voltage scaling, threshold voltage, near-threshold voltage, sub-threshold voltage.
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1. Introduction and Motivation

For several decades, the semiconductor market has managed to reduce the min-
imum feature size of transistors and wires, which leads to increasing density and cost-
effectiveness to build integrated circuits (ICs), among several other benefits. An excellent
example of this increase is the SPARC M7 [LSK+15], developed by Oracle in 2015, a sin-
gle chip that contains over 10 billion transistors. Apart from the benefit of reducing the
minimum feature size are higher performance and lower power that can be obtained, due
to the lower resistances and capacitances of smaller transistors and wires [BOF10]. How-
ever, these advances bring huge challenges to circuit and computer aided design (CAD)
tool designers. As the transistor minimum feature size approaches fundamental atomic lim-
its, electronic devices gradually behave less and less as ideal switches, and wires behave
less and less as ideal electrical connections with negligible delay and impedance [ITR11]. In
addition, increased manufacturing parameter variations bring uncertainties to the processes
of estimating and/or predicting the timing and power characteristics of circuits [ITR11].

Nowadays, the predominant digital circuit design style adopted by the industry is
the synchronous one. This style takes as fundamental assumption that all components share
a common and discrete notion of time, which is guaranteed by the use of a global clock sig-
nal distributed throughout the circuit. The clock signal controls every sequential element in
the design, typically flip-flops and/or latches. The value stored in these elements can only
change when the clock switches its logic level in a given direction, or when it remains in a
given active state. This is what enables the design of sequential blocks to deal with time
as a discrete variable, allowing data to flow from one register to the next as the clock signal
activates. This characteristic enables designers to ignore wire and logic gates delays, as
long as the worst case delay between two registers is never longer than the period of the
clock signal controlling them [RCN03]. However, despite the fact that synchronous design
has abundant CAD support and is familiar to most designers, it also bring challenges with
regard to clock signal distribution, skew and power consumption. Also, the current level of
precision required on manufacturing processes operating conditions finally results in sub-
stantial variations on the electrical characteristics of fabricated devices, which in turn can
lead to significant delay and power consumption variations. To cope with these problems,
synchronous designs require margins in the period of the clock signal, which leads to in-
creasing costs in performance, power, area and design time. Margins can indeed become
the Achilles heel of synchronous design. For example, almost ten years ago Brej stated
that industrial circuits could require up to 130% of overhead in the clock period due to the
summation of all needed margins [Bre07], and the situation has only become worse since
then.

Asynchronous circuits are an alternative to overcome issues faced by contempo-
rary synchronous designers. Unlike the synchronous paradigm main assumption, the design
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of these circuits do not rely on a discrete notion of time. In this way, the global clock signal
is exchanged for local handshaking control blocks that are added between adjacent storage
elements, which establish the synchronization, communication and sequencing of opera-
tions [SF01]. This fundamental assumption of local synchronization avoids clock-related
problems and overheads, at the cost of extra hardware for local synchronization.

Among the constraints imposed by contemporary designs, power consumption
is also an issue that has attracted growing attention. With the increasing investment on
portable devices and, more recently, the Internet of Things (IoT), emerging applications such
as distributed sensor networks and wearable devices define low energy consumption as a
key factor during circuit design [CWC05] [GBMP13] [ILL+13]. In addition, with decreasing
feature size, transistors have become increasingly leaky, augmenting static power dissipa-
tion, and challenging designers to meet power constraints [BOF10]. This has motivated
the research of new design techniques for minimizing power as much as possible. These
efforts usually focus on high performance strong inversion in the super-threshold region of
operation of transistors, and are implemented at the architectural level, where designers can
reduce the computational workload or improve the architecture to achieve better power opti-
mizations [ILL+13]. At the circuit level, a compelling approach to lower power consumption is
reducing the voltage supply, which is referred to here as voltage scaling (VS). As the supply
voltage is quadratically related to the dynamic power, VS is a very effective low power de-
sign technique [CPR10]. Taking this design option to the extreme, some low power systems
operate in the sub-threshold region of transistor operation [LM12]. This allows achieving
drastic power reductions, although with heavy performance penalties.

This work contributes to the state of the art in low and ultra-low power circuit de-
sign, by exploring eight of the available quasi-delay-insensitive (QDI) asynchronous design
templates proposed in the literature, including:

1. The Weak-Conditioned Half-Buffer (WCHB) [TBV12];

2. The Pre-Charged Half-Buffer (PCHB) [BOF10];

3. The Null Convention Logic (NCL) [FB96];

4. The Spatially Distributed Dual Spacer Null Convention Logic (SDDS-NCL) [MTMC14];

5. The Autonomous Signal-Validity Half Buffer (ASVHB) [HCGC15];

6. The Sense Amplifier Half-Buffer (SAHB) [CHL+17];

7. The Register-less NCL (RL-NCL) [CYP17];

8. The Sleep Convention Logic (SCL) [PSAA16].
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The investigation mostly encompasses the study of near- and sub-threshold op-
eration. Early work of the Author showed that the SCL template is particularly promising,
for several reasons: (1) it is based on the Null Convention Logic (NCL) template [FB96], a
well-established semi-custom way of implementing asynchronous circuits; (2) SCL employs
a fine-grained power-gating mechanism that has potential to achieve significant power sav-
ings; (3) NCL has demonstrated potential to support VS in a graceful way [MAMC15] [JSL+10];
(4) SCL brings significant area reduction when compared to NCL. Despite the fact that the
combination of NCL with sub-threshold operation brings significant benefits [JSL+10], NCL
and other QDI templates still have a significant area overhead when compared to equivalent
synchronous circuits. This area overhead compromises the adoption of QDI design in cur-
rent commercial applications. This is another motivation to explore even further the benefits
provided by SCL, enabling it as a suitable approach for ultra-low power applications.

1.1 Objectives

The objectives of this work were divided in two classes: strategic and specific. The
strategic objectives were:

1. To dominate the field of low and ultra-low power circuit design of asynchronous circuits;

2. To contribute to the state of the art in circuit design, by making viable to plan asyn-
chronous circuits that correctly operate under near- and/or sub-threshold supply regimes;

3. In general, to contribute to the dominion of digital circuit design techniques for operation
under low and very low voltage supplies.

To achieve the listed strategic objectives, this work devised a set of specific objec-
tives to reach:

1. To analyze a selected set of eight available asynchronous circuit design templates,
with regard to their capacity to support operation under low and very low power supply
(typically below nominal voltage and down to a few hundred mV), leading to low and
ultra-low power consumption figures;

2. To select and/or propose an asynchronous QDI template to support ultra-low power
design;

3. To compare one or more asynchronous design templates with the proposed QDI tem-
plate, based on case study circuits;
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4. To compare the proposed QDI template with competing QDI templates, under the point
of view of figures such as power and energy consumption, area, performance and com-
posite figures such as energy per operation (EPO) and energy squared-delay product
(E2DP);

5. To produce a set of guidelines for the design of low and ultra-low power asynchronous
circuits.

1.2 Document Structure

The rest of this document is organized as follows. Chapter 2 introduces the main
concepts relevant to this Thesis. Chapter 3 gives an overview of several asynchronous QDI
design templates, with some emphasis on the Sleep Convention Logic (SCL) template. It
also presents initial results of a theoretical comparison of several QDI templates based on
marked graphs, a special form of Petri nets useful to analyze asynchronous circuit design
templates. The Chapter ends by providing a comparison of asynchronous templates based
on a circuit implementation in each of them. Chapter 4 highlights some of the SCL implemen-
tation issues that can be improved and which can otherwise compromise circuit functionality.
This results in the proposal of two new QDI templates, called VELO and VELO+, and which
constitute the main original contribution of this Dissertation. Details of the new templates
include their pipeline structure, combinational and sequential logic implementation details
and their completion detection organization. Next Chapter 5 approaches the proposed tem-
plate and its main competitors at the cell-level and at the circuit level, with a set of extensive
experiments, operating under representative supply voltages. Finally, Chapter 6 brings a set
of conclusions, ongoing and future work on the subjects of the Dissertation.
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2. Basic Concepts

This Chapter presents some basic concepts related to several topics covered in
this Dissertation. First, it gives some definitions related to asynchronous circuit design with
emphasis on the QDI family of asynchronous design templates, exploring a limitation of
such techniques as well. Next, it explores some principles of transistor sub-threshold opera-
tion, and provides initial results of simulation analysis of logic gates from different technolo-
gies operating under several supply voltages, ranging from super-threshold to sub-threshold
regimes. A third topic covered in this Chapter is power gating and its use in sub-threshold
operation. The last part of the Chapter deals with the performance analysis of asynchronous
pipelines, an important topic to enable the investigation of asynchronous circuit design tem-
plates.

Among the different asynchronous design templates available in the literature, most
can be classified in one of two families: Bundled-Data (BD) and Quasi-Delay-Insensitive
(QDI) design templates [BOF10]. BD templates usually assume data is represented with
binary codes, just as in synchronous design, where a single wire carries exactly one bit of
information. An advantage of BD design is that it can benefit to some extent from the use
of conventional design tools and cell libraries, due to its similarity with synchronous design.
The drawback, though, is that BD templates still require additional care in the definition and
verification of timing constraints between data and control signals. This work accordingly
focuses on QDI circuits only, its advantages and inconveniences, as Section 2.1 explores in
more detail.

2.1 Quasi-Delay-Insensitive Design

An alternative to avoid the complex timing issues posed by asynchronous BD tem-
plates is to include the control flow information within data channels1, which is the main
strategy that characterizes delay insensitive (DI) and quasi-delay insensitive (QDI) designs.
DI design is not useful in practice to create large systems [Mar90], but QDI design is, and
it keeps most of the advantages of DI design [MN06], by adding a constraint on selected
wire forks of the circuit, the so-called isochronic forks (see Section 2.1.1 for more details).
Since isochronic forks can be limited in scope and designed to exist mostly inside basic
design components (e.g. logic gates), QDI becomes a viable family of design techniques.
In fact, QDI design is reported by Martin and Nyström and other authors as the most prac-

1Simply stated, the concept of channels comprises: (i) a bundle of wires; (ii) a protocol for synchronizing
computation and communicating data between circuit blocks; (iii) are uni-directional and typically point-to-point.
If there is bi-directional data communication between circuit blocks, it is necessary to employ two channels in
opposite directions.
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tical asynchronous design template, due to its relaxed timing constraints [MN06] [Mye01].
Its delay insensibility provides higher robustness against process, voltage and temperature
(PVT) variations, single event effects (SEE) and permits very low electromagnetic interfer-
ence (EMI) implementations. On the downside, QDI implementations requires extra hard-
ware, which can lead to significant area and power overheads.

Any QDI template requires the choice of a handshaking protocol and of a delay-
insensitive (DI) code to represent data and control flow information. One of the most used
DI codes is called dual-rail [MN06]. Refer to Figure 2.1 (a), that presents the basic encoding
for a 1-bit dual-rail channel. Each bit of data is coded in two wires called here d.t and
d.f. Usually, the scheme relies on the classic return-to-zero (RTZ), 4-phase handshake
protocol [SF01]. A receiver can obtain the equivalent of a request control signal directly from
the codewords made available by the sender. In RTZ schemes, data tokens presence is
identified by d.t. and d.f. being at different logic levels. To represent a high logic level, it
is necessary to set d.t high (1) and d.f low (0). The representation of a low logic level is
opposite: d.t is set low (0) and d.f high (1). When communicating any two consecutive valid
data, a spacer must always be inserted between them. In the case of the RTZ protocol, a
spacer is defined as all wires at logic low (0). This work uses the terms spacer, NULL and
NULL token as synonyms. Note that the situation where both signals are set to logic high
(1) is defined as an invalid and unacceptable value.

Beyond RTZ, the designer can adopt another handshaking protocol called Return-
to-One (RTO) [MOPC13]. Similar to RTZ, the RTO protocol also identify data tokens by d.t.
and d.f. being at different logic levels. However, in this case, to represent a high logic level,
it is necessary to set d.t low (0) and d.f high (1). For low logic level representation, d.t is set
high (1) and d.f low (0). Note that the logic level representation is practically the opposite of
the RTZ representation – see Figure 2.1 (a) – including the spacer and invalid encoding. In
RTO schemes, both signals in logic low is invalid while the spacer is defined as all wires set
(1).

Figure 2.1 (b) illustrates the transmission of two data bits in sequence (a ‘1’ bit fol-
lowed by a ‘0’ bit), using the RTZ and RTO handshake protocols. As an initial state, for RTZ,
all data signals are reset in the beginning of the communication cycle, indicating a spacer.
Then, the data channel presents a valid data codification – marked as 1 in Figure 2.1 (b). As
a consequence, the ack signal is asserted, signaling that the data was received (2). Next,
the data channel shows a spacer, indicating the absence of valid data (3). At last, the ack
signal is reset, ending the communication cycle (4). This same behavior applies to the RTO
protocol, only using a distinct data encoding.
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Signals Value

RTZd.t d.f RTO

0 0 spacer invalid

0 1 0 1

1 0 1 0

1 1 invalid spacer

data
(d.t & d.f)

spacerlogic '0'spacerlogic '1'spacer

RTO  11 01 11 10 11

RTZ  00 10 00 01 00

1

1

2

3

3

4ACK

(a) (b)

Figure 2.1: (a) Codification for a 1-bit dual-rail channel using RTZ/RTO protocols and (b) an
example of data transmission through a 2 bits dual rail channel based on both protocols.

2.1.1 The QDI Limitation

In a QDI circuit, gates and wires can display arbitrary delays. However, differently
from DI circuits, there is a set of designated wire forks that must respect an isochronic timing
constraint. Such isochronic forks have the additional constraint that the delay to different
ends of a fork must be the same [Mar90]. According to Sparsø and Furber [SF01], the
behavior of an isochronic fork can be explained as follows. Figure 2.2 shows a circuit with
three logic blocks (B0, B1 and B2) that are interconnected by three wire segments, each
with a given delay (d0, d1 and d2). In this case, there is a fork F through which any value
produced by the output of the logic block B0 passes before reaching the respective inputs of
blocks B1 and B2. F begins after the wire delay d0 and has two ends, each one with a wire
delay: d1 and d2. Following the definition presented by [Mar90], if the wire delays d1 and
d2 are identical (d1 = d2), the circuit in Figure 2.2 respects the isochronic fork constraint
and is thus called an isochronic fork. Despite of its elegance, this definition has been later
refined to ease the practical implementation of QDI circuits and the verification of the fork
isochronicity property.

In 1995-1996, Manohar and Martin presented a new definition of isochronic fork
and of the isochronicity assumption [MM95]. Considering the same structure presented in
Figure 2.2, according to Manohar and Martin [MM95] saying that fork F is isochronic means
that some transitions on F need not to be acknowledged by a transition in both o1 and o2, the
outputs of gates B1 and B2, respectively. For example, when a transition on the input of B1
(after delay d1) has been acknowledged by a transition on o1, then a transition on the input
of B2 (after delay d2) has also completed, even though o2 may not have acknowledged it.
This is called the isochronicity assumption. As an example, consider that a rising transition
occurs in F (F ↑). Thus, this transition will cause f1 ↑ and f2 ↑ respectively after delays d1
and d2. Next, assume that only B1 generates a transition in its output (o1 ↑), while output
o2 keeps the same logic level. Note that in this case it is not possible to visualize through
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B0

B1

B2

d0

d1

d2

F

f1

f2

o1

o2

Figure 2.2: Representation of an isochronic fork with logic blocks and delay wires. Adapted
from [SF01].

o2 whether the transition f2 ↑ was processed by B2. If the fork is isochronic though, after
seeing an effect in o2 due to F ↑, it is safe to assume that B2 already processed transition
F ↑, too. This clearly means that the delay values d1 and d2 are identical or that their
difference is negligible.

