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Abstract 
 
 This paper presents heuristics leading to improved 
ordering computation for binary decision diagrams 
(BDDs). An initial step, based on the topology of the 
network, generates a hierarchical variable ordering. This 
initial result is further refined by incremental 
manipulation governed by the stochastic evolution 
technique. A new property of BDDs is introduced as well, 
which accelerates commonly used operations. 
Experimental results are presented. 
 

I. Introduction 
 Binary Decision Diagrams (BDDs) have been known 
for a long time as a means to represent the structure of 
switching functions [1], but only recently their use 
emerged in the implementation of design automation tools 
for digital circuits. This is owed primarily to the 
introduction of an effective canonical form, called 
Reduced Ordered BDDs (ROBDDs) [2], which provides 
compact as well as computationally efficient descriptions. 
ROBDDs are used in logic verification [3], [4], logic 
synthesis, circuit simulation, etc. Extensions to ROBDDs 
were suggested to improve their utility. One of these, 
Modified Binary Decision Diagrams (MBDs) [5], has 
been used to perform logic operations including the don't 
care set [6]. 
 Before generating ROBDDs, the co-NP-complete 
problem of determining the best ordering of the input 
variables must be solved. Instead of using the exact 
solution, which is computationally too expensive, 
heuristics are the usual expedient applied to obtain 
satisfactory, near-optimum solutions. 
 The present work proposes a method to generate near-
optimum orderings for even very large function 
descriptions. The method comprises a two-step procedure. 
The first step applies a set of heuristics to find the 
ordering of the initial diagram. This initial diagram is later 
refined using incremental techniques [7] to implement a 
stochastic evolution (SE) [8] procedure. A similar two-
step approach has already been suggested in [5]. However 
the heuristics here are enhanced. Also, the incremental 
techniques, coupled with the SE procedure, provides 
results quite close to the exhaustive search of the best 
variable ordering, at least for the benchmarks where 
finding this best ordering was feasible. 

 Finally, we introduce a new property of MBDs (and 
ROBDDs) that can be used to reduce the complexity of 
large functions manipulation. This property allows the 
treatment of certain clusters of vertices in the graph of an 
MBD as a single vertex. We call these clusters 
supernodes. 
 In the next section we introduce the basic terminology. 
Next, we describe the new heuristics and the needed 
background. Then, the incremental techniques and their 
use in implementing the SE procedure are presented. A 
subsequent section details the issues connected to 
supernodes, while the two last sections are dedicated to 
experimental results and conclusions. 
 

II. Definitions 
 A variable is a symbol representing a single coordinate 
of the Boolean space. A literal is either a variable or its 
complement. A single output incompletely specified 
function (SOISF) is a triplet (fon, foff, fdc) of completely 
specified switching functions representing the on-set, the 
off-set and the don't care set of the function. A multiple 
output incompletely specified function (MOISF) is a set 
of triplets, where each triplet is a SOISF. A reduced 
ordered binary decision diagram (ROBDD) is a 
directed acyclic graph (DAG) as defined by Bryant in [2]. 
A modified binary decision diagram (MBD) is an 
extension of the ROBDD concept [5]. In an MBD, 
multiple root vertices are allowed, and a third terminal 
vertex may appear, standing for the don’t care value X. 
 
III. Initial input variables ordering 
 A good initial ordering is necessary to avoid the 
exponential growth of the number of vertices in an MBD. 
Several heuristics to derive the ordering from a particular 
network topology have been suggested [3,4,7,12]. A 
hierarchical strategy, which is derived from the network 
topology, is presented in this section. This strategy 
involves a three-step iteration which calculates a node 
weight, selects an input variable, and eliminates part of 
the network related with the selected input. 
 

