
ASSyUCE - An Exploratory Environment for Finite State Machines

Ney Laert Vilar CALAZANS & Andr�e Duque MADEIRA

Instituto de Inform�atica - PUCRS
Av. Ipiranga, 6681 - 90619-900 - Porto Alegre - RS - BRAZIL
Phone: +55 (51) 339-1511 Ext: 3211 Fax: +55 (51) 339-1564
e-mail addresses: (calazans, madeira)@andros.inf.pucrs.br

Abstract

This paper describes ASSyUCE, an exploratory environment for Finite State Machines. The environment
is intended as an aid in the �eld of digital systems design with research and educational purposes in mind.
Currently, ASSyUCE is already applicable as a set of computer aided design tools for the synthesis of digital
systems. We describe the general structure of the environment, stressing its use as an educational tool. We
also present the available aids for performing state minimization, and simultaneous state assignment and state
minimization. Next, we discuss ongoing works in the application of the same formal concepts underlying the
available tools to the solution of other hardware design problems, like functional decomposition and asynchronous
design. Benchmark results are presented comparing ASSyUCE component programs to available state of the
art research tools.

Keywords: digital systems, computer aided design, �nite state machines.

1 Introduction

Finite State Machines (fsms) are widely employed in Computer Science in general, and in Digital Systems Design
in particular. Indeed, any digital system can be described in the logic level of abstraction using this model. Such
description can be synthesized as a digital circuit, through the use of well-known logic design techniques for
sequential circuits, e.g. those described in textbooks like [12].

However, some facts prevent this approach to be useful in building state of the art digital systems. First,
present Very Large Scale Integration (vlsi) digital circuits are typically composed by a number of electronic
components in the order of 106 to 107, and should thus be represented by fsms counting maybe as many as 10500

states[28]. Of course, applying logic design techniques to implement such fsms in hardware is unthinkable, even
if powerful supercomputers are used to accomplish the design task. Second, since fsms are a general model,
its e�ciency to represent hardware modules that display some regular internal organization (like datapaths,
register �les and memories) is very low compared to speci�cally designed models. The only way to deal with the
�rst fact is to rely upon the extensive use of hierarchical decomposition of the design process. This leads to the
proposition of higher level models such as Communicating fsms[11] and Communicating Sequential Processes[13].
The solution to the second problem normally relies on the use of speci�c models whenever they are applicable,
leaving the fsm model to the design of unstructured hardware modules only.

Even with the above mentioned restrictions to its use, fsms are by far the most useful model for describing
many important classes of hardware modules like sequence detectors, embedded controllers, industrial process
controllers and processor and plant control units[6]. Thus, we consider justi�ed to propose an exploratory
environment for manipulating fsms in view of its implementation in hardware. While stemming directly from
research work in integrated circuits (ics) design [3, 5], the ASSyUCE environment is evolving to become both
a research and educational tool for digital systems at undergraduate and graduate levels.

The rest of the paper is organized as follows. The next Section states the addressed problem and gives an
overview of the ASSyUCE environment characteristics, including a brief description of a �rst tool, XASSyUCE,
designed to act as a textual/graphical interactive interface to the environment. Closing this Section, there is
a discussion on the current work in enhancing the educational characteristics of ASSyUCE. Section 3 presents
the internal structure of ASSyUCE, together with some of the main concepts used in the construction of the
research tools integrated in the environment. The discussion stresses the generality of the underlying formal
framework. The same Section comprises a brief discussion of the two currently available research tools, a heuristic

encoder/minimizer for fsms, and an exact state minimizer. Also in this Section is an overview of ongoing work
in present and new research tools of the environment. Section 4 quantitatively compares our research tools to
others available in the public domain. In fact, these three sections present the environment separately in its
two aspects, as an educational tool (Section 2) and as a research resource (Sections 3 and 4). Finally, Section 5
presents some conclusions on the use and implementation of the environment.