Independently from the proposal of Manohar and Martin, van Berkel and others
advanced an extended definition of isochronic forks [vBHP95]. For instance, the fork in
Figure 2.2 respects the extended isochronic fork definition if the delay difference between
F → o1 and F → o2 is less than the delays of the gates driven by the output nodes o1 and
o2. That means that all output nodes must be stable when the following gates are triggered.
An important aspect to consider is that this definition does not take into account the wire
delays of the fork only, but also the gate delays. This is different from the original definition
of the isochronic fork, where gate delays are at all disregarded. Moreover, the extended
isochronic fork definition also comprises forks that employ more than one logic block in its
branches. According to [vBHP95], a fork with only one logic block in each end is a fork of
depth 1. For instance, the fork in Figure 2.2 has depth 1.

2.2 Sub-threshold Operation

The sub-threshold effect is present in MOS transistors when the gate to source
VGS voltage is equal to or lower than the threshold voltage Vth. When VGS ≤ Vth, ideally, the
transistor should be off and no current would flow through the transistor drain. In practice,
the transistor still leaks a small current, usually denominated sub-threshold current. In most
digital applications, the sub-threshold current is caused by parasitic leakage currents and
is, accordingly, undesirable. This is because it is seen as a deviation from the ideal switch-
like behavior of the MOS transistor [LAHG12] [RCN03]. If a circuit is powered by a voltage
source where Vdd ≤ Vth, then the circuit is on sub-threshold operation – or it is operating in
the sub-threshold region.

Sub-threshold operation is a well known technique to reduce both static and dy-
namic power consumptions [CWC05] [LAHG12] [LM12] [VJD14]. The reduction of the sup-
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ply voltage leads to quadratic savings in dynamic power and linear savings in static power.
Due to these power savings, sub-threshold operation fits well in digital applications that must
rely on energy harvesting or on limited power supplies such as small batteries. Nonetheless,
sub-threshold operation brings a significant performance degradation and higher sensibility
to process, voltage and temperature (PVT) variations, which narrows the set of applications
that can benefit from sub-threshold operation [PN13] [LAHG12].

VDD

ZI

Ion

Ioff

activecurrent

leakagecurrent
Z='1'

VDD

ZI

Ion

Ioff

Z='0'

Figure 2.3: Active (Ion) and leakage (Ioff ) current representation in a basic CMOS inverter.

In a CMOS standard cell, the output fall and rise transitions rely on the Ion/Ioff ratio,
where Ion is the active current and Ioff is the leakage current [PN13]. Figure 2.3 illustrates
these currents for an inverter, depending on the output logic level. When Z = 1, the pull-up
network (PUN) is enabled and is responsible to generate Ion, whereas the pull-down network
(PDN) is disabled but stills generates Ioff . When Z = 0, the roles change: the PUN is disabled
(Ioff ) and the PDN is enabled (Ion). If the relation Ion/Ioff is too small, the PDN or PUN may not
have enough strength to drive the logic level of the output, making the circuit fail. Due to the
use of reduced supply voltages and lower active currents, sub-threshold operation implies in
smaller Ion/Ioff ratios. This interferes in the performance of sub-threshold circuits, increasing
delays by up to several orders of magnitude. Moreover, PVT variability, transistor sizing and
channel doping (among other effects) are responsible for variations of the threshold voltage,
which directly affects transistor currents and the Ion/Ioff ratio [PN13].

2.2.1 An Evaluation of Sub-threshold Operation for Bulk and FDSOI CMOS Technologies

For several decades, planar bulk CMOS was the state of the art technology pro-
cess for IC manufacturing. However, after technology nodes scaled to lower than 45nm-
32nm geometries, new chip fabrication processes were needed and proposed. Examples
are fully depleted silicon on insulator (FDSOI) CMOS and FinFETs. Such processes bring
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new design challenges and opportunities, specially for ultra-low power applications that can
benefit from sub-threshold operation. FDSOI CMOS and FinFETs provide better leakage
control [VWC+10] [LXW+15] and may achieve better Ion/Ioff ratios than traditional planar bulk
CMOS technologies. Moreover, with the current trend to support the IoT domain, new pro-
cess alternatives [VWC+10] have been developed to optimize the sub-threshold operation
of transistors, supporting its use for ultra-low power applications. Currently, however, the
adoption of these new fabrication processes implies in a significant higher production cost,
which motivates the usage of traditional bulk CMOS technology nodes. Figure 2.4 shows
an example of the technology node adoption for IoT applications between the years of 2007
and 2014. Note that in the first two years, older nodes are the most dominant technolo-
gies, whereas some early nodes are discretely or not even considered due to commercial
unavailability. The next years shows higher adoption of newer nodes – specially for 90nm,
65nm and 40nm nodes – despite the fact that older technologies such as 180nm are still
heavily used. From 2010, it is possible to see that the 28nm technology node initiates its
contribution to the IoT domain, showing that companies are willing to face higher costs in
order to leverage the power optimizations provided by early technologies.

As mentioned before, the power and performance optimizations provided by FDSOI
CMOS and FinFET technologies could be attractive to ultra-low power applications, albeit
higher production cost could compromise the applications commercially speaking. FDSOI
CMOS presents itself as a more suitable alternative than FinFET as the fabrication process
is cheaper due to its similarity to traditional planar bulk CMOS process and lower number
of required masks. In fact, foundries have pinpointed FDSOI CMOS and FinFET as com-
plementary technologies, where the first covers low-power, smaller designs and the latter
focuses on very large, high performance designs.

In order to better understand the advantages of each technology process for sub-
threshold operation, this Section presents a first contribution of this work, which includes a
VS comparison between two distinct technologies: a 65nm planar bulk CMOS and a 28nm
FDSOI CMOS, both from STMicroelectronics.

The evaluation considers 2- and 4-input NAND and NOR gates from the respective
standard cell libraries provided by the technology vendor and its results are depicted in
Figure 2.5. Note that the selected gates have similar drive strength. The same environment
from [GMCM15] was used to simulate all gate arcs in several supply voltages, covering sub-
, near- and super-threshold operations. In this case, supply voltages from 150mV to 1V
(with 50mV steps) are covered. The results for the 2-input NAND gate can be visualized
in Figure 2.5, which indicates the (a) transition delay, (b) transition energy, (c) leakage, (d)
energy-delay product (EDP) and (e) leakage-delay product (LDP) for the 65nm planar bulk
CMOS (using SVT transistors only) and 28nm FDSOI CMOS technology nodes. Regarding
the 28nm technology node, two transistor types were considered: standard (SVT) and low
(LVT) threshold voltage. As the other gates present similar results with minor changes, the
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Figure 2.4: CMOS technology adoption for IoT applications. Chart courtesy of IMEC.

following discussion only covers the results obtained for the 2-input NAND – See Appendix A
for results regarding the remaining cells employed in the experiment.

Under nominal supply voltage (Vdd = 1V ), Figure 2.5(a) indicates that the FDSOI
node provides lower transition delay than the bulk technology, which is expected. However,
as the supply voltage reaches the sub-threshold region (Vdd < 0.5V ), the FDSOI technol-
ogy presents a larger delay degradation, pointing out that the 65nm technology has a better
sub-threshold performance than the SVT and LVT FDSOI technologies. Despite the fact that
this could be an interesting information to define which technology node is more suitable for
sub-threshold operation, it is important highlight that ultra-low power applications usually do
not consider performance as a primary constraint. Energy efficiency plays a huge role in
this kind of application, implying that energy must be considered as well. In that way, Fig-
ure 2.5 (b) shows the transition energy for the previous mentioned technologies. Different
from the delay analysis, the bulk technology produces higher transition energy under all sup-
ply voltages. Due to its lower threshold voltage, the LVT FDSOI presents higher short circuit
currents during transition than the SVT FDSOI. This increases the transition energy but not
significantly enough to reach levels of the bulk technology. In order to combine the results
from (a) and (b) and have a better perspective regarding energy efficiency, Figure 2.5(d)
shows the EDP for the 2-input NAND. In this case, the EDP curves clearly shows the higher
energy efficiency of the FDSOI technology when compared to the bulk technology, specially
under the nominal supply voltage and in the near-threshold region. In sub-threshold oper-
ation, it is possible to see that the delay degradation of the SVT FDSOI technology inflicts
a huge impact on its EDP curve, making its energy consumption to achieve values near
the bulk EDP results. This shows that the LVT FDSOI technology provides better energy-
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efficient results in sub-threshold operation, while the SVT FDSOI technology has better re-
sults in near-/super-threshold operation. Regarding minimum EDP points, the 65nm bulk
technology indicates the most energy-efficiency results at Vdd ≈ 0.6V and the 28nm FDSOI
technology at Vdd ≈ 0.8V .

Another important aspect that should be evaluated for an ultra-low power applica-
tion is the leakage power consumption. This kind of application often implies in systems us-
ing a battery as main supply and operating in standby mode for long periods of time. Even if
the system is not executing any heavy workload, the leakage current can still cause battery
discharge and compromise circuit functionality. Figure 2.5(c) presents the leakage power
consumption with the same setup as the previous charts. Similar to what occurs in the en-
ergy consumption analysis, the bulk technology presents higher leakage power consumption
under all supply voltages. Again, the lower threshold voltage of the LVT FDSOI technology
generates leakier transistors, increasing the leakage power consumption when compared
to the SVT FDSOI technology. Following an approach similar to that of the EDP analysis,
Figure 2.5(e) presents leakage-delay product (LDP) curves of the considered technology
nodes, combining the results from (a) and (c). As expected, the bulk technology presents
an LDP curve that is above the ones for the FDSOI technology, due to its higher leakage
power consumption. Both LVT and SVT FDSOI technologies provide better LDP curves, al-
beit LDP increases significantly when the supply voltage reaches the sub-threshold region.
Similarly to the EDP results, the LDP curves of the 65nm bulk technology presents the most
energy-efficient result at Vdd ≈ 0.65V . For FDSOI technologies, LVT and SVT indicate the
most energy-efficient result at Vdd ≈ 0.7V and Vdd ≈ 0.8V , respectively.

2.3 Power Gating

In order to reduce power consumption, several techniques have been presented
in the last years, notably driven by the increasing popularity of mobile devices [SAAR11]
[LCGC09]. Despite the fact that dynamic power is still dominant in most digital circuits,
leakage power is becoming a significant issue as fabrication processes reach into deep
sub-micron (DSM) ranges [BDN05] [SAAR11] [MBM05]. This fact led to the proposition of
several approaches to reduce leakage power, such as power gating, body biasing, transistor
stacking, critical transistor-sizing, etc. Among these options, power gating is widely used to
effectively reduce leakage power consumption [LCGC09].

Power gating is a transistor-based technique that consists in the idea of "discon-
necting" the circuit from the power supply when it is not operating or is in an idle state. This
is implemented by stacking a transistor between the circuit and the power supply. Figure 2.6
shows the three common types of gating transistor configuration [LCGC09]: PMOS Gating,
NMOS Gating and Dual Gating. Most commercial designs use PMOS gating, due to their
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easier design, especially when the application uses multiple power domains [Hen11]. How-
ever, there are two important aspects in using PMOS gating. First, leakage current is not
eliminated, because the gating transistor also leaks. Second, The use of a stacked PMOS
transistor implies in a voltage drop, which interferes in circuit performance, specially if the
circuit is operating in the sub-threshold region. Hence, designers must consider these as-
pects while sizing the gating transistors, as larger transistors will reduce voltage drop but
will increase leakage current. NMOS gating also contributes to the supply voltage drop, but
consumes less area, as electrons typically have higher mobility than holes, reducing the size
of transistors applied in the gating structure.

2.3.1 Power Gating Granularity

When analyzing power gating in a digital circuit, it is important to consider the
granularity at which it is performed. Granularity can be classified in two types [Hen11]: tem-
poral and regional. Temporal granularity considers how long the circuit is in idle periods,
while regional granularity indicates how the circuit is divided in power-gating regions. Note
that temporal and regional granularity are usually interdependent. For instance, a coarse-
grained approach determines that power gating shuts down large logic blocks, such as a
processor core or even an entire chip. This, however, forces the power-gating structure to
switch large capacitances when shutting down or booting up the logic blocks. Consequently,
the active and idle mode transition delays would increase and the power-gating structure de-
mands higher energy consumption during these transitions. Because of that, coarse-grained
power-gating is only considered when the logic blocks will stay in idle mode for a long period
of time [Hen11]. On the other hand, a fine-grained approach focuses in the idea of shutting
down small logic blocks. In a microprocessor, these blocks can correspond to Arithmetic
Logic Units (ALUs), I/O blocks or memories. Different from the coarse-grained approach,
fine-grained power gating operates with comparatively small capacitances. This implies that
the logic blocks can be turned on and off for short periods of time without severely affect-
ing circuit performance. However, this approach brings the need of a more complex power-
gating structure, which must efficiently turn on and off each logic block without compromising
the energy budget.

2.4 Synchronous and Asynchronous Pipeline Performance

For synchronous circuits, the performance of a pipelined design is characterized by
throughput and latency figures, where the first is measured in terms of results per second
and the latter is measured as the number of clock cycles to generate a results after the
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inputs are available. The throughput is the inverse of the clock frequency for a synchronous
system that generates a new result every clock cycle. So the clock period is a synonym
of the cycle time concept. Obviously, this value can be multiplied if the system generates
multiple results per clock cycle, and can be fractioned if multiple clock cycles are required
to generate a single result. In pipelined implementations, the latency is a measure of the
pipeline depth of the system.

Unlike synchronous designs, the cycle time of an asynchronous system is not de-
fined by the clock frequency but by the time between successive output data tokens it pro-
duces. Since this time can vary between tokens, the cycle time is often associated with the
average time between output tokens. In addition, asynchronous systems frequently have a
warm-up period, during which there is irregular or no generation of output tokens at all. The
average cycle time is a long-term average for which the system operates with a regular and
constant flow of tokens. The throughput of a asynchronous system is simply the inverse of
its cycle time.

The latency of an asynchronous system describes the time required for input to-
kens being consumed and output tokens being generated. Its measurement relies in the
presentation of one set of input tokens in isolation. Isolating each input token avoids the
possibility of congestion caused by previous tokens and, consequently, avoids interference
during measurements.

The performance of asynchronous system depends on the performance of the com-
munication blocks that compose the system, as well as on the performance of the protocols
that dictate how communication proceeds. Hence, some metrics are used to associate com-
munication and protocols with the system performance. In this Chapter, three metrics are
covered: forward latency, backward latency and local cycle time. Moreover, this Chapter
presents the basics of Petri nets, a modeling aid which is often used to model and evaluate
asynchronous templates.

2.4.1 Asynchronous Pipelines Performance Metrics

Forward latency is defined as the time difference between the token arrival in a
pipeline stage input channel and its propagation to the stage output channel. The input
token must flow through the pipeline in isolation, to avoid that congestion due to previous
tokens interfere with this measurement. Because of that, it is assumed that output channels
are always ready to consume new tokens, which makes the measurement independent from
the output environment. For blocks with multiple input and output channels, the forward
latency from different input channels to different output channels may vary. In addition,
forward latency can be data dependent or defined by the current state of the pipeline stage.
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Backward latency is the time difference between the token arrival in a stage input
channel and the moment when the pipeline stage resets and becomes available to receive
a new token on that input channel. Usually, it captures the acknowledgement process that
a block executes to inform the sender stage that the token has been consumed. As the
backward latency is not related to the token propagation to the next pipeline stage, if the
input token are sufficiently spread apart in time, the backward latency does not create a
performance bottleneck. However, if input tokens are presented in a short amount of time,
new input tokens could stall due to the backward latency.

Local cycle time is the shortest length of time for neighboring pipeline stages to
complete a handshake process in a specific channel. As it incorporates the entire handshake
process, the local cycle time can be associated to the sum of the forward and backward
latencies. When back-to-back communication on a channel is required, the local cycle time
represents the lower bound for the system cycle time. For instance, the cycle time of a linear
pipeline is not smaller than the worst-case local cycle time of all channels in the pipeline. The
local cycle time can be dependent on the sender and on the receiver of a single channel or
on senders and receivers of neighboring channels. This happens because it is sometimes
required for a block to receive a acknowledgement of an output channel before resetting the
acknowledgement of a corresponding input channel. Typically, this case is present in many
four-phase half-buffer implementations, which makes the local cycle time a function of the
behavior of three identical blocks in sequence.