III.1 Preliminaries 
   In an acyclic network, each net(or node) has different 
influences on the outputs. The measure of this influence is 
called node weight. The symbol |Fanin|vi (|Fanout|vi) 
denotes the number of fan-ins (fan-outs) of node vi. The 



node weight of each node vi with regard to output yl is 
defined recursively as follows: 
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   If there is a sub-network with a set of input nodes {x1, 
x2, ... xk} and one output node vp, and if the input nodes 
are not used as fan-ins of any node out of this sub-
network, we say that vp covers completely the input 
nodes; it is called an intermediate node for these nodes. 
The intermediate nodes play an important role in finding 
the variable ordering and also in building the MBD graph 
since we can directly replace the set of input variables 
{x1, x2, ... xk} by the intermediate variable vp. The 
intermediate variable is a dynamic concept related to the 
current structure of the network. If an intermediate 
variable can be obtained directly from the initial network, 
we call it a static intermediate variable. Otherwise we 
call it a dynamic intermediate variable. Dynamic 
intermediate variables appear depending on the sequence 
of variable selections. 
 The cover degree (CD) of node vi with regard to input 
xl denotes how much of the signal propagation from the 
input xl is covered (or received) by the node vi. The cover 
degree of node vi with regard to input xl is defined 
recursively as follows: 
  
 1). CDvi  

xl = 0      if input node vi ≠ xl 
1      if input node vi = xl { 

2). CDvi = Σ 
k = 1 xl 

⎢ Fanin  ⎢ 
xl CDvj 
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 For instance, in the network shown in Figure 1(a), the 
cover degrees computed for nodes m0, m1, m2 and out 
for the inputs {x1, x2, x3, x4, x5, x6} are [0, 0, 1, 1, 0, 0], 
[1, 1, 0.5, 0.5, 0, 0], [0, 0, 0.5, 0.5, 1, 1] and [1, 1, 1, 1, 1, 
1], respectively. It is easy to see that a node vp is an 
intermediate node iff CDvp|xl = 1 or CDvp|xl = 0 for 
every input xl ∈ {x1, x2, x3,..., xn}. Therefore, in Figure 
1(a), the node m0 is a static intermediate node for inputs 
{x3, x4}, out is a static intermediate node for inputs {x1, 
x2, x3, x4, x5, x6}, but the nodes m1 and m2 are not. 
III.2 Dynamic Variable Selection 
 The basic idea of the technique is to select the input 
variable xi that has the largest influence on the outputs 
and to add it to the tail of the variable ordering list under 
construction. Due to the MBD (ROBDD) structure, 
choosing a specific place in the ordering for a variable xi 

means to partition the function into two sub-functions 
independent of xi. Accordingly, the part of the network 
related to xi will be eliminated after the variable choice, 
so as to reflect this characteristic. The node weight and the 
intermediate variable distributions are dynamically 
changed during the elimination process. Figure 1(a) to 
1(d) illustrates this process for a single output network. 
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Figure 1. Variable selection. 

 

Table 1. Record of variable selections. 
Step 1 2 3 4 5 
Anc. m0 out m1 m2 out 
Desc. {x3,x4} {m0} {x1,x2} {x5,x6} {m1,m2}

x1 x2x3 x4 x5 x6

m0 m1 m2

out

 
Figure 2. Hierarchical variable ordering. 

 In the first step, the lowest level intermediate variable, 
marked with a small box, is m0. Suppose that the current 
input selection, marked with a small circle, is x3 (1(a)). 
We observe that two input nodes xi and xj have the same 
node weight if their fan-outs are the same. All the 
equivalent input variables can be selected simultaneously. 
The node x4 is equivalent to x3, thus selecting x4 directly 
is a good choice. After elimination of x3 and x4, node m0 
becomes a 0-fan-in node and will be selected next in the 
input variable list. Now, the lowest level intermediate 
variable is out, and the current selection is m0(1(b)). 
After deleting m0, the node weight distribution is 
changed. Also, m1 and m2 become intermediate 
variables. The above  select-eliminate-reassign process is 
repeated until the network vanishes. The sequence 



selection as well as the hierarchical ancestor-descendant 
relationship is kept for further use. For this example, the 
records are shown in Table I and a hierarchical variable 
ordering tree is shown in Figure 2. Here, m0 and out are 
static intermediate variables, and m1, m2 are dynamic 
intermediate variables. If the variable ordering is required, 
we simply decode these records and the final variable 
ordering {x3, x4, x1,x2, x5, x6} is deduced. 
 