2 The ASSyUCE Environment

2.1 The fsm Design Problem

An fsm is an abstract model that can be formally described as follows:

De�nition 1 (Finite State Machine) A �nite state machine (fsm) is an algebraic structure of the form
A = hI; S;O; �; �i where:

1. I = fip�1; ip�2; : : : ; i0g is the input alphabet, S = fsq�1; sq�2; : : : ; s0g is the �nite state set, and
O = for�1; or�2; : : : ; o0g is the output alphabet;

2. � is a discrete function: � : I � S �! S; called next state or transition function of A; given a pair
(ij ; sk) 2 I � S, if �(ij ; sk) is speci�ed, sl = �(ij ; sk) is the next state of the fsm A corresponding to the
input ij and to the present state sk;

3. � is a discrete function: � : I � S �! O; called output function of A; given a pair (ij ; sk) 2 I � S, if
�(ij ; sk) is speci�ed, om = �(ij ; sk) is the output of the fsm A corresponding to the input ij and to the
present state sk;

The pair (�(ij ; sk); �(ij ; sk)) is called a transition of fsm A. If both, � and � are completely speci�ed functions,
A is called a Completely Speci�ed fsm (csfsm), otherwise A is called an Incompletely Speci�ed fsm (isfsm).

In order to implement a digital system starting from an fsm description, several steps are required. Each
of these steps consists normally in solving some complex design optimization problem, whose solution leads
to the best implementation in hardware of the fsm functionality. Hardware implementations are considered
optimal if they satisfy one or more objective criteria. These criteria most often conict with each other. The
most commonly agreed relevant criteria are speed, silicon area, power dissipation and testability. If we restrict
attention to the logic level of abstraction only, the most important design problems related to fsms are:

� decomposition - given an fsm, break it into a set of smaller, communicating fsms whose input/output
behavior is equivalent to or compatible with the original description, and such that from the resulting
network we can obtain the best hardware implementation;

� state minimization or reduction - given an fsm A, �nd another equivalent or compatible fsm B, but which
has the set of states SB with the least cardinality;

� input, state and output assignment or encoding - given a symbolic fsm, �nd a binary encoding for the sets
of inputs, states and outputs (I , S, O), generating an encoded fsm; the encoding must be such that the
physical implementation is the best and, at the same time, equivalent to or compatible with the symbolic
description;

� mapping or binding - given an encoded fsm, the kind of hardware device to use in the implementation
and a library of hardware modules supported by the device, translate the fsm description into a set of
interconnected modules that is equivalent to or compatible with the encoded fsm, and which satis�es
optimality criteria.

2.2 Environment Basic Principles

Engineering and Computer Science students are taught to deal with fsm logic design representations such as
state transition graphs and tables (STGs/STTs), truth tables and Karnaugh maps. However, production tools
for fsm design are never based on these, due to their associated computational complexity.

Production and research Computer Aided Design (cad) tools make available very complex and very e�cient
methods and representations to solve each fsm hardware design problem. Although all such tools allow automatic

execution, the best designs can only be obtained after careful experimentation with each tool, iteratively using
distinct parameterizations. This can only be achieved if the concepts underlying each tool are well understood.
More critical than the designer role is that of the computer scientist, which must be able to enhance and/or
propose alternate or missing design methods. Their task is further complicated by the fact that the design tools
are normally inserted inside a commercial cad system framework. These frameworks contain sometimes more
than a hundred tightly coupled tools, and the design techniques used by each tool are considered as intellectual
property, i.e. are not publicly available.

Training students to become clever tool users and tool designers is a hard task, since each fsm design problem
implies mastering both, numerous formal concepts and convoluted data structures with associated manipulation
algorithms.

As an example, let us consider the problem of performing fsm state minimization, shown by Peeger to be
NP-complete in the general case of isfsms[22] (this is the model we assume here). The mathematical concepts
that need to be mastered include equivalence and compatibility classes, set covering and set closure. From these,
it is necessary to develop notions such as state compatibility, compatibility classes of states, prime compatibility
classes and state class sets[8]. Then, adequate data structures and techniques must be sought to develop state
compatibility analysis, and �nding the minimum cardinality closed cover of compatibility classes of states.
Complex techniques like binate covering were recently proposed for e�ciently minimizing large fsms[9], and this
adds to harden the understanding of the design problem resolution.