2.4.2 An Asynchronous Pipeline Performance Analysis Tool: Petri Nets

According to Sparsø and Furber [SF01], a Petri net is a graph composed of directed
arcs and two types of nodes: transitions and places. Theses places can be marked with
tokens and the Petri net model can move tokens by firing transitions. A transition is allowed to
fire (or is enabled) only if all its input places have at least one token. When the transition fires,
it removes a token from each of its input places and adds a token to each of its output places.
As Petri nets present themselves as a suitable way to express choice and concurrency, many
different concurrent systems can be modeled using different interpretations of these graphs.

Petri nets can be formalized as a four-tuple N = (P, T , F , m0), where P is a finite set
of places pi and T is a finite set of transitions ti [BOF10]. F ⊆ (P×T )∪(T×P) is a flow relation
and m0 ∈ N |P| is the initial marking, where N is the set of natural numbers. Figure 2.7 (a)
illustrates a Petri net of a 2-input C-element with the timing diagram of Figure 2.7(b) being
an example of correct behavior for this component. Figure 2.7 (c) represents a simpler
form of the Petri net in Figure 2.7 (a), where places are omitted. Usually, Petri nets are
represented as a bipartite graph where pi and ti are nodes. Considering two nodes x and y ,
if (x , y ) ∈ F then there is a directed arc from x to y . For instance, the Petri net in Figure 2.7
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has P = {p1, p2, p3, p4, p5, p6, p7, p8}, T = {t1, t2, t3, t4, t5, t6}, F = {(p1, t1), (t1, p3), (p2, t2),
(t2, p4), (p3, t3), (p4, t3), (t3, p5), (t3, p6), (p5, t4), (t4, p7), (p6, t5), (t5, p8), (p7, t6), (p8, t6), (t6, p1),
(t6, p2)} and m0 = [11000000]. An assignment of tokens to places is called a marking and it
represents the state of the system. For a place or transition x ∈ P ∪ T , •x is a preset of x
and x• is a postset of x . Formally, a preset can be defined as •x = {y ∈ P ∪ T | (y , x) ∈ F}
and a postset as x• = {y ∈ P ∪ T | (x , y ) ∈ F}. A transition t is enabled at a marking m
if and only if every element of its preset is marked with at least one token. When enabled,
the transition removes one token from each place that constitutes its preset, and adds one
token to each place that composes its postset. Considering again the example in Figure 2.7,
if p3 and p4 have tokens, firing t3 removes one token from p3 and p4 and adds one token to
p5 and p6.

While modeling a system with Petri nets, it is possible to use four basic constructs:
fork, join, choice and merge [SF01]. The construct definitions are as follows. If a place p has
in its postset more than one element, then p is a choice place. The same applies for merge,
albeit in this case it considers the place preset. If p has more than element in its preset, p is
a merge place. When a transition t has more than one element in its postset, then t is a fork
transition. If t has more than one element in its preset, t is a join transition.

Petri nets can also be divided in multiple types. These types restrict/add specific
characteristics from/to the main Petri net definition, to ease its use or make it compatible
with the synthesis of certain types of systems. According to [BOF10], some of these system
types useful in asynchronous design are State Machines (SMs), Marked Graphs (MGs),
Timed-Place Petri nets (TPPNs) and Timed-Transition Petri nets (TTPNs). An SM is a type
of Petri net where every transition has at most one element in its preset and at most one
element in its postset, or more formally | •t | ≤ 1 ∧ | t• | ≤ 1,∀t ∈ T . An MG is a type of
Petri net where every place has at most one element its preset and at most one element in
its postset, or more formally | •p | ≤ 1 ∧ | p• | ≤ 1,∀p ∈ P. On the one hand, the restriction
imposed by the SM definition allows it to model choice, but not concurrency. On the other
hand, the MG definition permits the modeling of concurrency, but not of choice. TPPNs and
TTPNs are just Petri nets with timing constraints. While TPPNs introduce timing awareness
to places, TTPNs introduce these to transitions. The timing awareness introduced by the
two last types can also be extended to MGs, for instance. The timing annotation in a timed
MG can be related to either transitions or places. However, the association of delays with
places is less constrained than the association with transitions [BOF10].
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Figure 2.5: Voltage scaling analysis for 2-input NAND gate with similar drive in the 65nm
bulk CMOS and 28nm FDSOI technologies. The later technology is analyzed for both SVT
and LVT versions of the library. The experiments contemplate analysis of cell: (a) delay; (b)
consumed energy; (c) leakage analysis; (d) EDP and (e) LDP.
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Figure 2.6: Power-gating structures: (a) PMOS Gating, (b) NMOS Gating and (c) Dual Gat-
ing. When S = 0, the gating transistor is ON and the combinational logic operates normally
(active mode). When S = 1, the gating transistor is OFF and the combinational logic is
isolated from the power supply (sleep mode).
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Figure 2.7: Petri net description (a) and timing diagram (b) of a 2-input C-element. (c)
presents a simplified Petri net of (a) where places are omitted.
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3. Selected QDI Templates: Overview and Analysis

This work assumes that the use of an asynchronous QDI template in the design
of ultra-low power circuits is a choice that intrinsically brings several benefits. To support
this assumption, this Chapter describes several QDI templates proposed in the literature,
introducing their functionality and analyzing their behavior. The Chapter continues with a
qualitative discussion of the relative gains and drawbacks of choosing any of these QDI tem-
plates as target for circuit design. Some of the initially chosen templates are then discarded
from consideration, based on the fact that they are clearly not suitable to achieve the objec-
tives of this work. A circuit implementation then helps in comparing the remaining templates
and provides ground for a decision about the target template to address in this work.

Given the suitability of the Null Convention Logic family of gates [FB96] to semi-
custom implementations of QDI circuits, several of the templates investigated here employ
this gate family. Accordingly, Section 3.3 briefly explores the characteristics of this gate
family before presenting the basic asynchronous QDI template based on it.

3.1 The Weak-Conditioned Half-Buffer (WCHB) Template

The Weak-Conditioned Half-Buffer (WCHB) is a four-phase QDI template based on
weak-conditioned logic. Figure 3.1 shows the WCHB template in two views, its block diagram
and an instance of a gate-level implementation. The WCHB block diagram is composed
by a buffer W , a completion detector RCD, two DI-encoded channels (Ldata and Rdata)
and two acknowledgement signals (Lack and Rack ). As Figure 3.1(b) shows, in a dual-rail
implementation for a single bit, Ldata employs two wires to represent the information data
bit: L0 and L1. The same of course applies to Rdata. The initial state of a WCHB module
consists in Ldata and Rdata containing spacers and Lack and Rack in logic 1.

The operation of a WCHB stage from the initial (empty or spacer) state follows five
main steps, which are described below and illustrated in Figure 3.2.

1. Ldata switches from a spacer to a valid data token presented to block W ; assuming
W is available (i.e. Rack is asserted to logic 1, part of the initial state), W propagates
Ldata to Rdata;

2. After Rdata has a valid token, RCD can compute the validity of Rdata, deasserting
Lack to logic 0; The propagation of Rdata to the next stage will also provoke the de-
assertion of Rack ;

3. After Lack is deasserted, Ldata can be reset to a spacer by the environment. However,
the buffer maintains its output while Rack is not deasserted to logic 0;
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Figure 3.1: The Weak-Conditioned Half Buffer template: (a) block diagram with buffer W and
completion detector RCD; N is the number of data bits of the channel and is represented
using a DI code; (b) a dual-rail gate-level implementation for a single bit data word. The
gates with the “C” letter inside are C-elements with inverted outputs. Note that this gate-
level implementation incorporates both W and RCD blocks. Based on [BOF10].

Lack

Rack

Ldata

Rdata spacer data spacer

spacer data spacer

1

2

3

4

5

Figure 3.2: Example of the WCHB template operation when in the initial state and processing
one data token. Numbers correspond to the bullet items list in the text.

4. When both Lack and Rack are deasserted, the spacer can propagate from Ldata to
Rdata;

5. The spacer in Rdata eventually guarantees that the control signals will be reasserted
back to the initial state, Lack = 1 and Rack = 1. Then, the stage indicates it is available
for receiving new data.

In WCHB the validity and neutrality of the output Rdata implies the validity and
neutrality of the input Ldata, respectively. This kind of logic is called weak-conditioned logic
and represents one of the main features of the WCHB template. The QDI nature of WCHB
relies on the isochronic fork assumption for the Rack signal, which will always fork to at least
two points in practical implementations (See for example Figure 3.1(b)). Another aspect of
this template is that channels Ldata and Rdata cannot simultaneously hold two distinct data
tokens. Due to the nature of the protocol, a buffer can only store a new data token if its
output currently holds a spacer. This aspect implies that the template is a half buffer or has
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a slack of 1/2 [BOF10]. Thus an n-stage WCHB pipeline always contain at most dn/2e data
tokens.

As is evident from the above explanation, the WCHB comprises the buffering and
control parts of an asynchronous design template only. In practical implementations, this
implies a choice of some type of DI data processing logic style, to form a complete design
template. A frequent choice in this case is the Delay-Insensitive Minterm Synthesis (DIMS),
which together with WCHB forms the template WCHB/DIMS design template [Mor16]. For
shortness any mention here to WCHB implies in fact the WCHB/DIMS template.

For better illustration, Figure 3.3 shows the implementation of a linear 3-stage
WCHB pipeline. Each pipeline contains a function logic block Fi and a completion detection
block CDi . The data signals data_i are DI-encoded, usually using m-of-n such as dual-rail
or multiple 1-of-4 channels. On the other hand, all handshake signals acki are represented
by a single bit. Fi is responsible to compute its inputs and latch the output when necessary,
whereas CDi detects the presence of valid data tokens in the data channel. Note that Fi is
controlled by the handshake signal of the next pipeline stage (acki+1), which dictates whether
the Fi can compute its inputs or should keep the current output.

Stage n+1Stage n

Fn

CDn
en

Fn+1

CDn+1
en

Stage n-1

Fn-1

CDn-1
en

data_i(n-1) data_i(n) data_i(n+1)
data_i
(n+2)

ack(n+2)
ack(n+1)ack(n)ack(n-1)

Figure 3.3: Block diagram of a 3-stage WCHB pipeline. Thick lines represent DI-encoded
data signals. The remaining lines represent single bit (control) signals.

To abstractly represent the WCHB functionality, Figure 3.4 shows the marked graph
for a 3-stage pipeline built with this template. As will be the case for all analyzed templates,
the initial marking assumes the pipeline is initially empty (spacers in all stages) and that
the environment can accept a newly arrived output data. Also, the Fieval and First phases
correspond to complete data propagation and complete spacer propagation to the output of
stage Fi , respectively.

Being WCHB a half-buffer template, the first pipeline stage can only complete the
handshake process if data has propagated to the third stage and the second stage has reset.
The cycle time, formed by the thick red lines in the graph, evidences that F1eval will only have
tokens in its preset places if the previous token has propagated to the third stage. Equation
3.1 represents the cycle time of the circuit depicted by the MG in Figure 3.4 (To simplify
the expressions, it is assumed that all Fieval , CDi and First are respectively identical). The
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WCHB forward latency employs three Feval elements, while the backward latency employs
two CDs and one Frst . Equations 3.2 and 3.3 indicate the elements that compose the
forward (FL) and backward (BL) latencies, respectively.

Fn-1eval

CDn-1-

Fn-1rst

CDn-1+

Fneval

CDn-

Fnrst

CDn+

Fn+1eval

CDn+1-

Fn+1rst

CDn+1+

Figure 3.4: Marked Graph of a 3-stage WCHB pipeline. Transitions that compose the cycle
time are highlighted with thick red lines. Dashed lines represent external interactions with
the circuit environment (e.g. neighboring pipeline stages).

CTWCHB = 3× teval + 2× tCD + trst (3.1)

FLWCHB = 3× teval (3.2)

BLWCHB = 2× tCD + trst (3.3)

3.2 The Precharged Half-Buffer (PCHB) Template

The Precharged Half Buffer (PCHB) is also a four-phase QDI template and it was
introduced as an alternative to the WCHB template. PCHB utilizes the same basic concepts
from WCHB but incorporates the use of domino logic, which avoids the extensive stacking
of PMOS transistor found in WCHB circuits. Figure 3.5 illustrates the PCHB block diagram
and a 1-bit, dual rail gate-level implementation of the F block.

Unlike what occurs in WCHB, in this template the validity and neutrality of inputs
and outputs are separately computed. Completion detector LCD is responsible for the ver-
ification of the input validity, whereas completion detector RCD ensures the output data
validity. Both validity signals are synchronized by the inverted C-element, which controls
Lack and the load of data in block F .
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Figure 3.5: Precharged Half-Buffer template structure: (a) block diagram with combinational
block F and input and output completion detectors, LCD and RCD; (b) An N=1 bit, dual-
rail gate-level implementation of F . Here, Ldata comprises two wires, L0 and L1. Based
on [BOF10].

Regarding Figure 3.5(b), note that block Fi implements a one-level domino logic
with two control inputs: en and pc. The precharge pc signal is controlled by Rack and
enable en is driven by the inverted C-element. A distinctive feature of PCHB compared to
WCHB is that a typical stage in the former comprises both buffering and processing logic,
besides the control signals.

Stage n+1 Stage n-1 Stage n 

data_i
(n)

RACKn-2

LACKn-1

Fn

CDn

en pc

Cn

Fn-1

CDn-1

en pc

Cn-1

Fn+1

CDn+1

en pc

Cn+1

data_i
(n+1)

data_i
(n+2)

data_i
(n-1)

LACKn LACKn+1

RACKn-1 RACKn RACKn+1

Figure 3.6: Block diagram of a 3-stage PCHB pipeline. Note that the pipeline merges mod-
ules LCD with the previous stage’s RCD generating a single CD module, to optimize area.
Thick lines indicate DI data signals. Usually, these data signals are encoded with an m-
of-n encoding such as 1-of-2 (dual-rail) or 1-of-4. The remaining lines represent single bit
signals.

The implementation shown in Figure 3.5(b) indicates that PCHB brings about a
large area overhead, due to the use of two completion detectors (LCD and RCD). Fortu-
nately, this overhead can be reduced by merging completion detectors. The LCD of one
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pipeline stage merges with the RCD of a neighbor pipeline stage and adds a request sig-
nal to the channel. Figure 3.6 shows a 3-stage PCHB pipeline with the LCD/RCD merging
optimization, indicated as CD. Without the optimization, on the one hand, the output of the
RCDi block would only connect to the input of Ci (see Figure 3.5(a)). On the other hand,
as Figure 3.6 points out, CDi sends its output to Ci and to the next inverted C-element Ci+1,
where the latter comprises the new request signal. The addition of this request line does not
significantly impact performance, keeps the template with the QDI property and the commu-
nication between stages as DI. However, the completion detection sharing implies that the
fork formed by the input of a CDi and the input of the next stage’s logic block Fn+1 must be
isochronic [BOF10].

Figure 3.7 shows the marked graph of the 3-stage PCHB pipeline depicted in Fig-
ure 3.6. Assumptions here are similar to those for the WCHB discussion, mutatis mutandis.
Again, the cycle time is highlighted with thick red lines and is computed based in Equa-
tion 3.4. The token propagation to the next stages is similar to what occurs in the WCHB
template, as the PCHB forward latency (Equation 3.5) has the same transitions as the WCHB
template. However, it is important to note that PCHB uses dynamic logic, which is faster than
traditional complementary logic. Consequently, even with similar forward latencies, PCHB
can provide lower overall latency than WCHB. In addition, Equation 3.6 shows the backward
latency of the PCHB template. Comparing this backward latency to the WCHB one, the
PCHB template has additional transitions, due to the C-element which controls the enable
signal. This brings an additional delay overhead to the PCHB cycle time, which is nonethe-
less usually not significant.