III.3 Implementation of MBDs 
   MBDs are implemented using the algorithms described 
in [10]. In order to reduce the size of the MBD, we add 
one extension to our implementation: some internal parts 
of the MBD are replaced by static intermediate variables, 
and an additional complete BDD is used to present the 
subfunction associated to each static intermediate 
variable. This technique is illustrated in Figure 3. Assume 
that p0 is a duplicated subgraph in the MBD and all the 
variables in p0 are covered by a static intermediate 
variable VS(this condition results from the structure of the 
hierarchical order tree). If the static intermediate variable 
appears k times in the MBD and if the size of the 
corresponding BDD is sp, [k * sp - (sp + k)] vertices can 
be saved as long as we substitute the covered inputs by the 
intermediate variable VS. 
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Figure 3. Static Intermediate Variable. 

The use of static intermediate variables into the MBD 
destroys the canonical form, since these are only extracted 
from a particular network. However, for some 
applications, e.g. test pattern generation, this hierarchical 
MBDs can be used more efficiently than the flattened 
version.  
 

IV. MBD compaction using SE 
 

IV.1 Stochastic Evolution 
 Stochastic evolution (SE), a technique dedicated to 
combinatorial optimization, was proposed by Saad and 
Rao in [8].  The method is similar to Simulated Annealing 
(SA). The main difference is that SE accepts initially only 
positive gains. Hill climbing starts only when a local 
minimum is reached. This approach allows SE to 
converge faster than SA with similar or better results [8]. 
 The basic idea is to seek a global minimum of a cost 
function defined over a discrete domain D, called state 
space. Each state S is a mapping of a set of movable 
elements M into a set of locations L: S: M -> L. A new 
state S' is generated by moving some elements in S. A 

move m can be simple or composed and must generate a 
unique new state S'. The gain of a move m is: gain(m) = 
cost(S) - cost(S'). Each move is accepted if the gain > 
random(-p), where p is the parameter that allows negative 
gains in order to perform hill climbing. R controls the 
number of iterations, which is an estimation of the time 
needed to improve the current solution. Each time a better 
solution is found, the counter is decremented by R, 
providing more steps to the SE algorithm. 
 The generation and acceptation of new states are done 
by the function perturb_SE. The update function 
modifies the control parameter p according to some 
heuristics depending on the kind of problem. These 
functions are described in subsection IV.3. 
 

IV.2 Incremental Manipulation 
 The incremental manipulation of MBDs is a technique 
that allows to generate new orderings by exchanging pairs 
of adjacent variables vi, vi+1 in the ordering while 
updating the MBD accordingly. The operation is divided 
into two steps: first, update the subgraphs defined by the 
vertices with indices i, i+1 to reflect the new ordering; 
second, delete the redundant vertices that can arise from 
the previous step. A more detailed description of these 
functions can be found in [7], together with two greedy 
heuristics for MBD compaction. 
 

IV.3 Compaction using SE 
 The MBD ordering problem can be modelled as a 
permutation problem. We choose M={x0,..,xn-1}, the set 
of input variables, and L = {1,..., n}. The state space is the 
set of all permutations of M. A state is a bijection S: M-
>L, i.e., a permutation of the input variables. A move in 
the state space is generated by swapping two consecutive 
indexes. Let S = <x0,..., xi, xi+1,..., xn-1>, be a given 
ordering of M. S' is a neighbour of S if S' = <x0,..., xi+1, 
xi,..., xn-1> for some i in {0, ..., n-2}. The cost function 
cost(S) is the number of vertices or size of the MBD. R 
and p0 where determined experimentally. R = 15 and p0 = 
3 have produced the best results. The main function is 
MBD_SE, sketched in figure 4.  
 The function perturb_SE (Figure 5) performs a 
composed move. Each simple move is accepted if the gain 
is positive or if it is smaller than a random negative value 
between 0 and -p, the controlling value. Variables can 
thus be arbitrarily displaced in the ordering. A potential 
problem with the SE algorithm is the lack of large hill 
climbing steps. The solution can cycle around a local 
minimum if the valley is too deep. There is no mechanism 
to prevent the process to return to the same local 
minimum after some steps. To avoid this problem a 
random state is generated if the best solution is not 
improved after R steps. R is chosen as the expected 
number of iterations to improve the best solution. 



