

Advanced Ordering and Manipulation Techniques for
Binary Decision Diagrams

Ney Calazans, Qinhai Zhang, Ricardo Jacobi, Bruno Yernaux and Anne-Marie Trullemans

Université Catholique de Louvain - Laboratoire de Microélectronique

3, Place du Levant B-1348 Louvain-la-Neuve Belgium.

Abstract

 This paper presents heuristics leading to improved
ordering computation for binary decision diagrams
(BDDs). An initial step, based on the topology of the
network, generates a hierarchical variable ordering. This
initial result is further refined by incremental
manipulation governed by the stochastic evolution
technique. A new property of BDDs is introduced as well,
which accelerates commonly used operations.
Experimental results are presented.

I. Introduction
 Binary Decision Diagrams (BDDs) have been known
for a long time as a means to represent the structure of
switching functions [1], but only recently their use
emerged in the implementation of design automation tools
for digital circuits. This is owed primarily to the
introduction of an effective canonical form, called
Reduced Ordered BDDs (ROBDDs) [2], which provides
compact as well as computationally efficient descriptions.
ROBDDs are used in logic verification [3], [4], logic
synthesis, circuit simulation, etc. Extensions to ROBDDs
were suggested to improve their utility. One of these,
Modified Binary Decision Diagrams (MBDs) [5], has
been used to perform logic operations including the don't
care set [6].
 Before generating ROBDDs, the co-NP-complete
problem of determining the best ordering of the input
variables must be solved. Instead of using the exact
solution, which is computationally too expensive,
heuristics are the usual expedient applied to obtain
satisfactory, near-optimum solutions.
 The present work proposes a method to generate near-
optimum orderings for even very large function
descriptions. The method comprises a two-step procedure.
The first step applies a set of heuristics to find the
ordering of the initial diagram. This initial diagram is later
refined using incremental techniques [7] to implement a
stochastic evolution (SE) [8] procedure. A similar two-
step approach has already been suggested in [5]. However
the heuristics here are enhanced. Also, the incremental
techniques, coupled with the SE procedure, provides
results quite close to the exhaustive search of the best
variable ordering, at least for the benchmarks where
finding this best ordering was feasible.

 Finally, we introduce a new property of MBDs (and
ROBDDs) that can be used to reduce the complexity of
large functions manipulation. This property allows the
treatment of certain clusters of vertices in the graph of an
MBD as a single vertex. We call these clusters
supernodes.
 In the next section we introduce the basic terminology.
Next, we describe the new heuristics and the needed
background. Then, the incremental techniques and their
use in implementing the SE procedure are presented. A
subsequent section details the issues connected to
supernodes, while the two last sections are dedicated to
experimental results and conclusions.

II. Definitions
 A variable is a symbol representing a single coordinate
of the Boolean space. A literal is either a variable or its
complement. A single output incompletely specified
function (SOISF) is a triplet (fon, foff, fdc) of completely
specified switching functions representing the on-set, the
off-set and the don't care set of the function. A multiple
output incompletely specified function (MOISF) is a set
of triplets, where each triplet is a SOISF. A reduced
ordered binary decision diagram (ROBDD) is a
directed acyclic graph (DAG) as defined by Bryant in [2].
A modified binary decision diagram (MBD) is an
extension of the ROBDD concept [5]. In an MBD,
multiple root vertices are allowed, and a third terminal
vertex may appear, standing for the don’t care value X.

III. Initial input variables ordering
 A good initial ordering is necessary to avoid the
exponential growth of the number of vertices in an MBD.
Several heuristics to derive the ordering from a particular
network topology have been suggested [3,4,7,12]. A
hierarchical strategy, which is derived from the network
topology, is presented in this section. This strategy
involves a three-step iteration which calculates a node
weight, selects an input variable, and eliminates part of
the network related with the selected input.