CTPCHB = 3× teval + 2× (tCD + tC) + tpre (3.4)

FLPCHB = 3× teval (3.5)

BLPCHB = 2× tCD + 2× tC + tpre (3.6)

3.3 The Null Convention Logic (NCL) Gate Family and its Basic Template

Theseus Logic, Inc. proposed the NCL logic gate family [FB96] to support the
implementation of QDI asynchronous circuits. Since then, NCL has been applied to deal
with the design of low power, high speed and fault tolerant circuits, among other circuit
classes. Employing NCL gates permits power-, area- and speed-efficient QDI design with
standard cell-based approaches, as opposed to other asynchronous templates that require
full-custom approaches. NCL gates couple a threshold function with positive integer weights
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Figure 3.7: Marked graph of a 3-stage PCHB pipeline. The transitions that comprise the
cycle time are highlighted with thick red lines. Dashed lines represent external interactions
with the environment (e.g. with neighbor pipeline stages that are not shown).

assigned to inputs with the use of a hysteresis mechanism1. Figure 3.8 (a) shows a generic
symbol for an NCL gate with a threshold function M and N inputs, each one with a weight
wi . According to the NCL gate function, each input can have a different weight value. If the
weights are suppressed in the gate notation, weight 1 is assumed for all inputs.

The output of an NCL gate switches according the following premises: (1) a high-to-
low transition only occurs after all inputs go to logic level 0; (2) a low-to-high transition occurs
when the sum of weights for inputs at logic level 1 reaches a value bigger than or equal to
the gate threshold M. In case the inputs do no satisfy the threshold function, the output
holds its previous state (either 0 or 1). These characteristics demonstrate how NCL gates
are similar to a classic asynchronous component, the C-element. In fact, a basic C-element
is a special case of NCL gate where M = N and all input weights are 1. Figure 3.8 (b)
illustrates a specific NCL gate with M = 2 and N = 3 with all weights equal to 1. Moreover,
Figure 3.8 (c) shows the truth table for the gate in Figure 3.8 (b), indicating where the gate
sets, resets and holds its output value (Qi−1).

Regarding NCL gate implementations, Figure 3.9 shows the generic implementa-
tion of three often used NCL gate topologies: (a) Martin’s (weak-feedback); (b) Sutherland’s
and (c) Moreira’s [MAGC14]. Martin’s topology employs two main logic blocks (SET and

1The original definition of threshold logic gates (TLGs) includes the threshold function and the weights, but
not the hysteresis effect of NCL gates. In original TLGs, if the weight is not reached by the combination of
inputs, the gate output is 0.
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Figure 3.8: Elements of the NCL logic gate family: (a) a generic NCL gate with threshold
M and weights w1...wN ; (b) an actual instance of an NCL gate, with M = 2 and weights
w1 = w2 = w3 = 1; (c) the truth table of the gate depicted in (b).

RESET), and a pair of cross-coupled inverters: an output inverter and a weak-feedback one.
The SET and RESET blocks are responsible for forcing logic values 1 and 0 to the output,
respectively, while the inverters are used to latch the output in case nor SET neither RESET
are active. Despite the fact that this topology is the most straightforward implementation, the
weak-feedback structure compromises output integrity, specially in low-voltage supply sce-
narios. The Sutherland’s topology, on the other hand, introduces two additional logic blocks
to the feedback structure: HOLD0 and HOLD1. HOLD0 and HOLD1 controls the feedback
circuit, to account for input combinations that hold the output logic value at one of the two
possible logic values, i.e. the hysteresis behavior. Consequently, the Sutherland’s topology
mitigates the integrity issue of Martin’s topology, at the cost of extra hardware. Finally, the
Moreira’s topology is a recent proposal to adapt even further NCL design to low-voltage
scenarios. This topology proposes two main improvements: lower driving capacitances for
SET/HOLD0 and RESET/HOLD1 logic blocks and reduced shorts while switching the out-
put. Moreira’s topology brings better speed, energy and leakage trade-offs, albeit initial
experiments have pinpointed higher sensibility to SEEs in lower supply voltages [MAGC14].

3.3.1 The NCL Basic Template

An NCL pipeline stage has a structure similar to a WCHB stage, albeit the NCL
template separates the latch logic from the combinational logic. For better understanding,
Figure 3.10 illustrates the implementation of an NCL pipeline stage with an NCL register Ri , a
completion detector CDi , an NCL combinational logic block Fi and two handshaking signals:
ack (i) and ack (i + 1). Note that the stage has two dual-rail inputs A and B and one dual-rail
output Q, assuming that Fi computes a function of two inputs. The NCL register is usually
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Figure 3.9: NCL gate topologies: (a) Martin’s (weak-feedback); (b) Sutherland’s and (c)
Moreira’s.

implemented with 2-input C-elements (equivalently, an NCL gate with M = N = 2). For each
gate, an input connects to the input data and the other connects to the acknowledgement
signal ack (n + 1) from the next stage. Basically, ack (i + 1) controls the status of the register,
dictating when the register propagates its input or latches it. When ack (i + 1) = 1, all register
are able to propagate data tokens to their outputs. On the other hand, when ack (i + 1) = 0,
all registers are in the opaque mode and cannot propagate any data tokens – only NULL
tokens. When data/NULL tokens propagate to all registers’ outputs, the completion detector
CDi will signal through ack (i), informing the previous stage the respective data/NULL token
has been successfully propagated. Note that the NCL gate used in CDi employs inverted
logic, as CDi lowers ack (i) in the presence of a data token, and asserts ack (i) when a NULL
token is present.

To visualize how neighbor pipeline stages interconnect, Figure 3.11 shows the
block diagram of a 3-stage NCL pipeline. As in previous templates, thick lines represent
DI-encoded data channels and narrow lines indicate single bit signals. In the initial state, all
data channels contain NULL tokens and all handshaking signals are set to 1. Consider that
a data token arrives in data_i(n − 1). As ack (n) = 1, register Rn−1 can propagate the data
token to its output. At this point, two parallel events occur: (i) CDn−1 identifies the presence
of a data token, lowering ack (n − 1). By lowering ack (n − 1), stage n − 1 signals to the
previous stage – in this case, the external environment – that a data token has been stored.
As a consequence, the environment will propagate a NULL token to data_i(n − 1). Note,
however, that Rn is not able to propagate the NULL token as the ack (n) is still set; (ii) Fn−1

computes the data token, propagating another data token to data_i(n). the register Rn in
the next stage will store the propagated data token, indicating through ack (n) = 0. When
data_i(n − 1) contains a NULL token and ack (n) = 0, Rn−1 can reset its output, propagating
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Figure 3.10: Example of a typical NCL pipeline stage. In this case, the stage has two dual-
rail inputs A and B and one dual-rail output Q.

a NULL token to the entire stage. Consequently, ack (n − 1) is asserted by CDn−1 and Fn−1

propagates a NULL token to datai(n), finalizing the communication cycle of stage n − 1.
Eventually, ack (n) will be asserted again, making possible the propagation of a new data
token through stage n − 1.
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Figure 3.11: Block diagram of a 3-stage NCL pipeline.

Figure 3.12 represents the marked graph of a 3-stage NCL pipeline. Note that
the cycle time is highlighted with thick red lines. Compared to WCHB, the NCL cycle time
has three additional transitions, due to the use of separate register and combinational logic
– see Equation 3.7 and 3.8. Fortunately, this separation avoids implementations with large
transistor stacks in latching logic, implying that the additional transitions not necessarily bring
performance overheads. These three additional transitions are included in the NCL forward
latency, as can be seen in Equation 3.8. The forward latency covers the tR and Teval of all
three stages, having a total of six transitions. Similar to WCHB, the NCL backward latency
has only three transitions, covering two tCD and one tR.

CTNCL = 4× tR + 3× teval + 2× tCD (3.7)
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Figure 3.12: Marked graph of a 3-stage NCL pipeline. The transitions that comprise the
cycle time are highlighted with thick red lines. Dashed lines represent external interactions
with the environment (e.g. with neighbor pipeline stages that are not shown).

FLNCL = 3× (tR + teval) (3.8)

BLNCL = 2× tCD +×tR (3.9)

3.3.2 The Spatially Distributed Dual Spacer Null Convention Logic (SDDS-NCL) Tem-
plate

The Spatially Distributed Dual Spacer NCL (SDDS-NCL) is a recently proposed
QDI template [MTMC14], which brings the full power of synchronous logic optimizations tools
to the design of NCL circuits [FB96]. To enable this, SDDS-NCL employs two types of gates:
the conventional NCL family and the NCL+ family, proposed in [MOPC13]. The difference
between the NCL and NCL+ families is that the latter relies on a different handshake protocol
called return-to-one (RTO) [MGC12]. NCL+ gates have a functionality similar to NCL, but
the assumption of the RTO protocol mandates the switching function of an NCL+ gate to be
the reverse of its NCL counterpart. The gate output will only switch to 1 when all inputs are
at 1 and to 0 when the threshold M is reached by the inputs at 0, subject to the same input
weight rules. For other input combinations, the output keeps its previous value, exhibiting a
similar hysteretic behavior.

The symbol to represent NCL+ gates is identical to the NCL symbol in Figure 3.8(a),
except for a "+" symbol on its top right corner. When designing NCL+ gates, any topology
of Figure 3.9 can be used. However, the SET/HOLD0 and RESET/HOLD1 blocks are imple-
mented differently. Compared to its NCL gate counterpart, an NCL+ gate swaps RESET with
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SET, and swaps HOLD0 with HOLD1. This exchange avoids big stacks of PMOS transistors
that are present in NCL gates, which are implemented here with NMOS transistors.

Classically, no negative unate function was supported in either NCL or NCL+. How-
ever, SDDS-NCL enables to eliminate this restriction [MTMC14], since it mixes both RTZ and
RTO protocols. Thus, to every conventional NCL and NCL+ gate there is a corresponding
negative unate version gate, respectively INCL and INCL+. This can be useful for circuit
synthesis optimizations, as internal inverters already present in these cells can be reused.

3.4 The Autonomous Signal-Validity Half Buffer (ASVHB) Template

The proponents of the Autonomous Signal-Validity Half Buffer (ASVHB) QDI tem-
plate claim a focus on ultra-low power operation [HCGC15]. This template displays three
main characteristics: (1) its structure employs integrated autonomous validity signals, which
are used to simplify the circuit implementation; (2) it utilizes a fine-grained gate-level ap-
proach, which increases throughput by propagating data through a single-cell datapath
pipeline; (3) it implements static logic only, which increases node output stability and cir-
cuit robustness.
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Figure 3.13: Block diagram of a 3-stage ASVHB pipeline. Each val signal represents the
validity of each code block in the data input. Thick lines indicate DI-encoded data signals,
usually an m-of-n code such as dual-rail or multiple 1-of-4 channels. The remaining lines
represent single bit signals.

Figure 3.13 shows a 3-stage ASVHB pipeline. Regarding handshaking signals,
each stage has two acknowledgement signals: val and ack – where the first, val , is in fact
a set of signals, each of which provides the individual validity of a code block in the data
input2. The completion detectors generate a single wire output, which is the Lack signal
for the previous pipeline stage, and also the code block validity detectors (val) for the next

2A code block of a DI signal has a structure that depends on the code used. Assume for example the
dual-rail code for representing two bits of data. We need four wires, implying two 2-wire code blocks. The
same information can be represented using the 1-of-4 code, but in this case we would have a single 4-wire
code block. For a more convoluted example, assume we want to represent an 8-bit information (for example,
all characters of the ASCII-E code) using a number of 3-of-5 code blocks. The reader can verify that a single
3-of-5 code block can represent only seven distinct data in 5 wires (00111, 01011, ..., 11100). Thus, we need
three 3-of-5 code blocks to represent the 256 valid codes in an equivalent 8-bit binary code, since 7x7=49, but
7x7x7=343. In this case, we are left with three 5-wire code blocks
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stage. Different from other templates, ASVHB introduces individual validity signals val for
each input data block. For example, a 2-operand, 1-bit ALU represented in dual rail code
in ASVHB typically requires three validity inputs: one for each of the operands and one
for the ALU operation input. Validity inputs in ASVHB have a function equivalent to the
PCHB input completion detector CD block. In Figure 3.13, the pipeline stage is depicted
with multiple input channels and only one output channel, which is an assumption of the
template. When datai presents complete data and the corresponding F block processes this
data, the completion detector CD will lower its output, acknowledging the preceding pipeline
stage as well as notifying the succeeding pipeline stage that the data channel holds a data
token. Note that acknowledging is signaled with 0 and validity with 1, which implies the use
of an inverter before each val . At this point, input channels are free to change and produce
a spacer. When all val = 0 and the succeeding pipeline stage acknowledges the output
capture with ack = 0, output data is reset, inserting a spacer at the output as well.

The implementation of the ASVHB template is similar to that of other QDI tem-
plates, except for the validity signals to reset the output. For instance, Figure 3.14 illustrates
a complete dual-rail implementation of a NAND/AND gate using ASVHB logic. The comple-
tion detection block and the inverter in the output are the same presented in Figure 3.13. The
Pre-charge block is responsible for resetting the output, whereas the Evaluate block sets the
output. If either Pre-charge or Evaluate are active, the output keeps its value unchanged.
This happens due to the hysteresis mechanism implemented with the cross-coupled invert-
ers. As ASVHB employs static logic, the "Hold 0" and "Hold 1" are used to guarantee the
integrity of the output node when the hysteresis mechanism is the only active block.

Figure 3.14: Dual-rail implementation of a NAND/AND gate using ASVHB logic. Extracted
from [HCGC15].

Regarding the template behavior, Figure 3.15 shows the marked graph of the 3-
stage ASVHB pipeline in Figure 3.13. As in the analysis of previous templates, the cy-
cle time is highlighted through the three stages and is represented in Equation 3.10. The
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ASVHB template presents a token propagation through the pipeline with three transitions
(see Equation 3.11), which is similar to what occurs with the WCHB and PCHB templates.
Moreover, Equation 3.12 describes the ASVHB backward latency. Similar to WCHB, ASVHB
has a backward latency with three transitions albeit its precharge uses a smaller number of
transistors, implying that ASVHB can provide a smaller backward latency than WCHB.
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Figure 3.15: Marked graph of a 3-stage ASVHB pipeline. The transitions that compromise
the cycle time are highlighted with thick red lines. Traced lines represent external interactions
between neighbor pipeline stages that are not shown.

CTASVHB = 3× teval + 2× tRCD + tpre (3.10)

FLASVHB = 3× teval (3.11)

BLASVHB = 2× tRCD + tpre (3.12)

3.5 The Sense Amplifier Half-Buffer (SAHB) Template

Introduced in [CHL+17], the Sense Amplifier Half-Buffer (SAHB) template is a re-
cent alternative to implement high performance QDI circuits. Its main aspects can be sum-
marized by five main points: (1) SAHB employs a standard 4-phase RTZ handshake pro-
tocol; (2) all SAHB cells employ sense-amplifier cross-coupled latches with positive feed-
back to optimize output evaluation; (3) it uses NMOS pull-up and pull-down networks with
minimum transistor sizing; (4) evaluation and sense amplifier blocks are coupled, reducing
internal switching; (5) all SAHB cells uses CMOS static logic, which makes this template an
alternative for aggressive, dynamic VS. According to results in [CHL+17], SAHB presents
better power (~64% lower), performance (~21% faster) and area (~6% smaller) results than
PCHB. Moreover – differently from PCHB – the SAHB template is able to operate from super-
threshold (1V) to sub-threshold operation (~0.3V), due to the use of static logic. The authors
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in [CHL+17] consider the possibility to supply the evaluation and sense-amplifier latch blocks
with distinct voltages. This allows an interesting approach for performance and energy opti-
mization using VS. However, for the sake of simplicity, this Section focuses in the main SAHB
concepts.
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CDn+1
Rack

En+1

Rack

Stage n
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Rack

En
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Stage n-1
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 data_i(n)  data_i(n+1)  data_i(n+2) data_i(n-1)

Lack(n) Lack(n+1) Lack(n+2)Lack(n-1)

Figure 3.16: Architecture of a 3-stage SAHB pipeline. Thick lines indicate DI data signals.
Usually, these data signals are encoded with an m-of-n encoding such as dual-rail. The
remaining lines represent single bit signals. Note that data_i and Lack labels represent both
positive and inverted values of its respective signals.