function MBD_SE (mbd, costf) : state; 
begin 
 initialize data; 
 while (r < R) begin 
   Cold = costf (mbd); 
   mbd = perturb _SE(mbd,p,costf); 
   Ccur = cost (S); 
   update (p, Ccur, Cold); 
   if (Ccur < cost (mbdbest)) then  
  begin 
    mbdbest = mbd; 
   r = r - R; 
   end 
   else r = r + 1; 
 end; 
return (mbdbest); 
end; 

Figure 4. MBD_SE algorithm. 
 
function perturb_SE (mbd, p, costf): mbd; 
begin 
if solution not improved after R steps then  
 return(random order); 
foreach index i  
 swap indices i, i+1.  
  Accept the swapping if gain > random(-p),  otherwise 
swap back indices i, i+1. 
return (mbd); 
end; 

Figure 5. Perturb_SE algorithm. 
 
function update (p, Ccur, Cold, Queue) 
begin  
 compute the average of last four values 
  if ((Ccur - average) < Threshold) 
   then return(p + 1,S) /* increase p */ 
   else return (Pse,S); /* else return default */ 
end; 

Figure 6. Update algorithm. 
 The function perturb_SE generates states that 
oscillate around a local minimum if when updating p as in 
[8]. To circumvent this problem we update p as shown in 
figure 6. The parameter threshold is set to 3 and graduates 
the amount of oscillation allowed. 
 

V. Supernodes 
 To reduce the complexity of MBD manipulation, we 
introduce the concept of supernodes. Supernodes are a 
means to group together locally connected vertices in an 
MBD so as to form clusters that can then be treated as a 
single vertex of the MBD.  
 

V.1 Definition 
 Informally, we define a supernode as a subgraph of an 
MBD containing two special non-terminal vertices, 

unique but not necessarily distinct, called initial and final. 
Any arc of the MBD beginning in the initial vertex must 
pass through the final vertex before reaching a terminal, 
and the longest arc in the supernode must visit every 
vertex in the subgraph. A more formal definition follows. 
 Definition - A supernode S of an MBD M =(V, E), 
where V is a set of vertices and E is a set of edges (a set of 
ordered pairs of vertices), is a subgraph of M recursively 
defined by the following axioms: 
 (a) Every single vertex s in M determines a supernode 
S1 = (V1, E1), where V1 is the set containing s as single 
element, and E1 is the empty set, s being both initial and 
final; 
 (b) Let S1 = (V1, E1), S2 = (V2, E2) be two 
component supernodes of M, and p ∈ V1, q ∈V2, and r 
∈ V - V1 - V2, three vertices, where p and q are either 
initial and final or final and initial vertices, respectively. 
Thus, if ∃a, b, c∈ E - E1 - E2, such that 
 either c = (p, q) or c = (q, p), 
 and  a = (p, r), b = (q, r), 
then S3 = (V1 ∪ V2, E1 ∪ E2 ∪ 
  { c | c = (p, q), if p is final and q is initial 
     or c = (q, p), otherwise}) is a supernode. 
 The initial and final vertices of this new supernode are 
either the initial vertex of V1 and the final vertex of V2, if 
p is final and q is initial or the initial vertex of V2 and the 
final vertex of V1, otherwise. 

A

low high
A+B'

B

0 1

1 0

A

low high
A+B

B

0 1

0 1

A

high low
AB'

B

1 0

0 1

A

high low
AB

B

1 0

1 0

 
Figure 7. Simple supernode cases. 