III.1 Preliminaries
 In an acyclic network, each net(or node) has different
influences on the outputs. The measure of this influence is
called node weight. The symbol |Fanin|vi (|Fanout|vi)
denotes the number of fan-ins (fan-outs) of node vi. The

node weight of each node vi with regard to output yl is
defined recursively as follows:

if vj is a fan-out of vi2). DF Σ
DF

k = 1 ⎢ Fanin ⎢
⎢ Fanout ⎢

= yl

1). DF yl =
1 if output node vi = yl
0 if output node vi ≠ yl {

yl

vi

vi
vj

vjvi

 If there is a sub-network with a set of input nodes {x1,
x2, ... xk} and one output node vp, and if the input nodes
are not used as fan-ins of any node out of this sub-
network, we say that vp covers completely the input
nodes; it is called an intermediate node for these nodes.
The intermediate nodes play an important role in finding
the variable ordering and also in building the MBD graph
since we can directly replace the set of input variables
{x1, x2, ... xk} by the intermediate variable vp. The
intermediate variable is a dynamic concept related to the
current structure of the network. If an intermediate
variable can be obtained directly from the initial network,
we call it a static intermediate variable. Otherwise we
call it a dynamic intermediate variable. Dynamic
intermediate variables appear depending on the sequence
of variable selections.
 The cover degree (CD) of node vi with regard to input
xl denotes how much of the signal propagation from the
input xl is covered (or received) by the node vi. The cover
degree of node vi with regard to input xl is defined
recursively as follows:

 1). CDvi

xl = 0 if input node vi ≠ xl
1 if input node vi = xl {

2). CDvi = Σ
k = 1 xl

⎢ Fanin ⎢
xl CDvj

if vj is a fan-in of vi
⎢ Fanout ⎢

vi
vj

 For instance, in the network shown in Figure 1(a), the
cover degrees computed for nodes m0, m1, m2 and out
for the inputs {x1, x2, x3, x4, x5, x6} are [0, 0, 1, 1, 0, 0],
[1, 1, 0.5, 0.5, 0, 0], [0, 0, 0.5, 0.5, 1, 1] and [1, 1, 1, 1, 1,
1], respectively. It is easy to see that a node vp is an
intermediate node iff CDvp|xl = 1 or CDvp|xl = 0 for
every input xl ∈ {x1, x2, x3,..., xn}. Therefore, in Figure
1(a), the node m0 is a static intermediate node for inputs
{x3, x4}, out is a static intermediate node for inputs {x1,
x2, x3, x4, x5, x6}, but the nodes m1 and m2 are not.
III.2 Dynamic Variable Selection
 The basic idea of the technique is to select the input
variable xi that has the largest influence on the outputs
and to add it to the tail of the variable ordering list under
construction. Due to the MBD (ROBDD) structure,
choosing a specific place in the ordering for a variable xi

means to partition the function into two sub-functions
independent of xi. Accordingly, the part of the network
related to xi will be eliminated after the variable choice,
so as to reflect this characteristic. The node weight and the
intermediate variable distributions are dynamically
changed during the elimination process. Figure 1(a) to
1(d) illustrates this process for a single output network.

x3

x4

x6

out
x2

x5

x1
m1

m2x6

m0

x2

x5

x1
m1

m2x6

m0
out

x2

x5

x1
m1

m2

out

m1

m2

out

(a) (b)

(c) (d)

1

1/2

1/2

1/6
1/6

1/6
1/6

1/3
1/6
1/6

1/2

1/2
1

1/3

1/6
1/6

1/6
1/6

1

1/2

1/2

1/4
1/4

1/4
1/4

1

1/2

1/2

Figure 1. Variable selection.

Table 1. Record of variable selections.
Step 1 2 3 4 5
Anc. m0 out m1 m2 out
Desc. {x3,x4} {m0} {x1,x2} {x5,x6} {m1,m2}

x1 x2x3 x4 x5 x6

m0 m1 m2

out

Figure 2. Hierarchical variable ordering.

 In the first step, the lowest level intermediate variable,
marked with a small box, is m0. Suppose that the current
input selection, marked with a small circle, is x3 (1(a)).
We observe that two input nodes xi and xj have the same
node weight if their fan-outs are the same. All the
equivalent input variables can be selected simultaneously.
The node x4 is equivalent to x3, thus selecting x4 directly
is a good choice. After elimination of x3 and x4, node m0
becomes a 0-fan-in node and will be selected next in the
input variable list. Now, the lowest level intermediate
variable is out, and the current selection is m0(1(b)).
After deleting m0, the node weight distribution is
changed. Also, m1 and m2 become intermediate
variables. The above select-eliminate-reassign process is
repeated until the network vanishes. The sequence

selection as well as the hierarchical ancestor-descendant
relationship is kept for further use. For this example, the
records are shown in Table I and a hierarchical variable
ordering tree is shown in Figure 2. Here, m0 and out are
static intermediate variables, and m1, m2 are dynamic
intermediate variables. If the variable ordering is required,
we simply decode these records and the final variable
ordering {x3, x4, x1,x2, x5, x6} is deduced.

