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Pseudo-dichotomies and its use in simultaneous state
minimization and state assignment

Ney Laert Vilar Calazans

Abstract: The objective of this work is to introduce a discussion about the
simultaneous state minimization and state assignment of finite state machines.
In this work, the pseudo-dichotomy concept is evaluated in its capacity to
provide a unified framework, useful to represent the set of constraints
corresponding to each of the problems. The discussion is based on the
development of examples.

I - Introduction

The automatic synthesis of digital systems, as it is performed today requires the extensive use
of hierarchical decomposition of the design process into abstraction levels. The logic level is
intermediate between what is now known as high-level synthesis (either behavioural or
structural) and low-level (or layout) synthesis. The logic level plays an important role in the
synthesis of finite state machines (FSMs), a widespread and general means to implement many
of the functionalities of modern digital circuits.

It is in the logic level that some of the harder problems associated with the synthesis of FSMs
appear, such as state assignment, state minimization and combinational logic minimization. The
first and the last of these problems have received continued attention for a long time, and are
still regarded as not satisfactorily solved questions, even though some methods have appeared
that solve restricted versions of them [Bra84] [Bra87] [Dev88] [Sau87] [Vil89]. On the other
hand, the state minimization of FSMs experimented a period of effervescence in the 60’s, when
the basic theory was set up [Pau59] [Gra65], its popularity declining in the next two decades.
One proof of this is the nonexistence of state minimization programs in most commercial and
academic FSMs synthesis systems. It seems that the designers of these systems simply took for
granted that the generation of FSM specifications without redundant states was easy. Quite
recently, some works have shown [Ave90] [Hac91] [Kan91] that this is not the case. Some
well known machines, used as benchmarks for state assignment synthesis simply turned out to
be composed of only one compatibility class comprising all states in the machine. This implies
that the functionality of the machine can be implemented by a single combinational circuit. Most
modern synthesis systems, when trying to implement the specification of these machines
produce, at the end, a complete sequential circuit, with a combinational part implementing the
transition and output functions and a register to store the present state. This lack of insight of
present systems results in waste of precious semiconductor surface.

The idea of this work is to propose the integration of state minimization procedures in the
ordinary design process for the logic level of abstraction. Also, we intend to investigate the
relationship between state minimization and state assignment of FSMs. Intuitively, we know
that these two synthesis steps are not independent, and too strong a state minimization can
actually deteriorate the performance level accessible to the best available state assignment
technique. Since both state minimization and assignment rely upon the satisfaction of
constraints extracted from the machine description, we intend to formulate both problems
within a unified framework. One starting point are the recently introduced symbolic
minimization methods [dMi85] [dMi86], that allow a quick estimation of the potential results of
a good assignment to be obtained. On the other hand, the introduction of the concept of pseudo-
dichotomies [Yan91] [Sal91], also called simply dichotomies, provides us with a first tool to
approach both problems using a single formulation, as it will be shown here.
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In the next section we provide a case study of synthesis of FSM. At the end of the case study, a
discussion about the feasibility of using pseudo-dichotomies for the simultaneous solution of
state minimization and assignment is presented. The term definitions needed to follow the
exposition below can be found in [dMi85], [Gra65] and [Yan91].

Solving the state reduction and assignment problems concurrently is not a totally new idea
[Lee84][Ave91], but the formulation used in previous works is both incomplete and
fragmentary.

II - Case Study

The example we chose is an FSM called lion9. This machine is part of the benchmark set of
the Octtools synthesis system. It is described in the kiss format, where inputs and outputs are
already binary coded, while states are represented symbolically. We first give the state
transition table in Table 1 below. The machine has 2 (binary) inputs, 1 (binary) output and 9
states. This machine presents a particularity in its structure that makes it useful for a first
assessment  of the problems, it contains no conditionally compatible states. This means that no
non-trivial closure constraint is imposed on the state minimization phase.

lion9 0 0 0 1 1 0 1 1
st0 st0,0 - , - st1,0 - , -
st1 st0,0 - , - st1,0 st2,0
st2 - , - st3,0 st1,0 st2,0
st3 st4,1 st3,1 - , - st2,1
st4 st4,1 st3,1 st5,1 - , -
st5 st4,1 - , - st5,1 st6,1
st6 - , - st7,1 st5,1 st6,1
st7 st8,1 st7,1 - , - st6,1
st8 st8,1 st7,1 - , - - , -