 
 The above definition says that a supernode S comprises 
a finite set of vertices of M, each of these vertices 
connected to another supernode completely contained in S 
(or to a terminal vertex), either as a source or as a sink, 
such that they share the sink vertex for one of their output 
edges. Note that neither the common sink vertex nor the 
edges pointing to it need be part of S. Figure 7 shows all 
configurations of 2-vertices supernodes, and the 
associated factored forms. The general case can be 
inferred from these. 
 Supernode S2 is contained in a supernode S1 if V2 
⊆ V1. If V2 ⊂ V1, we say that S2 is properly contained 
in S1 or that S2 is a proper supernode of S1. The size of 
a supernode is the cardinality of its set of vertices. 
 Another useful concept is the level of a supernode S = 
(V, E), a positive integer such that: (a) If S is a single-



vertex supernode, it has level 0, and (b) If this is not the 
case, we determine the level of S using a recursive 
procedure: partition V into two sets V1 and V2, such that 
V1 is a singleton containing the initial vertex of S and V2 
contains all other vertices of S. This procedure determines 
two supernodes: S1 = (V1, E1), S2 = (V2, E2), by the 
supernode definition axioms. If we know the level of S2 
to be n-1, the level of S will be n-1, if there is a level-0 
supernode in S2 that forms a supernode with S1. 
Otherwise, the level of S is n. 
 Special supernodes can be defined. A supernode is 
maximum if no supernode in the MBD properly contains 
it. A supernode is maximal if no supernode with the same 
initial vertex in the MBD properly contains it. Let M = (V, 
E) be an MBD and S = (V1, E1) be a supernode of M. Let 
also c = (p, q) be an edge of E - E1, i. e. an edge of M but 
not of S. S is a closed supernode iff, for all c such that q 
∈V1, q is always the same vertex and, at the same time, 
no vertex but q is the initial vertex of any SOISF of the 
MOISF represented by M. This implies that a closed 
supernode is one which interacts the least possible with 
the surrounding vertices of M. Stated otherwise, if S is a 
closed supernode, every edge going from a vertex not in S 
to a vertex of S must have as sink the initial vertex of S. 
The last requirement prevents that some internal vertex of 
a closed supernode be some root of M. 
 
V.2 Properties 
 The main property of supernodes is that any closed 
maximum supernode behaves like a single vertex in the 
MBD. Yet, any supernode is connected to the rest of the 
MBD through exactly two output edges, called low and 
high of S, although these are not really part of S. These 
edges coincide with the outputs edges of the final vertex 
of S. In practice, the low and high of S may not 
correspond to the low and high edges of the final vertex of 
S. Figure 7 shows how we define low and high for all 
cases of 2-vertices supernodes. Again, inference from 
these lead to the general case. 
 Supernodes contain neither terminal vertices nor more 
than one vertex associated with the same variable in its set 
of vertices. Also, there is exactly one arc in a supernode 
which visits every vertex of V. Second, any supernode S 
can be represented by a factored form containing only as 
many literals as there are vertices in V. This provides 
better ways for doing factorization and decomposition of 
MBDs than the approach of using the Shannon expansion. 
This is illustrateed in Figure 8. Using the Shannon 
expansion approach, the factored forms extracted from 
this MBD would be 

f=A'+A[B'[C'F'G'+CD'E'F'G']+BD'E'F'G'] 
 However, if we preprocess the MBD collecting vertices 
into supernodes, we can factorize better. Using algorithms 
to find maximal supernodes, we end up with four of them: 
{A}, {B, C}, {F, G} and {D, E, F, G}. The first is a level-

0 supernode, while the others are level-1. The resulting 
factorization gives: 

f = A'+A[B'C'+D'E'F'G'][B+C+F'G'] 
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Figure 8. MBD for function f. 
 
 Here, even better results can be obtained if we restrict 
attention to closed supernodes only. The factorization in 
this case would be obtained from a single level-3 
supernode with all vertices of the MBD, and the 
associated expression would be 

 f = A'+F'G'[B'C'+D'E'] 
 The intermediate results obtained for this last case are 
as follows. Three closed disjoint level-1 supernodes are 
found in a first step: {B, C}, {D, E}, and {F, G}. After 
this, two closed level-2 supernodes are successively 
found: {B, C, D, E} and {B, C, D, E, F, G}. Finally, the 
level-3 supernode comprising all vertices in the ROBDD 
is obtained from the last, 6-vertex supernode. 
  