III.3 Implementation of MBDs
 MBDs are implemented using the algorithms described
in [10]. In order to reduce the size of the MBD, we add
one extension to our implementation: some internal parts
of the MBD are replaced by static intermediate variables,
and an additional complete BDD is used to present the
subfunction associated to each static intermediate
variable. This technique is illustrated in Figure 3. Assume
that p0 is a duplicated subgraph in the MBD and all the
variables in p0 are covered by a static intermediate
variable VS(this condition results from the structure of the
hierarchical order tree). If the static intermediate variable
appears k times in the MBD and if the size of the
corresponding BDD is sp, [k * sp - (sp + k)] vertices can
be saved as long as we substitute the covered inputs by the
intermediate variable VS.

p1 p2 p3 p4

p0 p0

vi

010 1

+
p0

0 1

 1 0

vs

p1 p2 p3 p4

vs

vi

10

vs
0 1

0 1 10

Figure 3. Static Intermediate Variable.

The use of static intermediate variables into the MBD
destroys the canonical form, since these are only extracted
from a particular network. However, for some
applications, e.g. test pattern generation, this hierarchical
MBDs can be used more efficiently than the flattened
version.

IV. MBD compaction using SE

IV.1 Stochastic Evolution
 Stochastic evolution (SE), a technique dedicated to
combinatorial optimization, was proposed by Saad and
Rao in [8]. The method is similar to Simulated Annealing
(SA). The main difference is that SE accepts initially only
positive gains. Hill climbing starts only when a local
minimum is reached. This approach allows SE to
converge faster than SA with similar or better results [8].
 The basic idea is to seek a global minimum of a cost
function defined over a discrete domain D, called state
space. Each state S is a mapping of a set of movable
elements M into a set of locations L: S: M -> L. A new
state S' is generated by moving some elements in S. A

move m can be simple or composed and must generate a
unique new state S'. The gain of a move m is: gain(m) =
cost(S) - cost(S'). Each move is accepted if the gain >
random(-p), where p is the parameter that allows negative
gains in order to perform hill climbing. R controls the
number of iterations, which is an estimation of the time
needed to improve the current solution. Each time a better
solution is found, the counter is decremented by R,
providing more steps to the SE algorithm.
 The generation and acceptation of new states are done
by the function perturb_SE. The update function
modifies the control parameter p according to some
heuristics depending on the kind of problem. These
functions are described in subsection IV.3.

IV.2 Incremental Manipulation
 The incremental manipulation of MBDs is a technique
that allows to generate new orderings by exchanging pairs
of adjacent variables vi, vi+1 in the ordering while
updating the MBD accordingly. The operation is divided
into two steps: first, update the subgraphs defined by the
vertices with indices i, i+1 to reflect the new ordering;
second, delete the redundant vertices that can arise from
the previous step. A more detailed description of these
functions can be found in [7], together with two greedy
heuristics for MBD compaction.

IV.3 Compaction using SE
 The MBD ordering problem can be modelled as a
permutation problem. We choose M={x0,..,xn-1}, the set
of input variables, and L = {1,..., n}. The state space is the
set of all permutations of M. A state is a bijection S: M-
>L, i.e., a permutation of the input variables. A move in
the state space is generated by swapping two consecutive
indexes. Let S = <x0,..., xi, xi+1,..., xn-1>, be a given
ordering of M. S' is a neighbour of S if S' = <x0,..., xi+1,
xi,..., xn-1> for some i in {0, ..., n-2}. The cost function
cost(S) is the number of vertices or size of the MBD. R
and p0 where determined experimentally. R = 15 and p0 =
3 have produced the best results. The main function is
MBD_SE, sketched in figure 4.
 The function perturb_SE (Figure 5) performs a
composed move. Each simple move is accepted if the gain
is positive or if it is smaller than a random negative value
between 0 and -p, the controlling value. Variables can
thus be arbitrarily displaced in the ordering. A potential
problem with the SE algorithm is the lack of large hill
climbing steps. The solution can cycle around a local
minimum if the valley is too deep. There is no mechanism
to prevent the process to return to the same local
minimum after some steps. To avoid this problem a
random state is generated if the best solution is not
improved after R steps. R is chosen as the expected
number of iterations to improve the best solution.