The main objective of developing ASSyUCE as an educational resource is to provide an environment that
signi�cantly increases the controllability and observability of state of the art algorithms that implement the
solution of fsm design optimization problems. This is obtained in ASSyUCE by allowing step by step execution
coupled with aids to inspect data generated and manipulated in each step, either in qualitative or in quantitative
form. For instance, using ASSyUCE, a user may choose to execute state minimization of some fsm. Alternately,
he may read in the fsm description, perform state compatibility analysis and then, based on the state structure
and quantitative data obtained from this step, decide for the setting of some speci�c optimization options for
the following steps of the state minimization procedure.

Both commercial and academic environments for digital systems design already exist. Examples are SIS, a
research environment developed at the University of Berkeley[25] and the educational environment proposed at
the University of Arizona, also well-known[19]. However, our proposition di�ers from both examples, as will be
depicted in the following Sections.

2.3 The Environment Interface

The ASSyUCE environment provides a framework where to integrate new design tools in a form adequate to
use them with teaching purposes. It comprises an interactive, textual/graphics interface with an execution shell
accepting commands. The shell allows the execution of command scripts, so that using a combination of batch
and on-line commands is possible.

The philosophy underlying the interface is to provide either �ne-grained and coarse-grained interaction. In
�ne-grained interaction, each atomic command is a single transformation of data, such as state compatibility
analysis or input constraints generation. At each step, the user can visualize results of the computation performed
up to that moment and decide what to do next. Flags that control the execution of �ne-grained commands can be
set at any moment, provided their settings were not used in previous commands. In coarse-grained interaction,
commands can represent sets of �ne-grained commands or some design tool execution with speci�c parameters.

Commands can be classi�ed in three groups:

� input/output - for reading and writing �les, including the input and execution of scripts;

� status manipulation - used to visualize results and setting ags to control execution of some design tool
step;

� fsm manipulation commands - employed to execute some design tool step or some analysis step.

The execution of commands and setting of ags is controlled through the use of dependency graphs to avoid
running commands which require execution of other commands not issued yet or setting ags after having used
the previous settings. Figure 1 shows a sample screen of the XASSyUCE program[26] that implements the
environment interface after the execution of commands for loading and listing an fsm in the kiss2[7] format.

XASSyUCE was implemented using a mix of tools, Tcl/TK[20] for graphics and the shell, and C++ and
the LEDA class library [17] for implementing computationally intensive tasks.

Figure 1: Sample Screen of XASSyUCE

2.4 Ongoing and Future Work

XASSyUCE already comprises several capabilities, as described in [26]. However, we are working in improving
the user-friendliness and functionality of the interface. Future versions will make available the following set of
features:

� modular addition of either new tools or new algorithms inside some tool already in the environment;

� enhanced graphical display of data structures, execution traces and results;

� script on-line generation using background log of commands;

� data exchanging capability with XSIS, the graphical interface to SIS;

The interface is already operational and is used in Computer Science graduate courses. With an enhanced
version, we shall introduce it in undergraduate laboratory courses as well. As has happened in graduate courses,
we intend to employ the teaching experience acquired to further the implementation of the environment.

3 ASSyUCE Internal Structure and Design Tools

Behind the proposal of the ASSyUCE environment there are several original research results. The most rele-
vant of these is that the whole process of logic synthesis of fsms can be based upon a single, generalized prob-
lem statement, called Boolean Constrained Encoding (BCE)[4]. Indeed, several authors have already treated
decomposition[11], mapping[18] and encoding[23] using restricted versions of BCE. One of the authors proposed
a technique to simultaneously addressing both, the state minimization and state assignment of fsms[5].