Figure 3.16 illustrates a 3-stage SAHB pipeline. Similar to ASVHB, SAHB also
employs a fine-grained pipeline, as each SAHB cell receives and generates individual hand-
shake signals. This type of structure reduces the circuit cycle time, as the critical path does
not comprise multiple cells but just one. Consequently, a higher throughput can be achieved,
albeit additional handshake circuitry is needed to ensure synchronism. Each stage com-
prises three main blocks: an evaluation block E , a sense-amplifier latch L, and a completion
detector CD. There are also two handshake signals: Lack and Rack . Considering the
three main blocks, Figure 3.17 illustrates the schematic of a SAHB buffer cell with: (a) its
evaluation block and (b) a sense-amplifier latch integrated with output completion detection.
The evaluation block is responsible to implement the circuit logic, evaluating and resetting
the dual-rail output (Q.t and Q.f ). Note that the evaluation block implements both pull-up
and pull-down networks with NMOS transistors to reduce parasitic capacitance. The sense-
amplifier latch is responsible for amplifying and latching the evaluation block output Q.t and
Q.f , generating complementary output signals nQ.t and nQ.f . These complementary sig-
nals are propagated with their primary outputs and are also used by the evaluation block
to reduce short-circuit currents [CHL+17]. Moreover, nQ.t and nQ.f are used as inputs to
the completion detector, which generates the handshake signals Lack and nLack . Following
a similar approach as the ASVHB template, the SAHB completion detector only employs a
NAND and an inverter cell to generate all required signals. Of course, if more than one hand-
shake signal exists in the pipeline stage and require synchronization, additional hardware is
needed to implement the completion detection circuit.

In order to understand this template communication cycle, consider the following
example. Initially, all data_i buses contains spacers and all handshake signals Lack are
reset. For instance, consider that Stage N − 1 already processed its input and propagates
a valid data token to data_i(n). As Lack (n + 1) = 0, En can evaluate the valid data token and
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Figure 3.17: Schematic of a SAHB buffer cell: (a) evaluation block En and (b) sense-amplifier
latch Ln with a output completion detector. Note that each block can be powered separately.
In this example, the evaluation and sense-amplifier latch is powered by VDDL and VDD,
respectively. Extracted from [CHL+17]

propagate to Ln, which latches a valid token in data_i(n + 1). At this point, CDn detects the
valid token in its input and asserts Lack (n), whereas the same token propagates to stage
N + 1. With Lack (n) = 1, stage N − 1 can propagate a spacer, resetting data_i(n). At the
same time, stage N + 1 evaluates datai(n + 1) and asserts Lack (n + 1). When both events
occur – data_i(n) = NULL and Lack (n + 1) = 1 – stage N can reset and propagate a spacer
to datai(n + 1). When stage N + 1 resets Lack (n + 1), stage N has finished its communica-
tion cycle and is ready to process a new data token. This communication cycle can also be
visualized in Figure 3.18, which shows the marked graph of the 3-stage SAHB pipeline in
Figure 3.16. Note that the template cycle time is highlighted with thick red lines and corre-
sponds to Equation 3.13. In total, the SAHB cycle time comprises 10 transitions, covering
the evaluation phase of all three stages and the reset phase on the second stage. The for-
ward latency is essentially composed by the evaluation and latching phases performed by
the three evaluation and latch blocks. The backward latency corresponds to the reset phase
of the second stage. Equations 3.14 and 3.15 depicts the forward and backward latencies,
which respectively comprise six and four transitions.

CTSAHB = 3× teval + 3× tL_ON + 2× tCD + trst + tL_RST (3.13)

FLSAHB = 3× teval + 3× tL_ON (3.14)

BLSAHB = 2× tCD + trst + tL_RST (3.15)
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Figure 3.18: Marked graph for a 3-stage SAHB pipeline. The transitions that compose the
cycle time are highlighted with thick red lines. Dashed lines represent external interactions
between neighbor pipeline stages or the environment, and are not detailed.

3.6 The Register-Less Null Convention Logic (RL-NCL)

The RL-NCL template is a recent template proposal [CYP17] based on the NCL
template and on MTCMOS [MDM+95] circuit design techniques. According to the Authors,
registers can be responsible for a reasonable amount of the overall power and area con-
sumption of an NCL circuit. To mitigate this overhead, RL-NCL suggests to optimize circuits
by removing register circuitry and reducing the completion detection logic. By removing
pipeline registers, RL-NCL introduces the handshaking structure in Figure 3.19, where a
C-element is used in each stage to control the combinational logic block Fn. Different from
the SCL template (see Section 3.7), the sleep signal is only used to control the combina-
tional logic, leaving the completion detector block CD only sensitive to the data_i bus. The
combinational logic blocks F in RL-NCL are similar to the ones used in the SCL template
as both templates derived from MTCMOS. With the integrated sleep logic, the structure of
logic gates comprises only the two main circuit blocks (hold-0 and set-to-1) highlighted in
Figure 3.20 (a). The set-to-1 is responsible to set the output node during the evaluation
phase, whereas hold-0 only keeps the output node in 0 after the circuit is released from
the sleep mode. Note that the logic responsible for resetting the output node is a NOR gate
that drives the output node. When sleep = 1, the gate is in sleep mode. On the other hand,
the is in active mode when sleep = 0. For a more detailed example, Figure 3.20 (b) shows
the schematic of an MTCMOS threshold gate TH23. Different from traditional NCL gates,
the RL-NCL avoids the cross-coupled inverters, significantly reducing area consumption.
Area consumption is also reduced with the proposed completion detection scheme that only
employs a single OR gate connected at the end of the critical path. This means that the
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completion detector only detects a data token in the critical path. However, the analysis of
this template reveals it contains several problems, which make it an unreasonable target for
circuit implementations, as the discussion in the rest of this Section demonstrates.
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Figure 3.19: Architecture of a 3-stage RL-NCL pipeline. Thick lines indicate DI data sig-
nals. Usually, these data signals are encoded with a m-of-n encoding such as 1-of-2. The
remaining lines represent single bit signals. Note that is this template, the sleep signal is
active-low.

The proponents of RL-NCL pinpoint that all threshold gates of the combinational
blocks begin the evaluation/reset process at the same time, as all gates are sensitive to the
same sleep signal. In that way, it would be possible to assume that when the output bit
of the critical path has been processed, all output bits are already processed and stable.
This assumption brings some important aspects that should be considered. First, if all gates
begin the evaluation/reset process at the same time, this implies that the sleep signal must
reach all gates at the same time. In order to guarantee this, the designer should treat each
sleep signal as a clock signal, by implementing a balanced delay tree to control the skew
of each sleep signal. Second, if PVT variations are considered, there is a possibility that
the estimated critical path generates its output before others paths, compromising the input
completeness of the circuit.

Regarding pipeline operation, the RL-NCL pipeline behavior can be described as
follows. In the initial state, all pipeline stages are in sleep mode (sleep = 1), generating
NULL tokens in all data_i buses; Consider now that a valid data token arrives in data_i(n)
and RACKn−1/LACKn−1 is asserted. With RACKn−1 = 1 and Lackn+1 = 0, sleepn deasserts,
removing Stage n from sleep mode. Consequently, Fn is able to compute its input and
propagate a data token to data_i(n + 1). Next, the completion detector CDn detects the data
token and asserts its output (LACKn = RACKn = 1). As RACKn = 1, the C-element in stage
n + 1 forces sleepn+1 = 0, allowing this time to Fn+1 to compute data_i(n + 1) and propagating
a data token to data_i(n + 2). The data token in data_i(n + 2) can now be detected by CDn+1,
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asserting this output (LACKn+1 = RACKn+1 = 1). Assuming that RACKn−1 have already
been reset – indicating that stage n − 1 has been reset and datai(n) contains a NULL token
– LACKn+1 = 1 will force sleepn = 1, putting Stage n in sleep mode again, finishing the
communication cycle.

Figure 3.20: RL-NCL combinational logic: (b) generic schematic highlighting the main logic
blocks (set-to-one, hold-0 and sleep logic) and (c) schematic of a MTCMOS threshold gate
TH23. Extracted from [CYP17].

The pipeline behavior previously described describes the operation of the RL-NCL
pipeline assuming that the pipeline always consumes new data tokens – producing no stalls.
However, if a stall occurs in the RL-NCL pipeline, there is a possibility that data be overridden
while stalling. In order to understand this possible hazard, consider the scenario described
next. First, consider that the external environment in Figure 3.19 is not consuming and data
token in data_i(n + 2), simulating a possible environment stall. Because of that, LACKn+2 is
fixed in 0, which locks stage n + 1 in the active mode. In addition, due to the presence of
a data token in data_i(n + 2), LACKn+1 is set, allowing stage n to enter sleep mode. At this
point, if data_i(n) receives a NULL token, a data override may occur. With data_i(n) = NULL,
RACKn−1 resets and force stage n to sleep mode (sleepn = 0) – remember that LACKn+1 = 1.
Consequently, a NULL token is generated in data_i(n + 1). As stage n + 1 is locked in active
mode it can process its input. As Fn+1 is a purely combinational logic, the NULL token will
propagate to data_i(n + 2), erasing the data token before it has propagated. Due to this
hazardous behavior, the RL-NCL is discarded from analysis herein.

3.7 The Sleep Convention Logic (SCL) Template

SCL is an asynchronous design template [BZF+08] [PSAA16] inspired on NCL [FB96].
Its structure presents two main characteristics: NCL with early completion [Smi02] and fine-



51

grained Multi-Threshold CMOS (MTCMOS) power-gating [ZSD10]. In fact, SCL was initially
labelled as Multi-Threshold Null Convention Logic (MTNCL) [BZF+08]. Compared to NCL,
SCL brings architectural and design modifications that may result in area and performance
advantages [PSAA16]. Figure 3.21 shows a 3-stage SCL pipeline. Each stage contains a
combinational logic block F , a register R, a completion detector CD and a settable C-element
C3.
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Figure 3.21: Architecture of a 3-stage SCL pipeline. Thick lines indicate DI data signals.
Usually, these data signals are encoded with an m-of-n encoding such as 1-of-2 (dual-rail)
or 1-of-4. The remaining lines represent single bit signals.

The SCL template integrates the acknowledgement signal ack with a sleep mecha-
nism. Basically, when a pipeline Stage n acknowledges a previous stage n−1, it also resets
the sleep signal, which takes stage n out of sleep mode. To better understand the SCL
pipeline operation, consider the structure in Figure 3.21 at a "sleep" state: all data_i = NULL
(contain spacers) and all ack = sleep = 1, i.e. all pipeline stages are in sleep mode. Initially,
sleep(n − 2) is reset, awaking CDn−1 to check the validity of data_i(n−1). When data_i(n−1))
presents a valid data token, CDn−1 asserts its output, which forces the output of Cn−1 to 0
(ack(n−1) = 0). Remember that initially ack(n) = 1. At this moment, two concurrent events
take place, as the output of Cn−1 forks to two paths: (i) the acknowledge signal ack(n−1) is
lowered, signaling that stage n − 2 confirms the data validity and (ii) the stage n − 1 sleep
signal is disabled (sleep(n−1) = 0), awaking Rn−1, Fn−1 and CDn. Enabled, register Rn−1 and
the combinational block Fn−1 can now propagate their inputs, generating a valid data token
in data_i(n), which will be detected by CDn−1. Next, Stage n executes the same process
described above for Stage n − 1, and so on. After propagating a data token, stage n − 1
must wait for two event to enter again in sleep mode: (i) the acknowledge signal ack(n) is
lowered, confirming that stage n received a data token and (ii) the sleep signal sleep(n−2) is
asserted, generating a NULL token in data_i(n−1) and resetting the output of CDn−1. These
two event are synchronized by the C-element, which asserts ack(n−1) and switches the stage
n − 1 to sleep mode. In sleep mode again, stage n − 1 ends its communication cycle and
can receive a new data token.

3In [PSAA16], Authors refer to this C-element as "resettable", but this is inaccurate. In a reset state, the
SCL template must set all C-element outputs to 1 to maintain the pipeline stages in sleep mode (sleep(n) = 1).
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Figure 3.22: A comparison of SCL and NCL gates using the TH23 gate as example: (a)
transistor-level implementation of the TH23 SCL gate; (b) TH23 symbol; (c) transistor-level
implementation of the TH23 NCL gate. Note that both SCL and NCL implementation use
the same symbol, but the SCL version has an additional input: the sleep signal, not shown
in the symbol.

The combinational logic blocks F basically consist of SCL gates that couple a
threshold function with positive integer weights assigned to inputs and power-gating logic.
Compared to NCL gates, SCL gates present significant area reduction, due to the fact that
the latter only uses two logic blocks from the original definition of NCL gates: the HOLD0
and SET [FB96]. The remaining logic blocks (HOLD1 and RESET) are replaced by the
sleep logic, which is responsible for generating logic 0 at the output. This logic optimiza-
tion removes the sequential characteristic that are present in all NCL gates, due to the
removal of the hysteresis mechanism. An SCL gate is named according to its threshold
value, equivalent to the convention stated for NCL gates. Following the terminology pre-
sented in [PSAA16], an SCL gate is denoted by THMWw1, ..., wN , where N is the number of
inputs, M is the threshold of the gate, and w1, w2, ..., wN are the input weights. If all weights
are 1, their mention is omitted from the gate name. As an illustration, Figure 3.22 shows the
transistor-level implementation of a TH23 SCL and a TH23 NCL gates, each with thresh-
old=2, 3 inputs, and all input weights=1. Weight information is accordingly omitted from the
gate denomination.

A completion detection block CDi is responsible for identifying valid data and spac-
ers in its data(i) input. The CDi implementation is similar to completion detectors from NCL,
except for the fact that SCL completion detectors use SCL gates, which allow incorporat-
ing the sleep logic and further reduce static power consumption. Figure 3.23 shows the a
gate-level implementation of an SCL completion detector. The first logic level is composed
by TH12 gates, which operate as (and are, in fact) OR gates, and the following logic levels
utilize THnn gates (2 ≤ n ≤ 4), i.e. n-input C-elements. The TH12 gates check the validity
of each dual-rail signal while the following logic levels combine the results of all TH12 gates
into a data validity control signal.
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Figure 3.23: Gate-level implementation of a SCL completion detector.

Figure 3.24 presents the structure of a single bit SCL register. The SCL register
employs a two-level logic with sleep transistors and an unconventional latch. Figure 3.24(a)
shows the gate-level representation of the register. Basically, the SCL register uses two
NOR gates, where the first NOR gate has an NMOS power gating transistor and the second
NOR gate partially implements the sleep logic. Note that the first NOR receives the output
Q as input, implementing the latch feedback signal. In addition, Figure 3.24(b) depicts the
transistor-level representation of the register, highlighting the sleep logic and the feedback
structure (HOLD-1).
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Figure 3.24: A single bit SCL register: (a) gate-level implementation; (b) transistor-level
implementation. Note that the NMOS gating uses the inverted value of S (S), which implies
that an inverter must be added to the structure.

Due to the register structure depicted in Figure 3.24, register input In can only
write 1 or keep 0 in output Q. In case Q = 1, the HOLD-1 structure disables the PUN of
the first NOR gate. This implies that the sleep logic must be asserted to reset the output.
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For instance, consider the register in Figure 3.24 operating under the stimuli showed in
Figure 4.1: the initial input values are In = 0, S = 1. With these inputs, the sleep logic is
enabled and is forcing Q = 0. Next, In is asserted but Q maintains its value since S = 1.
When S is reset, the register can compute In and write Q = 1. At this point, the register will
maintain Q = 1 even if In is reset. Therefore, the register has to wait for S = 1 to reset Q.