function MBD_SE (mbd, costf) : state;
begin
 initialize data;
 while (r < R) begin
 Cold = costf (mbd);
 mbd = perturb _SE(mbd,p,costf);
 Ccur = cost (S);
 update (p, Ccur, Cold);
 if (Ccur < cost (mbdbest)) then
 begin
 mbdbest = mbd;
 r = r - R;
 end
 else r = r + 1;
 end;
return (mbdbest);
end;

Figure 4. MBD_SE algorithm.

function perturb_SE (mbd, p, costf): mbd;
begin
if solution not improved after R steps then
 return(random order);
foreach index i
 swap indices i, i+1.
 Accept the swapping if gain > random(-p), otherwise
swap back indices i, i+1.
return (mbd);
end;

Figure 5. Perturb_SE algorithm.

function update (p, Ccur, Cold, Queue)
begin
 compute the average of last four values
 if ((Ccur - average) < Threshold)
 then return(p + 1,S) /* increase p */
 else return (Pse,S); /* else return default */
end;

Figure 6. Update algorithm.
 The function perturb_SE generates states that
oscillate around a local minimum if when updating p as in
[8]. To circumvent this problem we update p as shown in
figure 6. The parameter threshold is set to 3 and graduates
the amount of oscillation allowed.

V. Supernodes
 To reduce the complexity of MBD manipulation, we
introduce the concept of supernodes. Supernodes are a
means to group together locally connected vertices in an
MBD so as to form clusters that can then be treated as a
single vertex of the MBD.

V.1 Definition
 Informally, we define a supernode as a subgraph of an
MBD containing two special non-terminal vertices,

unique but not necessarily distinct, called initial and final.
Any arc of the MBD beginning in the initial vertex must
pass through the final vertex before reaching a terminal,
and the longest arc in the supernode must visit every
vertex in the subgraph. A more formal definition follows.
 Definition - A supernode S of an MBD M =(V, E),
where V is a set of vertices and E is a set of edges (a set of
ordered pairs of vertices), is a subgraph of M recursively
defined by the following axioms:
 (a) Every single vertex s in M determines a supernode
S1 = (V1, E1), where V1 is the set containing s as single
element, and E1 is the empty set, s being both initial and
final;
 (b) Let S1 = (V1, E1), S2 = (V2, E2) be two
component supernodes of M, and p ∈ V1, q ∈V2, and r
∈ V - V1 - V2, three vertices, where p and q are either
initial and final or final and initial vertices, respectively.
Thus, if ∃a, b, c∈ E - E1 - E2, such that
 either c = (p, q) or c = (q, p),
 and a = (p, r), b = (q, r),
then S3 = (V1 ∪ V2, E1 ∪ E2 ∪
 { c | c = (p, q), if p is final and q is initial
 or c = (q, p), otherwise}) is a supernode.
 The initial and final vertices of this new supernode are
either the initial vertex of V1 and the final vertex of V2, if
p is final and q is initial or the initial vertex of V2 and the
final vertex of V1, otherwise.

A

low high
A+B'

B

0 1

1 0

A

low high
A+B

B

0 1

0 1

A

high low
AB'

B

1 0

0 1

A

high low
AB

B

1 0

1 0

Figure 7. Simple supernode cases.

 The above definition says that a supernode S comprises
a finite set of vertices of M, each of these vertices
connected to another supernode completely contained in S
(or to a terminal vertex), either as a source or as a sink,
such that they share the sink vertex for one of their output
edges. Note that neither the common sink vertex nor the
edges pointing to it need be part of S. Figure 7 shows all
configurations of 2-vertices supernodes, and the
associated factored forms. The general case can be
inferred from these.
 Supernode S2 is contained in a supernode S1 if V2
⊆ V1. If V2 ⊂ V1, we say that S2 is properly contained
in S1 or that S2 is a proper supernode of S1. The size of
a supernode is the cardinality of its set of vertices.
 Another useful concept is the level of a supernode S =
(V, E), a positive integer such that: (a) If S is a single-