The internal structure of ASSyUCE is depicted in Figure 2. It is centered around a uni�ed framework that
can contain any instance of each fsm design problem described by means of design constraints sets. In order
to represent design constraints of several distinct problems, we use pseudo-dichotomies, an algebraic structure
based on the mathematical concept of partitions, proposed in [3]. The concept of pseudo-dichotomy is at the
same time simple and powerful. Informally, a pseudo-dichotomy is nothing but a pair formed by a set and a
function. The set is a two-block partition of a subset of a set S, and the function tells the conditions under which
any encoding satis�es or violates the pseudo-dichotomy. Pseudo-dichotomies can support the representation of
virtually all constraints involved in fsm design problems.

Encoding
Problem

Constraints
Modeling

Framework
Creation

Encoder
Encoding
Solution

Satisfaction Violation

F_l F_g

Unified Framework F

Figure 2: The internal structure of the ASSyUCE environment

As an overall strategy for solving fsm design problems in ASSyUCE, a design tool starts by translating
the problem statement into a set of pseudo-dichotomies through the use of modeling techniques proper to the
speci�c problem. After this step, the problem has been expressed and inserted in the uni�ed framework of
pseudo-dichotomies and is amenable to treatment by a single, general encoder, that obtains the �nal solution
through the use of e�cient constraint satisfaction techniques.

Note that the framework is employed by the encoder to guide the problem solution. Ensuring that global
constraints (inside Fg) are never violated, guarantees correction of the problem solution, while ensuring that
local constraints (inside Fl) are satis�ed guarantees the optimality of the solution to some extent. More details
on the uni�ed framework, such as the formal de�nition of local and global constraints, and a discussion on how
speci�c problem constraints are mapped to these can be found in [4].

3.1 Heuristic State Minimizer/Encoder

Traditionally, state minimization (sm) and state assignment (sa) are separate procedures of fsm logic synthesis,
but using such a serial strategy may prevent the obtainment of optimal state assignments [10, 16]. We have
proposed a method to address the problem of assigning codes to states of an fsm such that state minimization is
taken into account during the encoding process, in what we call a simultaneous strategy[5, 1, 15]. Our approach
allows creating incompletely speci�ed encodings for the states in the original description. The subsequent
combinational logic minimization step can, in this way, merge states such that an implicit state minimization
step is performed.

The base of the method is a set of theoretical �ndings on the relationship between the sm and sa problems that
were �rst described in [3, 4]. These problems were analyzed and each one was reduced to a set of constraints.
The relationship among these constraint classes was established, and an encoding method considering both
constraint classes were proposed and implemented as a computer program. This tool was called ASSyUCE and
the ideas on it were extended to the proposition of the ASSyUCE environment.

For example, consider an fsm where a pair of states is equivalent or compatible. In this case, any state
encoding that assigns intersecting sets of binary vectors to these states respects the equivalence or compatibility
constraint. Thus, adding compatibility constraints among states to other encoding constraints can be bene�cial
to �nding better or the best implementations. On the other hand, if two states are incompatible, no encoding
can assign intersecting sets of binary values to them. The incompatibility constraints must be respected in order
to guarantee a correct encoding of states. Compatibility and incompatibility constraints are examples of local
and global constraints, respectively.

One advantage of the method behind ASSyUCE over other encoding methods is the possibility of generating
sparse codes for symbols, i.e. codes containing don't cares, that constrain to a less extent succeeding tools in the
design process.

The algorithm implemented in the ASSyUCE program is a heuristic encoder for fsm states. The runtime
complexity of the algorithm has been shown to be O(n2), where n is the cardinality of the state set of the fsm.
For more details on the implementation of the program we refer to [5].

3.2 Exact State Minimizer

Heuristic and exact sm techniques can be widely found in fsm logic synthesis. Completely speci�ed fsms were
much studied in the �fties. The reduction of the number of states on isfsms received a �rst thorough treatment
by Paull & Unger[21] and the complexity analysis of the problem was addressed by Peeger[22]. Minimizing the
number of states is an important step on the classic process of fsm design. New and more e�cient algorithms
have accordingly been proposed to deal with fsm VLSI implementations, e.g. the one proposed by Hachtel and
others[9].