Figure 3.25 illustrates the marked graph of a 3-stage SCL pipeline with its cycle
time indicated by thick red lines. It is possible to see that the cycle time structure differs
significantly from previous templates. Usually, asynchronous design templates are meant
to optimize the propagation of the data through the pipeline – in other words, to optimize
the forward latency. This explains why the forward latencies of previous templates all have
similar transitions. The SCL template, however, implements a longer forward latency and
a shorter backward latency, which are represented in Equation 3.16 and Equation 3.17, re-
spectively. Notice the the forward latency has 10 transitions – different from the 3 transitions
of WCHB/PCHB – and incorporates the completion detector, evaluation blocks, a register
and a C-element. This happens due to the fact that when new data arrives at an SCL stage,
the stage is sleeping and must wake up. To do that, new data must be detected to lower the
stage sleep signal, allowing this to compute and propagate new data. Regarding backward
latency, the scenario is completely different. After the third stage detects the presence of
new data in its input and wakes up, the only gate in the acknowledgement path is a sin-
gle C-element. Compared to WCHB and PCHB, which have backward latency with 3 and
5 transitions respectively, SCL has a significant lower backward latency counting only one
transition. Equation 3.18 shows the SCL cycle time, combining both forward and backward
latencies.

It is important to emphasize that the SCL cycle time is related to a possible issue
regarding the pipeline functionality. In fact, this issue is further discussed in Chapter 4 which
covers the analysis of the SCL isochronic fork assumptions.

FLSCL = 3× tCD + 3× tC + 2× tRen + 2× teval (3.16)

BLSCL = tC (3.17)

CTSCL = 3× tCD + 4× tC + 2× tRen + 2× teval (3.18)

3.8 Discussion

The QDI templates presented in this Chapter introduce interesting operation as-
pects and unique features, and also bring specific trade-offs that need to be evaluated be-
fore committing to use one of these in the design of a circuit. In order to synchronize with the
context of this work, it is important to consider the trade-offs of each QDI template regarding
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Figure 3.25: Marked graph for a 3-stage SCL pipeline. The transitions that compose the
cycle time are highlighted with thick red lines. Dashed lines represent external interactions
between neighbor pipeline stages or the environment, and are not detailed.

their applicability to an ultra-low power environment, specially in sub-threshold operation. To
support the discussion, Table 3.1 indicates the main qualitative and quantitative aspects of
each template, focusing on its use in ultra-low power scenarios. Table 3.1 also informs the
lowest reported supply voltage for each template and the presence of CAD support in the
literature.

WCHB is one of the most straightforward QDI templates to implement. Its buffer
has a short cycle time when compared to other QDI templates, albeit its implementation
complexity is typically high and it is not feasible to implement complex functions with a single
level of weak-conditioned logic [BOF10]. Building complex functions in the buffer leads to
big stacks of PMOS and NMOS transistors, which impacts circuit performance significantly.
Because of that, WCHB is often used to implement buffers and control logic only, leaving the
combinational logic to be implemented with DIMS or NCL, for instance.

Compared to WCHB, the PCHB template presents better performance, because it
utilizes domino logic, avoiding long chains of series PMOS transistors, but increases imple-
mentation complexity and has multi-output gates that makes semi-custom design more chal-
lenging. Moreover, PCHB comprises fine-grained gate-level pipeline design, implementing
single-cell pipeline stages and increasing the circuit throughput. Its implementation relies on
staticized dynamic logic. Applying this type of logic may compromise circuit operation under
very low supply voltages and is thus not recommended for sub-threshold operation.

NCL can be a good candidate for sub-threshold operation as pinpointed in [JSL+10].
Despite the fact that all NCL gates employ a hysteresis mechanism in its logic, it is possible
to adopt the static logic implementation to guarantee the output integrity while operating un-
der very low supply voltages. On the other hand, static logic implementations lead to large
PMOS stacking for more complex gates, which can degrade circuit performance and com-



56

plicate transistor sizing. In the same context, SDDS-NCL includes similar trade-offs as NCL,
because it also utilizes the same gate implementations, albeit with the addition of NCL+
gates. According to [MNM+14], the use of NCL+ provides lower leakage power and better
energy efficiency, at the cost of an increase in forward propagation delay, when compared
to NCL. This trade-off is interesting for ultra-low power design as the leakage power is a sig-
nificant negative side-effect of sub-threshold operation. Moreover, it is important to pinpoint
that the optimizations provided by SDDS-NCL are compatible with conventional electronic
design automation (EDA) tools [MNM+14].

The authors of [HCGC15] indicate that the ASVHB template is suitable for sub-
threshold operation, reporting a 32-bit Arithmetic and Logic Unit (ALU) that operates under a
Vdd = 0.2V supply. As advantages, this template improves circuits in two aspects: through-
put and implementation. ASVHB improves circuit throughput by using single-cell pipeline
stages, which are hard to achieve when using e.g. WCHB/DIMS. Regarding implementa-
tion, ASVHB utilizes the input validity data signals to simplify its implementation. Similar to
NCL, this template also employs a hysteresis mechanism with a staticized logic implemen-
tation. Again, this type of implementation improves the output value integrity but employs
big stacks of PMOS transistors if the circuit implements complex logic functions.

The SAHB template shows compatibility with low-voltage operations, due to the
use of static logic. This is highlighted in [CHL+17] with a prototyped 64-bit Kogge-Stone
adder operating in Vdd = 0.3V . Similar to ASVHB, SAHB uses a fine-grained pipeline struc-
ture to maximize throughput. When compared to PCHB, SAHB presents performance and
energy improvements, albeit its area consumption keeps relatively high and basic dual-rail
gates employ a large number of stacked transistors. For instance, an XOR/XNOR SAHB
gate has five stacked NMOS transistors, which is not recommended when operating in low
voltage scenarios [ILL+13] [PN13]. To optimize even further the design, the same Authors
introduce the Template-based Cell-Interleave Pipeline (TCIP) [HLN+16], which mixes four
QDI templates: WCHB, PCHB, ASVHB and SAHB. Using a initial set of performance con-
straints, these Authors define which template will be used for each pipeline stage, to keep
area overhead at its lowest.

The SCL template is also a possible alternative for circuits operating in the sub-
threshold region. It is in fact the template considered most promising among all evaluated
in this work. Its logic optimization significantly reduces area requirements and removes the
hysteresis mechanism that is present in other QDI templates. In addition, the fine-grained
sleep logic reduces leakage power, increasing its applicability in ultra-low power environ-
ments. Differently from other templates, SCL brings an optimized backward latency albeit
its forward latency is significantly higher than that of other templates. The larger forward
latency could impact performance, specially in sub-threshold operation, and the low back-
ward latency could be related to a possible timing assumptions in the handshake process,
suggesting that the template must be evaluated and enhanced if chosen. Considering SCL
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optimizations, the SCL template can in principle be combined with the advantages provided
by SDDS-NCL, which can reduce even further leakage power consumption and increase
energy efficiency. The proposal of an SDDS-SCL QDI template can provide an optimized
point for ultra-low power operation. These advantages point to the SCL template as an
elegant approach to design ultra-low power circuits, albeit the SCL template brings timing
assumptions and performance overheads that need to be evaluated in order to determine the
template stability and feasibility for ultra-low power operation. The present work contributes
by investigating the issues related to the SCL in the next Chapter.

Table 3.1: Comparison table with main qualitative and quantitative aspects of the selected
QDI templates. NA = Information Not Available.

WCHB PCHB ASVHB SAHB NCL SDDS-NCL SCL

Implementation Buffer and
control only

Domino
only

Autonomous
validity
signals

Sense amplifier
based

Static
threshold

logic

RTZ/RTO
protocol mixing

Fine-grained
sleep logic

Pipeline Design Fine-grained, gate-level Coarse-grained, block-level
Power-Gating No Yes

External Latches Required Not Required Required
Reported Minimum

Vdd @ 65nm 0.2V 0.2V 0.2V 0.3V 0.15V 0.15V NA

Hysteresis Mechanism
on Logic Yes No

Reported
CAD Support Yes Yes

(proprietary) No No Yes
(proprietary)

Yes
(combinational

logic only)
No

3.9 A Circuit-based Quantitative Template Comparison

To assess the trade-offs of the chosen QDI templates, this works evaluates perfor-
mance and power characteristics through a case study circuit using four selected templates:
NCL, NCL+ ASVHB and SCL. The experiments rely on the design of an 8-bit, dual-rail
Kogge-Stone adder operating in super-threshold and sub-threshold regions. Figure 3.26 il-
lustrates a single-rail implementation of this adder with its three basic logic blocks. Besides
the adder itself, the case study also includes an 8-bit input register, a completion detector
and extra handshake hardware, which were implemented according to each template spec-
ification. For instance, the SCL-based adder uses SCL registers to implement the input
registers, whereas the NCL-based one uses a conventional WCHB implementation. These
additions allow a better estimation regarding cycle time, power and energy as the case study
includes not only the combinational part but also sequential and synchronization parts. All
four implementations were described at the transistor level using the SPICE language and
addressing the 65nm Bulk CMOS technology from STMicroelectronics. The adopted transis-
tor sizing for these experiments follows the strategy described in [HCGC15], which employs
minimum width sizing to reduce leakage and area.
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Figure 3.26: Single-rail implementation of the 8-bit Kogge-Stone adder and its basic blocks:
(a) block diagram; (b) red box; (c) yellow box; (d) green box.

Figure 3.27 shows an overview of the simulation environment structure. This sim-
ulation environment incorporates a mixed-signal (VHDL-AMS) tesbench, which instantiates
the SPICE description of each case study and where verification blocks are described in
SystemC. The verification block generates the input stimuli, checks the outputs correctness
and measures the cycle time characteristics (forward and backward latency). Moreover, the
environment also captures leakage power, dynamic power and energy consumption using
measurements from the SPICE setup. As some templates have different I/O signals and/or
data encodings, the simulation environment implements dedicated interfaces and stimuli
sets for each template.
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Figure 3.27: Simulation environment structure. The AMS-VHDL environment implements
the ADC/DAC interfaces, allowing the communication between the case study circuit and
the verification logic.

During simulation, the environment evaluates all implementations with nominal and
sub-threshold supply voltage, in a typical process corner (TT) and at room temperature
(25°C). The obtained simulation results are collected in Table 3.2, which indicates per-
formance and power characteristics of each QDI template operating with Vdd = 1V and
Vdd = 0.2V . Note that all results are normalized to the results of the NCL-based case study,
which is thus used as reference in the discussion. The cycle time captures not only the data
propagation latency through the case study circuit itself but also the extra handshake la-
tency, giving a better perspective on the templates relative performance. Area estimation is
approached using the circuit transistor count for each template. Energy per operation (EPO)
and leakage power consumption charts provide a power analysis regarding all covered tem-
plates. While EPO pinpoints the energy consumption when the circuit is active, leakage
power shows how much the circuit consumes in standby mode. The Energy-Delay Prod-
uct (EDP) provides a vision of the trade-off between performance and energy consumption.
Similarly, the Leakage-Delay Product (LDP) focuses on the trade-off between performance
and leakage power consumption.

The obtained cycle time results in super-threshold suggest that almost all templates
present slightly better results than NCL, except the SCL template. More specifically, NCL+
and ASVHB have 4% and 8% lower cycle time than NCL, respectively. Meanwhile, the
SCL overhead reaches around 76%. This is explained by the fact that the SCL cycle time
is substantially penalized by the completion detector performance, usually regarded as the
bottleneck of QDI templates. In sub-threshold operation, all templates present similar cycle
time results. Differently from the super-threshold case, the SCL template does not show
performance overheads in sub-threshold operation. This suggests that the performance
degradation due to the low supply voltage affects much more other templates, making all of
them end up with similar cycle time results.
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Table 3.2: Simulation Results of the 8-bit Kogge-Stone Adder in super-threshold and sub-
threshold operation. All results of cycle time (CT), leakage power (Leak), dynamic power
(Dyn), energy per Operation (EOP), transistor count (TC), Energy-Delay Product (EDP) and
Leakage-Delay Product (LDP) are normalized to NCL results.

Vdd Template CT Leak EPO TC EDP LDP

1V

NCL 1 1 1 1 1 1
NCL+ 0.96 0.84 1.01 1 0.97 0.81

ASVHB 0.92 1.53 1.53 1.35 1.40 1.41
SCL 1.76 0.52 1.21 0.64 2.14 0.92

0.2V

NCL 1 1 1 1 1 1
NCL+ 0.95 0.59 0.99 1 0.94 0.56

ASVHB 0.95 1.45 1.40 1.35 1.33 1.37
SCL 0.98 0.59 0.98 0.64 0.96 0.58

Regarding power consumption characteristics, NCL+ and SCL showed 16% and
48% less leakage power than NCL in super-threshold operation, respectively. The NCL+
results are related with the usage of the RTO protocol – as covered in [MNM+14] – and the
SCL results derive from the significantly smaller transistor count. In sub-threshold operation,
the same applies to both templates, except the fact that NCL+ and SCL present an increase
of leakage reduction (40%). However, the same does not apply to ASVHB. As ASVHB needs
the implementation of handshake logic between each logic gate, extra hardware is required
for proper synchronization. This aspect translates into an area overhead of 35%, which
also explains the leakage power increase of 53% and 45% for super- and sub-threshold
operation, respectively.

Concerning EPO figures, NCL provides interesting results. Both NCL and NCL+
templates have similar energy consumption under both supply voltages. ASVHB on the
other hand increases EPO by 53% with Vdd = 1V and 40% with Vdd = 0.2V . Interestingly,
SCL provides 21% more EPO than NCL in super-threshold operation, but provides equiva-
lent EPO in sub-threshold operation. Also, the SCL-based case study registers the highest
EDP among all templates operating with Vdd = 1V . This is justifiable by the fact that the SCL
template has significant cycle time and EPO overheads, which are the main components of
EDP. As these overheads are mitigated in sub-threshold operation, SCL presents and slightly
lower EDP – around 4%. Unfortunately, the same is not applicable to ASVHB. The ASVHB
presents the highest EDP results in both supply voltages. For a more quantitative analysis,
ASVHB EDP values show an increase of 40% with Vdd = 1V and 33% with Vdd = 0.2V
when compared to NCL. The NCL+ EDP remained similar to that observed for the NCL
template, following the trend of results collected for cycle time and EPO figures. Analyzing
LDP in super-threshold operation, NCL+ and SCL achieve 8% 9% better results than NCL.
These results are improvements when both templates operate in the sub-threshold region.
For NCL+, LDP is decreased by 44%, while SCL achieves a 42% LDP reduction. The leak-
age reduction provided from NCL+ and SCL implies that the combination of both templates
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might achieve further leakage reduction. Because of that, a RTO-based SCL template called
SCL+ is covered in Chapter 5, allowing an understanding of the possible optimizations due
to the template combination. On the other hand, the higher area consumption of ASVHB
implies higher LDP results, which translate to an overhead of around 40% when compared
to NCL in both supply voltages. The area estimation using transistor count highlights the
logic reduction achieved by the SCL template. In fact, the SCL-based case study uses 36%
and 47% less transistors than its NCL/NCL+ and ASVHB counterparts, respectively.
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4. Analyzing and Improving the SCL Template

This Chapter analyzes three aspects of the SCL template. First, it discusses the
SCL register, shows an internal hazard is possible to occur during normal operation of the
register structure, and proposes a simple modification that do not change the register be-
havior, eliminates the possibility of hazard and which has a smaller cost in area and power.
Second, it analyzes timing issues caused by the early completion scheme, highlighting that
not only the SCL template has to respect a timing constraint but creates a performance
overhead. These timing issues motivated the proposal of a new version of the SCL tem-
plate, which this Chapter presents as the VELO template. The VELO template proposes
the employment of a late completion scheme, which avoids the timing constraint and perfor-
mance overhead recently mentioned. Finally, The Author briefly discuss the requirements
of a possible SDDS implementation using the SCL template. This discussion pinpoints the
necessity of positive and negative unate functions and proposes a simple modification on
the implementation of the SCL combinational logic, providing a low-area implementation for
both functions.