vertex supernode, it has level 0, and (b) If this is not the
case, we determine the level of S using a recursive
procedure: partition V into two sets V1 and V2, such that
V1 is a singleton containing the initial vertex of S and V2
contains all other vertices of S. This procedure determines
two supernodes: S1 = (V1, E1), S2 = (V2, E2), by the
supernode definition axioms. If we know the level of S2
to be n-1, the level of S will be n-1, if there is a level-0
supernode in S2 that forms a supernode with S1.
Otherwise, the level of S is n.
 Special supernodes can be defined. A supernode is
maximum if no supernode in the MBD properly contains
it. A supernode is maximal if no supernode with the same
initial vertex in the MBD properly contains it. Let M = (V,
E) be an MBD and S = (V1, E1) be a supernode of M. Let
also c = (p, q) be an edge of E - E1, i. e. an edge of M but
not of S. S is a closed supernode iff, for all c such that q
∈V1, q is always the same vertex and, at the same time,
no vertex but q is the initial vertex of any SOISF of the
MOISF represented by M. This implies that a closed
supernode is one which interacts the least possible with
the surrounding vertices of M. Stated otherwise, if S is a
closed supernode, every edge going from a vertex not in S
to a vertex of S must have as sink the initial vertex of S.
The last requirement prevents that some internal vertex of
a closed supernode be some root of M.

V.2 Properties
 The main property of supernodes is that any closed
maximum supernode behaves like a single vertex in the
MBD. Yet, any supernode is connected to the rest of the
MBD through exactly two output edges, called low and
high of S, although these are not really part of S. These
edges coincide with the outputs edges of the final vertex
of S. In practice, the low and high of S may not
correspond to the low and high edges of the final vertex of
S. Figure 7 shows how we define low and high for all
cases of 2-vertices supernodes. Again, inference from
these lead to the general case.
 Supernodes contain neither terminal vertices nor more
than one vertex associated with the same variable in its set
of vertices. Also, there is exactly one arc in a supernode
which visits every vertex of V. Second, any supernode S
can be represented by a factored form containing only as
many literals as there are vertices in V. This provides
better ways for doing factorization and decomposition of
MBDs than the approach of using the Shannon expansion.
This is illustrateed in Figure 8. Using the Shannon
expansion approach, the factored forms extracted from
this MBD would be

f=A'+A[B'[C'F'G'+CD'E'F'G']+BD'E'F'G']
 However, if we preprocess the MBD collecting vertices
into supernodes, we can factorize better. Using algorithms
to find maximal supernodes, we end up with four of them:
{A}, {B, C}, {F, G} and {D, E, F, G}. The first is a level-

0 supernode, while the others are level-1. The resulting
factorization gives:

f = A'+A[B'C'+D'E'F'G'][B+C+F'G']

1

1

0 1 0

0
0

1

0 1

0
1

0

1

0
1

G

F

B

C

E
D

A

Figure 8. MBD for function f.

 Here, even better results can be obtained if we restrict
attention to closed supernodes only. The factorization in
this case would be obtained from a single level-3
supernode with all vertices of the MBD, and the
associated expression would be

 f = A'+F'G'[B'C'+D'E']
 The intermediate results obtained for this last case are
as follows. Three closed disjoint level-1 supernodes are
found in a first step: {B, C}, {D, E}, and {F, G}. After
this, two closed level-2 supernodes are successively
found: {B, C, D, E} and {B, C, D, E, F, G}. Finally, the
level-3 supernode comprising all vertices in the ROBDD
is obtained from the last, 6-vertex supernode.

VI. Experimental results
 Tables 2 and 3 compare our method (column Hier) to
others available in the references. Table 2 shows small to
medium examples, and the times reported in it refer to a
Lisp prototype running on a Macintosh II. Table 3
displays the ISCAS benchmarks results. These are the first
results we obtained with our C implementation, on a
DEC5000/200 workstation. Stochastic evolution
algorithms are not yet available in this new version. Both
tables show the time needed to build the MBD with the
hierarchical ordering (column MBD t). Table 2 includes
also the time needed to run the SE algorithm on the MBD,
while Table3 contains the time to compute the hierarchical
ordering. Sizes of MBDs are shown in number of vertices,
and times in seconds. The SE column in Table 2 indicates
the final size of the MBD after running the SE algorithm
(absolute minimum sizes in parentheses, when available).
 Some conclusions can already be drawn from these
data. First, for small examples, our heuristics offers the
best results in most cases, with significant gains appearing
very often. For large examples, our results are superior to
those presented in [10] and similar to the data in [9].
Second, SE can enhance the results of the best heuristics,
at the expense of added computation. Reductions in the
run time of SE can be obtained by fine-tuning the
parameters of the algorithm, but this can still be quite

costly. For larger examples, the prediction capacity of any
heuristics is weakened. The heuristics used in [4], e.g.
which is the same used in [9], is seen to be quite inferior
to ours in Table 2. For larger networks, our heuristics, as
well as the one in [9] are quite irregular, as seen in Table
3. The heuristics in [10] are poorer than both.