Intuitive techniques used to exactly minimize the number of states on csfsms have a O(n2) temporal com-
plexity, with n being the cardinality of the set of states. A more e�cient technique was proposed by Hopcroft[14],
with a complexity of just O(n log n). Unfortunately, the Hopcroft algorithm works only with Moore machines,
where each state has an associated output, i.e. the output depends exclusively on the present state and just
indirectly on the primary inputs. Also, this technique was implemented to minimize compiler parser fsms, i.e.
machines with a single, yes/no kind of output.

We have proposed an algorithm which is based on Hopcroft's. Viewing the integration of this algorithm
into ASSyUCE and the fact that we need to deal with hardware implementations of fsms, we have had to
generalize the original technique to accept Moore and Mealy machines with possibly non-binary output sets.
This algorithm was implemented as a computer program which we call MEMCE[24].

The basic internal data structure of MEMCE is a generalization of the Inverse State Table (IST) proposed
by Hopcroft. Our algorithms rely on state reachability analysis computed from this data structure, helped by
auxiliary lists for data manipulation. More details on the implementation can be obtained in [24].

3.3 Ongoing and Future Work

The tools described in the previous paragraphs are already operational, but new versions are presently under
development.

The heuristic minimizer/encoder needs more powerful constraint satisfaction methods, in order to take full ad-
vantage of the pseudo-dichotomies uni�ed framework. A recently proposed new approach to implicitly represent-
ing functions and sets through Binary Decision Diagrams[2] is under investigation. Also, constraint classes other
than those currently manipulated by the program have already been formulated using the uni�ed framework[4],
but their generation from the fsm structure and their consideration during encoding is not yet available. Finally,
the implementation technology considered today by our tools is limited to two-level logic. Generalizing it to
treat multilevel logic is a needed future work to cope with current state of the art production environments.

Another ongoing work is the implementation of a decomposition technique based on ASSyUCE theoretical
�ndings to build fsms on top of Look-Up-Table RAM-based FPGAs. FPGAs are a new kind of VLSI dynamically
programmable device of great success in industry and academy.

An MSc. research work is under way on the subject of mapping asynchronous implementations of fsms into
FPGAs. A new research project involving the authors is starting on the implementation of a general encoder for
dealing with several disparate encoding problems in vlsi and other �elds as well. This works strongly capitalizes
on the experience obtained from the ASSyUCE environment.

Concerning state minimization, we have plans to implement exact and heuristic techniques for minimizing
isfsms in order to address more thoroughly this problem. Having complete control over state minization and
encoding tools will allow a more relevant comparison between the serial and simultaneous strategy for solving
both problems.

An important task we are currently undertaking is the integration of our tools into the SIS environment.
WhileASSyUCE is good for �ne grain manipulation, providing an insight of the inner workings of each algorithm,
SIS is in widespread use in research and is good for coarse grain manipulation, such as network restructuring
and global optimizations. Integrating our tools within SIS is a good way of allowing fair comparisons between
them and SIS corresponding algorithms.

4 Benchmarks Results

Both ASSyUCE and MEMCE were implemented as computer programs using also the C++ language and
LEDA, under the UNIX operating system.

The fsm test set used is part of the benchmarks available at the Microelectronics Center of North Carolina
(MCNC)[29]. For the ASSyUCE program, 12 machines were taken, corresponding to descriptions where at
least one non-trivial pair of compatible states exists. A machine with only trivial compatible pairs of states is

already minimized, implying the uselessness of submitting it to state minimization tools. The test set used for
the MEMCE program comprises the only 7 csfsms in the benchmark set. isfsms are currently not supported
by MEMCE.

The fsms are represented in kiss2, which is the input format accepted by the current versions of ASSyUCE
and MEMCE.