4.1 The SCL Register NMOS gating

During the SCL analysis conducted in this work, an issue was detected in the SCL
register implementation as proposed in [PSAA16]. Under at least one specific situation, it is
possible for the internal node Q to float. Refer to Figure 3.24 and to Figure 4.1. If all inputs
in Figure 3.24(a) are set (S = 1 and In = 1), neither the PUN nor the PDN of the first NOR
gate (see Figure 3.24(b)) are activated. To illustrate this scenario, the waveform in Figure 4.1
demonstrates the operation of the SCL register in four modes: RESET, SET, HOLD-1 and
HOLD-0. During RESET and SET modes, the output is driven by the sleep signal S and
the data signal In, respectively. The HOLD-1 mode is established when Q = 1 but neither
S nor In drive the output. This mode is useful as it avoids the propagation of a ‘0’ from In
as the sleep signal is the only responsible to reset Q. During HOLD-0, both data and sleep
signals are set. This scenario is possible, as a data token can arrive in In before S is reset
– the register is then waiting to be changed to active mode. Due to the NMOS power-gating
in the first NOR (the transistor driven by S in Figure 3.24(b)), the internal node Q is not
driven by either Vdd or Gnd . Considering that the PUN/PDN are sized to achieve balanced
currents, the internal mode Q will tend to reach Vdd/2 through the P and N ON transistors
driving it. This dynamic behavior is not capable to change Q and compromise the template
functionality, but it will increase the register leakage current uselessly – an undesirable side
effect.
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Figure 4.1: Operation of the SCL register according its input and output values. The (Vdd/2)
end value of Q considers balanced sizing of PUN and PDN of the first NOR gate.

For super-threshold operation, this side effect is expected to be negligible, because
the leakage current is not able to provide enough voltage noise to disturb the output node.
However, for near-/sub-threshold operation, noise margins for voltage levels are short and
small voltage noise effects can set the output node to an unknown voltage value, possibly
compromising the logic level of downstream logic cells. Fortunately, this side effect can be
eliminated by simply removing the NMOS gating transistor, without changing the register
functionality. In fact, without the NMOS gating, the register implements a conventional RS
latch with two cross-coupled 2-input NORs, as Figure 4.2 illustrates. Moreover, the removal
of NMOS gating avoids the need of an additional inverter responsible for producing the
negated value of the input sleep signal S, further reducing area consumption.

RS Latch

In

S
Q

Q

(a)

SIn Q Q

(b)

Figure 4.2: A suggestion for a new SCL register – a conventional RS Latch using two cross-
coupled 2-input NORs: (a) gate-level design and (b) transistor-level schematic.
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4.2 Timing Constraint Issues in the SCL Template

Parsan et al. in [PSAA16] pinpoint that SCL brings throughput optimization, as the
template employs early completion to detect data and NULL tokens through the pipeline.
Indeed, the adoption of early completion brings this performance advantage as it performs
completion detection while data is propagated to the stage register. However, this brings
additional timing constraints that must be addressed to avoid indication of acknowledgement
without proper data propagation. Nonetheless, the analysis conducted in this work showed
that in its current form SCL can violate these timing constraints, as this Section shows. The
Section addresses a problem not covered in the original proposition of SCL, equates the
associated timing constraints qualitatively and quantitatively, shows a set of experiments
that demonstrate under which situations an SCL circuit can fail, and propose a solution to
dimensioning SCL pipelines to respect the raised constraints. Next, Section 4.3 proposes
a modification of SCL that mitigates the problems of the template and constitute a new
asynchronous circuit design template.

To start with, refer to the SCL pipeline in Figure 3.21. When a data token arrives at
an SCL pipeline stage input, the only logic block that processes this token is the completion
detector – the rest of the pipeline stage is in sleep mode. Consequently, the pipeline stage
has to wait for the completion detector to propagate its computation through the settable C-
element, which can then drive the sleep signal and awake the rest of the pipeline stage. In
other words, the SCL behavior implies that tokens have to propagate through the completion
detector before propagating to the pipeline stage itself, bringing a forward latency overhead.
In fact, this overhead was detected and already discussed in Section 3.9. The SCL use of
early completion brings new timing constraints that must be addressed to keep the imple-
mentation a QDI circuit. The idea to acknowledge the previous pipeline stage before fully
storing data token in another stage is what can compromise the template functionality. This
can happen if the previous pipeline stage resets before the register of the current pipeline
stage stores a valid data token.

The problem can be visualized in Figure 4.3, which focuses on the first two stages
of the SCL pipeline in Figure 3.21. Assume that Stage 1 receives valid data at its input and
CD1 detects it. Consequently, the inverted C-element C1 will eventually lower its output. At
this point, two concurrent sequences of events take place, as the output of C1 forks to two
paths:

1. Stage 1 sleep signal is disabled, awaking pipeline Stage 1 to store and process its
input data, from the output of Stage 0;

2. An acknowledge signal is sent to the previous pipeline stage (Stage 0), forcing it to
sleep and reset all its logic blocks to NULL (i.e. to spacers).
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If Stage 1 awakes before the reset process of Stage 0 takes place, register R1

should sample and store valid data, and the pipeline operates correctly. However, if Stage
0 is able to sleep and reset all its logic before Stage 1 wakes up, register R1 may not be
able to correctly store the new data. This possible functionality hazard implies that SCL
implementations must respect an timing constraint, and this was not covered in the template
original proposition. Another consequence of this hazard is that the race between signals
affecting the input of block R1 in Figure 4.3 may cause the output of this block to become
metastable, which can have catastrophic consequences for downstream and upstream logic.

Stage 2

S S

S

Stage 1

S S

S

Stage 0

S S

S

Stage 1

R1

S

CD1S

C1

Stage 0

R0

S

F0
S

CD0S

C0

WDsleep(1)

WDack(0)

WDsleep(0)

sleep_delay

wakeup_delay
WDdatapath(0)

Fork

Figure 4.3: A scheme for delay analysis of the SCL isochronic fork between two pipeline
stages.

From this analysis, it is possible to observe that there is a timing constraint between
the awaking of registers and the sleeping time of some logic blocks. In fact, recalling Sec-
tion 2.1, this constraint relies on the isochronicity of the fork in the output of the settable
inverted C-elements. Note that both branches include not only wire delay but gate delays,
which make this fork incompatible with the original isochronic fork definition. Fortunately,
the extended definitions proposed in [MM95] and [vBHP95] allow a more flexible analysis on
isochronic forks, making possible to assume that the circuit can maintain its QDI properties
whether the extended definition of the isochronic fork is respected. To more thoroughly un-
derstand this timing constraint, Figure 4.3 shows the two concurrent paths between Stage 0
and Stage 1 with a thick continuous red line and a dashed blue line. The red line represents
the delay path to wake up Stage 1 and incorporates three delay elements: a wire delay
WDsleep(1), the rise propagation delay of register R1 ↑ and the register hold time Rn_hold .
Hence, it is possible to indicate that the wake up delay of a Stage n is represented by:

wakeup_delay (n) = WDsleep(n) + Rn ↑ +Rn_hold (4.1)
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On the other hand, the dashed blue line represents the delay path to put Stage 0 to
sleep and incorporates four delay elements: (i) the wire delays WDack (0); (ii) WDsleep(0); (iii)
the propagation delay of the inverted C-element C0; (iv) the fall delay of the combinational
logic block F0 ↓; and (v) the wire delay WDdatapath(n). Note that, in this case, the propagation
delay of R0 is not considered. As both register and combinational logic are reset during the
sleep process, the combinational logic will reset its output independently of the delay of the
register. In that way, the sleep delay of a Stage n can be represented by:

sleep_delay (n) = WDack (n) + Cn + WDsleep(n) + Fn ↓ +WDdatapath(n) (4.2)

Finally, the timing constraint between pipeline stages can be computed by:

wakeup_delay (n) ≤ sleep_delay (n − 1) (4.3)

The Equation states that the wake up delay of pipeline stage n must be equal or lower than
the sleep delay of the previous pipeline stage (n−1). In this way, combining Equation 4.1 and
4.2, it is possible to determine which delay element of a delay path should be manipulated to
satisfy the timing constraint in Equation 4.3. This combination can be more easily observed
in Equation 4.4.

(WDsleep(n)+Rn ↑ +Rn_hold ) ≤ (WDack (n−1)+Cn−1 +WDsleep(n−1)+Fn−1 ↓ +WDdatapath(n−1))
(4.4)

This Equation is the same as Equation 4.3 but considers all delay elements values of the
fork.

In case the circuit does not respect the isochronic fork, it is necessary to manipulate
the delay elements of the fork, increasing (or decreasing) one or more delays. This could
be done by loading timing constraints into an EDA tool, to add (or optimize) delay elements
of the fork. However, it is important to understand the trade-offs that could arise as more
(fewer) delay elements are added to the fork paths. Hence, each delay element is analyzed
individually to point the negative and positive aspects of increasing (decreasing) its value.
We analyze two alternatives to satisfy the timing constraint proposed in Equation 4.3: (i)
increasing delay values of the sleep_delay (n − 1); and (ii) decreasing delay values of the
wakeup_delay (n).

Focusing on sleep_delay (n − 1), consider increasing the wire delay WDack (n − 1),
which connects the C-elements. This can be a valid option at the cost of a higher ACK prop-
agation delay. This same trade-off happens whether the delay propagation of the previous
stage C-element (Cn−1) is increased. Another option is to increase the sleep delay of the
combinational block Fn−1 to reset its output. Fn−1 is out of the ACK path and will not affect the
ACK propagation delay. However, this implies that the sleep logic in the SCL gates should be
resized and, consequently, will affect the datapath delay. Note that the same effect happens
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whether WDdatapath is increased. As a last option, the WDsleep(n − 1) could be increased.
In this case, neither the ACK propagation delay nor the datapath delay would be affected.
Unfortunately, WDsleep(n) composes the (wakeup_delay (n − 1)) and its increase may also
affect the isochronic forks of previous stages. For instance, if WDsleep(n − 1) is increased to
satisfy wakeup_delay (n) ≤ sleep_delay (n− 1), it also increases wakeup_delay (n− 1). This
increase may affect the previous isocrohonic fork wakeup_delay (n−1) ≤ sleep_delay (n−2),
requiring more delay manipulations in previous isochronic forks and causing a ripple perfor-
mance degradation effect on previous stages. All these points suggest that manipulating
sleep_delay (n− 1) brings performance trade-offs, specially when interdependent delay ele-
ments between fork paths are manipulated.

The second alternative is to decrease the delay value of wakeup_delay (n). In
this case, there are only two options: decrease WDsleep(n) or/and Rn. As before, ma-
nipulating WDsleep(n) may be a complex option, due to its interdependence with the fork
paths. Decreasing WDsleep(n) will not only decrease wakeup_delay (n) but also decrease
sleep_delay (n), wherein the latter must be a value higher than wakeup_delay (n + 1). This
manipulation forces the next stage isochronic forks to have lower delay values and may not
be achievable if the next fork paths cannot be optimized. Register Rn could be optimized
whether multiple drive strengths are available in order to decrease the register delay.

Other possible problems while operating with the SCL isochronic fork are the issues
caused by current variations, which imply that only guaranteeing that wakeup_delay (n) ≈
sleep_delay (n − 1) may not be enough. The delays inside the circuit change arbitrarily due
to current variations and the isochronic fork may not respect the timing constraint defined by
Equation 4.3 if delay variations are too large. This implies that it is necessary to consider a
margin between delay paths to guarantee the functionality of the circuit, even with a certain
amount of delay variations on its logic and wires. In order to support current variations,
Equation 4.5 represents the same constraint as Equation 4.3, but it adds a margin Varmargin

to the wakeup_delay (n) branch.

wakeup_delay (n) + Varmargin ≤ sleep_delay (n − 1) (4.5)

In super-threshold operation, current variations can be represented by a Gaussian
distribution N(µ,σ), where µ represents the mean value of the distribution and σ is the stan-
dard deviation. Frequently the confidence interval is defined by a n × σ distance from µ,
which can define Varmargin in Equation 4.5. According to [GAN12], using µ ± 3σ as end
points defines a confidence internal that covers all samples with probability of 99.7%. For
sub-threshold operation, however, the relation of end points with the standard deviation is not
straightforward. As sub-threshold currents have an exponential dependency on the threshold
voltage, the sub-threshold current variations translate to a log-normal distribution [LAHG12].
In that way, it would be inaccurate the usage of a confidence interval such as µ ± 3σ to
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Figure 4.4: Example of correlation of µ ± 3σ confidence interval for sub-threshold currents
assuming a Gaussian distribution of transformed current samples. Extracted from [GAN12].

determine the end points. Fortunately, it is possible to overcome this issue by transforming
a log-normal distribution to a Gaussian distribution, allowing correlation between n × σ with
a log-normal confidence interval. Considering a 3σ range, the following approach can be
adopted [GAN12]:

1. Any random log-normal distribution X with samples xi is transformed to a random
Gaussian distribution Y (µ,σ) with samples yi by applying yi = log10(xi);

2. The confidence interval of Y (µ,σ) with probability of 99.73% is [µ− 3σ,µ + 3σ];

3. Mapping the end points of Y (µ,σ) to X , Equation 4.6 shows the corresponding confi-
dence interval of X .

Xµ±3σ = 10µ±3σ, where µ =
∑

log10(xi)
n

; σ2 =
∑

(log10(xi)− µ)2

n − 1
(4.6)

Figure 4.4 illustrates the correlation between a log-normal distribution with its cor-
responding transformed Gaussian distribution for MOS transistor currents. Note that current
variations directly impact the performance of gates. Thus, if currents vary according to a
log-normal probability distribution, the performance of gates will vary in the same way.
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4.2.1 Experiments

The following experiments examine timing constraint discussed in this section.
Their objective is to test the feasibility and overheads while implementing SCL circuits. The
experiments present a set of assumptions to correlate logic and wire delays. Also, they
consider operation parameters such as technology nodes and supply voltage. Moreover,
the experiments use Monte Carlo simulation to take into account within-die variations, i.e.
process corner mismatch.

In this analysis, two regular SCL pipeline stages are considered. They are se-
quentially connected as highlighted in Figure 4.3. As the fork comprises several delay
components, some assumptions were considered to simplify the analysis. First, all exist-
ing wire delays in the fork are assumed equal (WDsleep(n) = WDack (n− 1) = WDsleep(n− 1) =
WDdatapath(n − 1)). Second, all delays in the fork are normalized to the delay of the SCL
sleep logic (WDnorm = WD/Fn−1 ↓, Rnorm = Rn ↑ /Fn−1 ↓, Cnorm = Cn−1/Fn−1 ↓, Fnorm = Fn−1 ↓
/Fn−1 ↓= 1), which is always implemented as a NOR gate in the output of all SCL logic –
see Figure 3.24 and Figure 3.22. This normalization allows to relate all fork delays, includ-
ing gates and wires. The analysis considers three different technology nodes: 180nm bulk
CMOS, 65nm bulk CMOS and 28nm FDSOI-CMOS. Fn−1 ↓, Rn ↑ and Cn−1 are implemented
in three different technology nodes. Nominal and sub-threshold operation (30% of nominal
supply voltage) are considered, as well as delay variations due to process corner mismatch.
Considering nominal and sub-threshold operation allows to determine the delay relations
among logic gates (Rnorm and Cnorm) and the delay variation Varmargin in both supply voltages.
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Figure 4.5: Results for Monte Carlo simulations for delay variation analysis: (a) represents
the propagation delay variation of a SCL register. All distributions are normalized to the
mean, three process corners are considered (FF, TT, SS) as well as two supply voltages
(nominal and sub-threshold). (b) indicates the interval distance 3σ of the distributions in (a).