VII. Conclusions
 We have presented a method to generate good
orderings for BDDs. The first part of the method,
hierarchical ordering, is useful in any application of
BDDs, since it is very fast (C implementation, times to
compute the hierarchical ordering are most often around 1
second) and gives better results when compared with
available methods. The second part, stochastic evolution,
is helpful when the need to minimize the BDD is more
important than the time to do it. For example, the
application of SE when doing verification can be too
expensive, since SE may multiply the MBD building time
by a factor of 10 or 100. On the other hand, if we are
applying BDDs to dual cascode voltage switch synthesis
(DCVS), reducing the final size of the graph is the main
issue. The added computation is then directly associated
with a better synthesis, and longer building times can be
afforded. For intermediate cases, the faster but less
performing incremental techniques described in [7] may
be used.
 Supernodes were introduced to identify special clusters
of vertices in BDDs. Their goal is to reduce the
manipulation of these graphs, but their applicability must
be further investigated.

VIII. References
[1] C. Y. Lee. “Representation of Switching Circuits by Binary

Decision Programs”, BSTJ, No. 38 (July 1959), pp. 985-
999.

[2] R. E. Bryant. “Graph-Based Algorithm for Boolean Function
Manipulation”. IEEE Trans. on Computers, vol. C-35, no.
8, Aug. 1986.

[3] M. Fujita, H. Fujisawa, N. Kawato. “Evaluation and
Improvements of Boolean Comparison Method Based on
Binary Decision Diagrams”, ICCAD, 1988.

[4] S. Malik, A. R. Wang, R. K. Brayton and A. Sangiovanni-
Vincentelli. “Logic Verification using Binary Decision
Diagrams in a Logic Synthesis Environment”. ICCAD,
1988.

[5] N. Calazans, R. Jacobi, Q. Zhang and C. Trullemans.
“Improving Binary Decision Diagrams Through
Incremental Reduction and Improved Heuristics”. CICC,
1991.

[6] R. Jacobi, A-M Trullemans. “Generating Prime and
Irredundant Covers for Binary Decision Diagrams”. EDAC,
1992.

[7] R. Jacobi, N. Calazans and C. Trullemans. “Incremental
Reduction of Binary Decision Diagrams”. ISCAS, 1991.

[8] Y. Saab & B. Rao. “Combinational Optimization by
Stochastic Evolution”. IEEE Trans. on CAD, Vol. 10, No 4,
April 1991.

[9] Karl S. Brace, Richard L. Rudell, Randal E. Bryant
“Efficient Implementation of a BDD Package”. 27th DAC,
1990.

[10] S. Minato, N. Ishiura, S. Yajima “Shared Binary Decision
Diagrams with Attributed Edges for Efficient Boolean
Function Manipulation”. 27th DAC,1990.

Table 2. MBD size comparison (Running on Macintosh II - LISP).
Benchmark data Ordering Data (vertices) Size (vertices) Time Data

Name Inp Out [4] [3] [10] Hier SE MBD t(s) SE t(s)
5xp1 7 10 96 92 75 71 70 (70) 11.23 95.0
Alu3 10 8 124 148 75 70 65 8.08 74.8
Bw 5 28 115 120 133 126 107 (107) 16.44 230.4
Duke2 22 29 873 685 495 463 370 81.15 4322.6
Misex2 25 18 133 147 150 130 91 5.60 885.8
P1 8 16 260 264 252 201 193 (193) 26.52 344.0
Signet 39 8 4496 3340 4788 2719 1690 440.40 9 hours
Sn181 14 8 1316 847 942 795 773 51.14 3330.8
X9dn 27 7 430 284 207 117 91 11.03 416.0

Table 3. MBD size for ISCAS benchmarks (Running on DEC 5000/200 - C).

Benchmark data Ordering Data (vertices) Time Data
Name Inp Out [9] [10] Hier Ord t(s) MBD t(s)
C432 36 7 30200 103954 30520 0.45 54.93
C499 41 32 49786 36934 44165 1.65 52.63
C880 60 26 7655 30899 7490 1.02 4.82
C1355 41 32 39858 119412 56112 1.64 63.57
C1908 33 25 12463 39517 21895 2.26 24.10
C5315 178 123 32193 41538 4433 4.76 4.62