Table 1 shows the comparison between ASSyUCE, parameterized with the -s lw run-time option, and the
serial strategy of running STAMINA[9], to perform state minimization, followed by NOVA[27] which performs
state assignment. We have chosen for STAMINA the run-time option -s 1, which invokes a tight upper bound
heuristic algorithm for performing state minimization avoiding the use of the default option, which performs
exact minimization and may lead to an exponential growth in the execution time. Concerning NOVA, we have
opted for the run-time option -e ih, which invokes a constrained encoding algorithm based on the satisfaction
of the input constraints only. We avoided the use of algorithms considering output constraints to maintain a
fair comparison with ASSyUCE, since these constraints are not considered in our current implementation.

FSM i b st o b a cl sn cl a pt sn pt a ar sn ar a t sn t a spy sn spy

s27 4 6 1 3 3 13 12 234 216 0.42 0.1 75.21 76.39

beecount 3 7 4 2 2 9 10 144 160 0.32 0.0 65.28 66.25

lion9 2 9 1 4 2 7 7 119 77 0.71 0.0 72.27 68.83

bbara 4 10 2 4 3 22 20 484 380 0.54 0.11 77.48 75.26

opus 5 10 6 4 4 19 16 532 448 0.54 0.1 67.86 72.54

train11 2 11 1 4 2 6 6 102 66 0.57 0.01 71.57 69.70

sse 7 16 7 7 4 27 31 1134 1023 1.46 0.23 78.75 79.86

bbsse 7 16 7 7 4 27 31 1134 1023 1.39 0.21 78.75 79.86

ex1 9 20 19 8 5 41 41 2501 2132 3.33 0.63 84.57 84.52

tbk 6 32 3 8 4 94 53 3666 1431 25.34 29.27 74.55 61.36

scf 27 121 56 9 7 133 124 18221 16244 167.26 103.54 91.32 91.49

s298 3 218 6 12 8 345 287 16560 10332 815.37 392.68 76.03 74.96

Sum/Avg - - - 72 48 743 638 44831 33532 1017.25 526.88 76.14 75.09

i b input bits
fsm data: st number of states

o b output bits

Pre�xes: a running ASSyUCE
sn running STAMINA+NOVA

cl code length
Su�xes: pt product terms t CPU time

ar estimated area spy PLA sparsity

Table 1: ASSyUCE versus Stamina+Nova

Clearly, our �rst implementation of ASSyUCE has a performance inferior to the state of the art tools used
with the serial strategy. The �rst point to stress is that ASSyUCE solves a harder problem than either NOVA
or STAMINA. Second, the heuristics behind the constraint satisfaction of NOVA guarantee that the least
code length is obtained, while the current algorithm in ASSyUCE cannot do the same. This results in bigger
implementations. The order of magnitude of each of the measured parameters is nonetheless the same, and some
gain in the sparsity of the resulting implementations indicate that these are more adapted to further treatment
by topological optimization tools like PLA folding.

Table 2 shows the comparison between theMEMCE program and STAMINA. To provide equal comparison
conditions, we parameterized STAMINA in this case with the -s 0 to force its algorithm to perform exact
minimization.

We can observe that in all tests sets, the MEMCE program obtained a comparable performance with the
STAMINA tool. Exceptions are the S1a and S298 benchmarks. Due to the reduced number of completely
speci�ed fsms in the test set we were not able to obtain a more signi�cant set of results. However, we may
see that again, the order of magnitude of the execution time for both STAMINA and MEMCE is the same.
Being both exact minimizers, STAMINA and MEMCE generate identical fsms as to the number of states, the
absolute minimum.

The results were obtained running all programs on a Sun Sparcstation 20/60 under Solaris 2.5.1. The pro-
grams ASSyUCE and MEMCE were also ported to platforms running Linux OS. Both distributions are freely

FSM Memce time Stamina time
bbara 0.04 0.01
don�le 0.01 0.01
modulo12 0.01 0.00
opus 0.08 0.00
s1a 0.98 0.06
s27 0.02 0.01
s298 3.01 0.43
SUM 4.15 0.52

Table 2: MEMCE versus Stamina

available, together with the XASSyUCE interface. They can be retrieved via Internet either by ftp or www at
the addresses ftp://ftp.inf.pucrs.br/pub/groups/gaph/Asstuce/ and http://www.inf.pucrs.br/�gaph/Asstuce/,
respectively.