70

Figure 4.5(a) illustrates the propagation delay variation of the SCL register imple-
mented when targeting the 65nm bulk CMOS technology. Results were obtained from 1,000
Monte Carlo simulations using three different process corners (SS, TT and FF) and two sup-
ply voltages (1V and 0.3V). As expected, the SCL register presents a higher delay variation
in sub-threshold than under nominal operation and corners with the same supply voltage
display small differences among them. These comparisons can be seen in Figure 4.5(b),
which shows the confidence distance 3σ of the distributions in Figure 4.5(a). While the three
process corners in nominal operation present a distance around 10% of the mean value,
the distance in sub-threshold reaches around 35% and 40%. This higher delay variation
implies that if the isochronic fork is targeted to sub-threshold operation, higher Varmargin must
be considered to the isochronic fork.
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Figure 4.6: Required Delay Element (DE) for three technology nodes: 180nm bulk CMOS,
65nm bulk CMOS and 28nm FDSOI CMOS. Axis X represents the delay value of all wires
in the fork (WDsleep, WDack , WDsleep, WDdatapath) and axis Y indicates the required DE. (a)
shows results in nominal operation and (b) in sub-threshold operation. Note that both axes
are normalized to the SCL sleep logic delay.

Having established the delay variation parameters of each target technology and
the relationship among all logic delays, Figure 4.6(a) and (b) indicate when a Delay Element
(DE) is required in nominal and sub-threshold operation, respectively, depending on the wire
delay contribution in the isochronic fork. Note that both axes are normalized to the SCL
sleep logic delay. The "DE required" region covers positive values of the delay element,
while "No DE required" region covers negative values. If the DE value is negative, the fork is
guaranteed to be isochronic. Otherwise, a DE must be inserted according to the normalized
DE value. For 180nm, the fork will easily fulfill the isochronic constraint under nominal supply.
If the wires have a delay which is 40% the delay of the SCL sleep logic or more, no DE is
required. Now, a lesser wire delay contribution (≤ 40%) in the fork requires the addition of a
DE. Fortunately, the overheads are low, as the normalized DE value only reaches 1. In other
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words, adding one or a couple of buffers in the fork would guarantee the fork is isochronic.
Regarding 65nm and FDSOI 28nm technology nodes under nominal operation, the required
margin increases slightly. In these cases, no DE is required if wires have the same or higher
delay than the SCL sleep logic. This type of scenario is feasible, since the delay of wires
has historically not decreased as much as the delay of gates in recent technology nodes. In
fact, [HE00] points out that wire delays can exceed gate delays in several critical paths of
benchmark circuits and this trend increases with circuit size. However, if the fork is physically
composed of small wires only, a DE is required and its implementation may comprise multiple
buffers.

As the supply voltage reaches the sub-threshold region, Figure 4.6(b) suggests that
significantly higher margins are required to guarantee the fork isochronicity. Considering the
180nm technology node, for instance, the isochronic fork requires the insertion of a DE if
the wire delays are 3× or less smaller than the SCL sleep logic delay. For 65nm and 28nm,
wire delays must be around 4× and 5× smaller, respectively. This pinpoints that the SCL
template will hardly respect the isochronic fork constraint without the insertion of DEs in sub-
threshold operation. In addition, the implementation of a DE in sub-threshold operation can
comprise a high number of buffers, increasing area overhead.

4.3 Section Suppressed for the Purpose of Intellectual Property Protection

4.4 Section Suppressed for the Purpose of Intellectual Property Protection
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5. In-Depth Evaluation of QDI Templates for Voltage Scaling

Chapter 3 of this Dissertation investigated several asynchronous QDI templates,
with target on their use for operation under voltage scaling. A subset of these templates was
selected and evaluated, qualitatively and quantitatively. Results showed that the SCL tem-
plate [PSAA16] is one of the most adequate compromises to develop the target applications.

(The rest of this Section was Suppressed for the Purpose of Intellectual Property
Protection.)

5.1 The ASCEnD Cell Design Flow

The ASCEnD Design Flow [MNM+14] is an automated environment specialized
to generate asynchronous standard cell libraries. The flow comprises commercial and in-
house tools. The latter were developed in recent years. ASCEnD has already been used
to develop libraries containing C-elements, mutexes, NCL/NCL+ gates, PCHB cells and is
under constant update by the GAPH group. Figure 5.1 is an overview of the ASCEnD Design
Flow. Currently, this flow includes four main steps: Cell Library Template (Definition), Cell
Sizing, Cell Layout and Cell Characterization. These steps are connected through in-house
scripts that provide data conversion, adaptation and controls to facilitate the tasks taken by
the designer throughout the entire flow1.

The first flow step helps in the specification of a Cell Library Template. This tem-
plate provides information such as the target standard cell format (cell height, position of
supply rails, etc.) and library/technology parameters. Library/technology parameters are
defined by an initial configuration file, which contains basic information such as technology
files, target supply voltages, maximum NMOS/PMOS widths, available driving strengths,
etc. In-house scripts retrieve information from this configuration file to generate input files
for each design flow step, allowing fast transition between these. The target standard cells
are individually specified through template files using the SPICE language added with vari-
ables and macros. These variables and macros allow the designer to define sizing, layout
and characterization information that will be used by further steps in ASCEnD. As an exam-
ple, Figure 5.2(a) shows the cell template of an NCL TH22 gate – Figure 5.2(b) illustrates
the equivalent schematic of the example cell template. Note that this gate implements the
functional behavior of a 2-input C-element. The circuit is described as a traditional SPICE
SUBCKT with additional comment lines and variables for specific transistor parameters. In
ASCEnD, these variables are responsible for indicating which transistors will be dimensioned

1The work developed in this Chapter took advantage of the two first flow steps (Cell Library Template and
Cell Sizing), which are detailed here. For more information regarding these and the remaining flow steps, the
reader should refer to [Mor16].
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Figure 5.1: Overview of the ASCEnD Design Flow.

during the sizing step and which transistors must employ a special sizing strategy (e.g. for
transistors on feedback lines). Currently, cell templates allow variables on transistor width,
finger and multiplier – transistor length is fixed and typically set to the minimum length value
allowed by the underlying technology. After sizing, all variables are replaced by fixed values.
The additional comment lines (see lower left box in Figure 5.2) define the ASCEnD macros
that are used through the entire design flow by both in-house tools and scripts – refer to
Table 5.1 for a list of the available ASCEnD macros. Basically, ASCEnD macros indicate
cell information that cannot be explicitly defined in or inferred from the SPICE description.
For instance, considering the NCL TH22 gate in Figure 5.2, it is not trivial to identify the
gate threshold value by parsing the cell description. On the other hand, the threshold value
of an NCL gate can be easily defined by .ROGen:THR <integer>. Having specified all cell
templates and library/technology parameters, an in-house script creates input files for the
next flow step: Cell Sizing.

The Cell Sizing step of ASCEnD employs two in-house tools (ROGen and CeS)
and requires the use of an electrical simulator2. ROGen uses the input files provided in
the previous step to generate a simulation environment, which extracts power and perfor-
mance information for all target cells. This simulation environment uses the configurations
provided by the user to vary transistor sizes and collect performance figures during sim-

2Currently, Cell Sizing only supports the Cadence SPECTRE Simulator.
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Figure 5.2: Cell template for an NCL TH22 gate (a 2-input C-element): (a) SPICE descrip-
tion and (b) equivalent schematic. ROGen stands for Ring Oscillator Generator, one of the
ASCEnD sizing tools. LiChEn stands for Library Characterization Environment, the flow
characterization tool [Mor16].

ulation. Transistor sizes are exhaustively varied according to the specified minimum and
maximum dimensions for PMOS and NMOS transistors in steps defined by the designer,
all of which are specified in the ASCEnD library/technology configuration file. For these
variations, the tool combines all NMOS and PMOS dimensions available. Having the per-
formance and power information of all sizing possibilities, CeS (the Cell Specifier tool) can
read the output file provided by the ROGen simulation and define the best transistor sizing
according to the provided cost function. The designer has a wide range of parameters to
define cost functions, such as propagation delays (prop_rise/prop_fall), transition delays
(tran_rise/tran_fall), dynamic power (dynpwr ) and leakage power (leakpwr ). ASCEnD has
available some predefined cost functions. Currently, three such cost functions are available:
high performance (Equation 5.1), energy efficiency (Equation 5.2) and low power (Equa-
tion 5.3).

EQHP =
1

prop_rise + prop_fall
(5.1)

EQEFF =
1

(prop_rise + prop_fall)× dynpwr
(5.2)

EQLP =
1

dynpwr
(5.3)

(The rest of this Section was Suppressed for the Purpose of Intellectual Property
Protection.)
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Table 5.1: ASCEnD macros for cell template specification.

Macro Description Usage

.ROGen:THR Threshold value of a threshold logic.
This macro is required by C-elements and NCL gates. .ROGen:THR <integer>

.ROGen:IN Number of Inputs. .ROGen:IN <integer>

.ROGen:PIN
Pin direction definition (input, output or supply).
Follows the same sequence as defined in the SUBCKT.
Available types: in, out, gnd, gnds, vdd, vdds

.ROGen:PIN <set_of_pins>

.ROGen:PTC Handshake protocol (only four-phase). .ROGen:PTC [RTZ|RTO]

.ROGen:INV
Output Unatess.
Positive = 0
Negative = 1

.ROGen:INV [0|1]

.ROGen:CONF Additional logic (reset and/or set). .ROGen:CONF [NONE|RST|SET]

.ROGen:RST
Reset activation.
Active-low = 0
High-low = 1

.ROGen:RST [0|1]

.ROGen:SET
Set activation.
Active-low = 0
High-low = 1

.ROGen:SET [0|1]

.LiChEn:EQ Output equation. .LiChEn:EQ < equation >
Example: .LiChEn:EQ Q=(A*B)+(Q*A)+(Q*B)

Table 5.2: Suppressed for the Purpose of Intellectual Property Protection.

Thres. Logic SCL SCL+ XXXX YYYY
TH22 X X X X

5.2 Section Suppressed for the Purpose of Intellectual Property Protection

5.3 Section Suppressed for the Purpose of Intellectual Property Protection

5.4 Section Suppressed for the Purpose of Intellectual Property Protection
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6. Contributions, Conclusions and Further Work

This Dissertation contributed in several topics to enhance the research of asyn-
chronous circuit design, with specific focus on voltage scaling operation. A first contribution
covers comparing bulk and FDSOI CMOS technologies on voltage scaling scenarios, iden-
tifying the main trade-offs of each technology type. Using 65nm Bulk CMOS and 28nm
FDSOI technologies, the evaluation comprises a set of basic CMOS logic gates (NAND and
NOR) to retrieve performance and power information. Results indicate that traditional bulk
CMOS technologies are still a feasible option for voltage scaling, albeit FDSOI technologies
can bring large energy efficiency benefits in low-voltage scenarios. In addition, a brief dis-
cussion reinforces the common knowledge that FDSOI technologies are more commercially
appropriate for ultra-low power applications than FinFET technologies. Its lower fabrication
cost and characteristics more similar to traditional technologies encourage foundries to fo-
cus on FDSOI for lower power and/or lower cost applications, making it a suitable option for
IoT and similar markets.

This Dissertation also contributes to the asynchronous research, by reviewing sev-
eral QDI templates proposed in the literature, analyzing their compatibility to voltage scaling
scenarios and low and ultra-low power applications. To understand the benefits of each
template, the QDI analysis advanced here covers implementation aspects, such as basic
logic blocks, pipeline and handshaking structure, and operation behavior. The template be-
havior is addressed with examples of the propagation of data/NULL tokens through a linear
pipeline, and also with marked graphs, pinpointing which transition set composes the tem-
plate forward and backward latencies. Combining all aspects covered in this analysis gives a
solid basis to discuss how each QDI template can effectively benefit from voltage scaling us-
age and indicate possible implementation problems. This qualitative discussion encouraged
the Author to compare a set of QDI templates (NCL, NCL+, ASVHB and SCL) using a case
study circuit, leading to elaborate comparisons among templates. At the end of this analysis,
the Author could provide a set of basic conclusions: (i) the ASVHB provides throughput im-
provement due to its fine-grained pipeline structure, albeit its implementation brings power
overheads; (ii) both NCL+ and SCL provide better leakage power reduction, which is inter-
esting for ultra-low power applications; (iii) as NCL+ employs a different four-phase protocol
– the RTO protocol – it would be appropriate to combine the same protocol with SCL, gener-
ating a RTO-based variation of the SCL template: the SCL+ template; (iv) the SCL template
is indicated as a suitable alternative to implement low and ultra-low power circuits, due to
the power and area consumption reductions it enables. Nonetheless, the in-depth analysis
of SCL also indicates that this template has performance and implementation issues, sug-
gesting that the SCL template still needs improvement to enable its use for voltage scaling
applications.
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The next contribution focuses on the proposal of three main modifications to the
SCL template. The first one covers a modification to the original SCL register, avoiding
the use of a NMOS gating. Second, the SCL completion detection scheme analysis re-
veals a major weakness, highlighting that use of early completion negatively affects the
template performance and worse than this, implies a timing constraint in the acknowledge-
ment/sleeping structure, which can potentially lead to violations of the QDI main principle.
Due to this timing constraint and its complexity, the Author reviewed the concept of isochronic
fork, which is stated as the only class of timing restriction imposed in QDI designs. The re-
view brought about a more flexible definition of isochronic forks, making the SCL timing
constraint compatible with the extended isochronic fork definition. Having this compatibility,
the SCL template can keep its status as a QDI template, considering that the design respects
the imposed timing constraint. Still regarding this same topic, the Dissertation analyzed the
SCL timing constraint along three technology nodes, to determine the relative criticality of
the SCL timing constraint in current commercial nodes. Estimating logic and wire delays,
the experiments suggests that, under nominal supply operation, the SCL timing constraint is
easily solved and avoids extra overheads. In sub-threshold operation, however, PVT varia-
tions have more impact on the circuit, implying that a larger margin is required to guarantee
that the design respects the SCL timing constraint.

(The rest of this Section was Suppressed for the Purpose of Intellectual Property
Protection.)

6.1 Future Work

(Section Modified for the Purpose of Intellectual Property Protection)

In recent years, the GAPH group gained ASIC prototyping experience. This fact
motivated the Author to specify and develop an asynchronous QDI standard cell library for
the TSMC 180nm bulk CMOS technology to support the design of circuits based asyn-
chronous templates. The library is currently under development. As a long term objective,
this library provides prototyping support to the group evaluate multiple QDI templates on sil-
icon. This action has the potential to attract graduate and undergraduate students to design
asynchronous circuits, from specification to tape-out.

Regarding the ASCEnD Design Flow, the sizing step can be improved and ex-
tended. Currently, the sizing process is executed by ROGen + SPECTRE tools, which
exhaustively test all possible sizing options according to the maximum/minimum transis-
tor width and sizing steps imposed by the designer. During the development of this work, it
was detected that having a large number of simulation iterations with SPECTRE can cause
a significant execution time increase. This has consequently forced the use of larger siz-
ing steps and closer maximum/minimum values, reducing the precision of the ASCEnD flow



78

sizing step. Considering that the Wp/Wn ratio between PMOS and NMOS transistors are
higher for sub-threshold operation [BLR10], it is necessary to optimize the sizing step, al-
lowing the obtainment of more accurate results. Because of that, the Author considers two
main approaches that can lead to improvement of the ASCEnD Design Flow:

• Flexible sizing step: allows the sizing process to cover a wide range of options with a
larger sizing step. As the sizing process reaches near the optimum results, the sizing
step is decreased, increasing the precision of the final sizing result;

• Sub-threshold sizing by methods like the one proposed by Liu and Ashouei [LAHG12]:
this implies in changing the sizing process by an analytical and process-aware sizing
strategy with target on sub-threshold operation.

It is important to highlight that parts of the work developed in this Dissertation were
already published in the 8th IEEE Latin American Symposium on Circuits and Systems (LAS-
CAS’17). Due to this paper quality, its Authors were invited to submit an extended version
of this for publication in the IEEE Transactions on Circuit and Systems I (TCAS-I). Due to an
ongoing patent filing process, no further text production has been performed so far.
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Figure A.1: VS analysis on a 4-input NAND gate covering delay, energy, leakage, EDP and
LDP results.
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Figure A.2: VS analysis on a 2-input NOR gate covering delay, energy, leakage, EDP and
LDP results.
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Figure A.3: VS analysis on a 4-input NOR gate covering delay, energy, leakage, EDP and
LDP results.
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