VI. Experimental results 
 Tables 2 and 3 compare our method (column Hier) to 
others available in the references. Table 2 shows small to 
medium examples, and the times reported in it refer to a 
Lisp prototype running on a Macintosh II. Table 3 
displays the ISCAS benchmarks results. These are the first 
results we obtained with our C implementation, on a 
DEC5000/200 workstation. Stochastic evolution 
algorithms are not yet available in this new version. Both 
tables show the time needed to build the MBD with the 
hierarchical ordering (column MBD t). Table 2 includes 
also the time needed to run the SE algorithm on the MBD, 
while Table3 contains the time to compute the hierarchical 
ordering. Sizes of MBDs are shown in number of vertices, 
and times in seconds. The SE column in Table 2 indicates 
the final size of the MBD after running the SE algorithm 
(absolute minimum sizes in parentheses, when available). 
 Some conclusions can already be drawn from these 
data. First, for small examples, our heuristics offers the 
best results in most cases, with significant gains appearing 
very often. For large examples, our results are superior to 
those presented in [10] and similar to the data in [9]. 
Second, SE can enhance the results of the best heuristics, 
at the expense of added computation. Reductions in the 
run time of SE can be obtained by fine-tuning the 
parameters of the algorithm, but this can still be quite 



costly. For larger examples, the prediction capacity of any 
heuristics is weakened. The heuristics used in [4], e.g. 
which is the same used in [9], is seen to be quite inferior 
to ours in Table 2. For larger networks, our heuristics, as 
well as the one in [9] are quite irregular, as seen in Table 
3. The heuristics in [10] are poorer than both. 
 

VII. Conclusions 
 We have presented a method to generate good 
orderings for BDDs. The first part of the method, 
hierarchical ordering, is useful in any application of 
BDDs, since it is very fast (C implementation, times to 
compute the hierarchical ordering are most often around 1 
second) and gives better results when compared with 
available methods. The second part, stochastic evolution, 
is helpful when the need to minimize the BDD is more 
important than the time to do it. For example, the 
application of SE when doing verification can be too 
expensive, since SE may multiply the MBD building time 
by a factor of 10 or 100. On the other hand, if we are 
applying BDDs to dual cascode voltage switch synthesis 
(DCVS), reducing the final size of the graph is the main 
issue. The added computation is then directly associated 
with a better synthesis, and longer building times can be 
afforded. For intermediate cases, the faster but less 
performing incremental techniques described in [7] may 
be used. 
 Supernodes were introduced to identify special clusters 
of vertices in BDDs. Their goal is to reduce the 
manipulation of these graphs, but their applicability must 
be further investigated. 
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Table 2. MBD size comparison (Running on Macintosh II - LISP). 
Benchmark data Ordering Data (vertices) Size (vertices) Time Data 

Name Inp Out  [4]  [3] [10] Hier SE MBD t(s) SE t(s)   
5xp1 7 10 96 92 75 71 70 (70) 11.23 95.0 
Alu3 10 8 124 148 75 70 65 8.08 74.8 
Bw 5 28 115 120 133 126 107 (107) 16.44 230.4 
Duke2 22 29 873 685 495 463 370 81.15 4322.6 
Misex2 25 18 133 147 150 130 91 5.60 885.8 
P1 8 16 260 264 252 201 193 (193) 26.52 344.0 
Signet 39 8 4496 3340 4788 2719 1690 440.40 9 hours 
Sn181 14 8 1316 847 942 795 773 51.14 3330.8 
X9dn 27 7 430 284 207 117 91 11.03 416.0 

 
Table 3. MBD size for ISCAS benchmarks (Running on DEC 5000/200 - C). 

Benchmark data Ordering Data (vertices) Time Data 
Name Inp Out  [9] [10] Hier Ord t(s) MBD t(s) 
C432 36 7 30200 103954 30520 0.45 54.93 
C499 41 32 49786 36934 44165 1.65 52.63 
C880 60 26 7655 30899 7490 1.02 4.82 
C1355 41 32 39858 119412 56112 1.64 63.57 
C1908 33 25 12463 39517 21895 2.26 24.10 
C5315 178 123 32193 41538 4433 4.76 4.62 

 