5 Conclusions

We proposed an environment applicable to both, research and teaching. This environment is useful for helping
in the design of �nite state machines to be implemented in hardware.

This environment is based upon a formal framework that supports the formulation of several vlsi design
problems which are being addressed by our research group. The framework provides a unifying principle for
solving each individual problem by a constraint modeling step followed by a single constraint satisfaction step.

We consider that the ASSyUCE principles are unique in combining state of the art research results (such
as those found in SIS and commercial production environments) with tools that are controllable and observable
(such as those available in academic and commercial educational environments). It is the authors' belief, based
on current teaching experience, that it is more pro�table avoiding the proposal of aids such as languages and tools
speci�cally adapted to digital systems design teaching. Instead, we suggest the careful adaptation of research
and/or production tools to pedagogical needs. This has as e�ect that students are �nally better prepared for
using real-world tools and solving real-world problems.

Several works are presently under way with the enhancement of the ASSyUCE environment in mind. The
work is undertaken in parallel at either educational and research level, with a current greater emphasis in
research.

6 Acknowledgements

The authors would like to gratefully acknowledge the continued support of the Conselho Nacional de Desen-
volvimento Cient���co e Tecnol�ogico (CNPq), Brazil, to this work. Several scholarship and research grants have
been awarded to the authors, among which grants 205411/88-6, 520523/94-6 and 520091/96-5. We would also
like to acknowledge the contributions of F�abio Clever Vencato and Guilherme Saueressig in the implementation
of the XASSyUCE and MEMCE programs, respectively.

All development tools employed to accomplish this work are freely available for academic purposes. We
acknowledge the people and organizations behind every such initiative.

References

[1] M. J. Avedillo, J. M. Quintana, and J. L. Huertas. smas: a program for concurrent state reduction and
state assignment of �nite state machines. In Proceedings of the IEEE International Symposium on Circuits
and Systems - ISCAS, pages 1781{1784, Singapore, June 1991. The Institute of Electrical and Electronics
Engineers.

[2] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Comput-
ers, C-35(8):677{691, Aug. 1986.

[3] N. L. V. Calazans. State minimization and state assignment of �nite state machines: their relationship
and their impact on the implementation. PhD thesis, Universit�e Catholique de Louvain, Louvain-la-Neuve,
Belgium, Oct. 1993.

[4] N. L. V. Calazans. Boolean constrained encoding: a new formulation and a case study. In Proceedings of
the IEEE International Conference on Computer-Aided Design - ICCAD, pages 702{706, San Jose, Nov.
1994.

[5] N. L. V. Calazans. Considering state minimization during state assignment. In I Ibero American Microelec-
tronics Conference - X Congress of the Brazilian Microelectronics Society, pages 49{58, Canela, RS, July
1995.

[6] G. de Micheli. Synthesis and optimization of digital circuits. McGraw-Hill Series in Electrical and Computer
Engineering. McGraw-Hill, Inc., New York, NY, 1994.

[7] G. de Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli. kiss: a program for optimal state assignment
of �nite state machines. In Proceedings of the IEEE International Conference on Computer-Aided Design -
ICCAD, pages 209{211, Santa Clara, CA, Nov. 1984. The Institute of Electrical and Electronics Engineers.

[8] A. Grasselli and F. Luccio. A method for minimizing the number of internal states in incompletely speci�ed
sequential networks. IRE Transactions on Electronic Computers, EC-14:350{359, June 1965.

[9] G. D. Hachtel, J.-K. Rho, F. Somenzi, and R. Jacoby. Exact and heuristic algorithms for the minimization
of incompletely speci�ed state machines. In Proceedings of the European Conference on Design Automation
- EDAC, pages 184{191, Amsterdam, Feb. 1991.

[10] J. Hartmanis and R. E. Stearns. Some dangers in state reduction of sequential machines. Information and
Control, 5:252{260, Sept. 1962.

[11] Z. Hasan, J.-J. Shen, and M. J. Ciesielski. State assignment for general fsm networks. In Proceedings of
the European Conference on Design Automation - EDAC, pages 245{249, Brussels, Mar. 1992.

[12] F. J. Hill and G. R. Peterson. Computer aided logical design with emphasis on vlsi. John Wiley & Sons,
Inc, New York, NY, fourth edition, 1993.

[13] C. A. R. Hoare. Communicating sequential processes. Prentice/Hall International, 1985.

[14] J. Hopcroft. Theory of machines and computations, chapter An n logn algorithm for minimizing states in
a �nite automaton. Academic Press, New York, NY, 1971. Z. Kohavi and A. Paz, eds.

[15] E. B. Lee and M. Perkowski. Concurrent minimization and state assignment of �nite state machines. In
Proceedings of the 1984 International Conference on Systems Man and Cybernetics, pages 248{260, Halifax,
Oct. 1984.

[16] B. Lin and A. R. Newton. Implicit manipulation of equivalence classes using binary decision diagrams. In
Proceedings of the International Conference on Computer Design: VLSI in Computers and Processors -
ICCD, pages 81{85, Cambridge, MA, Oct. 1991. The Institute of Electrical and Electronics Engineers.

[17] K. Mehlhorn, S. N�aher, and C. Uhrig. LEDA User Manual - Version 3.5. Max-Planck-Institut f�ur Infor-
matik, Saarbr�ucken, Germany, 1997.

[18] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimum functional decomposition using
encoding. In Proceedings of the ACM/IEEE Design Automation Conference - DAC, San Diego, California,
June 1994. The Institute of Electrical and Electronics Engineers.

[19] Z. Navabi, R. Swanson, and F. J. Hill. User Manual for AHPL Simulator (HPSIM2) & AHPL Compiler
(HPCOM). Engineering Experiment Station College of Engineering and Mines, The University of Arizona,
Tucson, Arizona, Feb 1993.

[20] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Professional Computing Series. Addison-Wesley,
Reading, MA, 1994.

[21] M. C. Paull and S. H. Unger. Minimizing the number of states in incompletely speci�ed sequential switching
functions. IRE Transactions on Electronic Computers, EC-8:356{367, Sept. 1959.

[22] C. P. Peeger. State reduction in incompletely speci�ed �nite-state machines. IEEE Transactions on
Computers, C-22(12):1099{1102, Dec. 1973.

[23] A. Saldanha, T. Villa, R. K. Brayton, and A. L. Sangiovanni-Vincentelli. A framework for satisfying input
and output encoding constraints. In Proceedings of the ACM/IEEE Design Automation Conference - DAC,
pages 170{175, San Francisco, CA, June 1991.

[24] G. Saueressig. Memce: Um algoritmo de minimiza�c~ao de estados para o ambiente asstuce. End of term
work, Pontif��cia Universidade Cat�olica do Rio Grande do Sul, Porto Alegre, 1996. (In Portuguese).

[25] E. M. Sentovich and et al. Sis: A system for sequential circuits synthesis. Memorandum no ucb/erl m92/41,
Electronics Research Laboratory, Department of Electrical Engineering and Computer Science, University
of California, Berkeley, May 1992.

[26] F. C. Vencato. xasstuce: Uma interface gr�a�co-textual para o ambiente explorat�orio de m�aquinas de
estados �nitas asstuce. End of term work, Pontif��cia Universidade Cat�olica do Rio Grande do Sul, Porto
Alegre, 1996. (In Portuguese).

[27] T. Villa and A. Sangiovanni-Vincentelli. nova: state assignment of �nite state machines for optimal two-
level logic implementation. IEEE Transactions on Computer-Aided Design, 9(9):905{924, Sept. 1990.

[28] Xilinx, Inc. The future of fpgas. White paper, Xilinx, Inc, 1997. Available at the URL
http://www.xilinx.com/prs rls/5yrwhite.htm.

[29] S. Yang. Logic synthesis and optimization benchmarks. Technical report, Microelectronics center of North
Carolina, Research Triangle Park, NC, Jan. 1991. Version 3.0.