Table 1 - Symbolic state transition table for machine lion9

In order to implement this machine efficiently, we devised a procedure capable of generating a
good state assignment, while at the same time reducing the number of states. This procedure is
based upon the method proposed in [Yan91]. In fact, we just imagined to relax the injectivity
constraints required by this method (that says, for short, that distinct states should correspond
to distinct codes), so as to allow the coding of all states belonging to a single compatibility class
with identical or compatible codes. This is of course equivalent to doing simultaneous state
reduction and state assignment, at least for the class of machines we address now, i. e. those
with no closure constraints

To illustrate the procedure, we are going to apply it to the lion9 machine. We start from the
kiss description, presented in Figure 1 below. This description is to be used as the source to
the first step of the method, i. e. the generation of the input constraints. Note that we will
restrict ourselves to the state assignment based on input encoding techniques only. Nonetheless
the method has already been extended in [Cie91] to deal with both, input and output encoding
constraints. The restriction we impose here is done to keep the clarity of the exposition, since
the generalization of the procedure should pose no major problem.

In order to generate the input constraints, we must perform the symbolic minimization of the
cover in Figure 1. To do so, we translate the description kiss into a symbolic multiple-valued
cover. The inputs remain in their original binary format, but states are transformed into an
equivalent one-hot encoding [dMi85], the same transformation being performed on the outputs,
to allow for output-disjoint minimization. The resulting description is shown in Figure 2. Note
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that states are now associated to columns in the symbolic cover, st0 to the first column, st1 to
the second one and so on. The symbolic cover is submitted, then, to a multiple-valued
minimizer. In our case, we used Espresso-MV [Rud85], a tool from the already mentioned
Octtools package. The resulting minimized symbolic cover is presented in Figure 3. This result
is in fact an upper bound for the final solution. At least one solution of the encoding problem
exists where the number of cubes of a PLA implementation is exactly the same as the number of
cubes in the final symbolic cover. In our case, the final minimized symbolic cover have 11
cubes.

.i 2

.o 1

.p 25

.s 9
10 st0 st1 0
00 st0 st0 0
00 st1 st0 0
10 st1 st1 0
11 st1 st2 0
10 st2 st1 0
11 st2 st2 0
01 st2 st3 0
11 st3 st2 1
01 st3 st3 1
00 st3 st4 1
01 st4 st3 1
00 st4 st4 1
10 st4 st5 1
00 st5 st4 1
10 st5 st5 1
11 st5 st6 1
10 st6 st5 1
11 st6 st6 1
01 st6 st7 1
11 st7 st6 1
01 st7 st7 1
00 st7 st8 1
01 st8 st7 1
00 st8 st8 1
. e

Figure 1 - The kiss description of lion9

The second column of the cover in Figure 3 corresponds to the input constraints we were
looking for. Let us isolate this column, generating the input constraints matrix MR. This matrix
is shown in Figure 4 with the associated seed dichotomies. For simplicity, the states are
represented from now on as single integers (st0 is 0 , st1 is 1 , and so on). Note that the
reduced input constraints matrix mentioned in [Yan91], MSR is identical to MR, since neither
duplicated rows nor rows containing only 1s are present. At this point, the differences between
the approach of [Yan91] and ours begin to appear. In [Yan91], while generating the seed
dichotomies, any dichotomy covered by a dichotomy previously created is stripped from the
final set. We strip only repeated dichotomies, since our approach is to reduce this first set by
eliminating some chosen constraints. Thus, we cannot strip covered dichotomies in this step,
since this could lead to inconsistencies in the final set of seed dichotomies.

.mv 5 2 9 9 2

.k i s s

.p 25
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10 100000000 010000000 10
00 100000000 100000000 10
00 010000000 100000000 10
10 010000000 010000000 10
11 010000000 001000000 10
10 001000000 010000000 10
11 001000000 001000000 10
01 001000000 000100000 10
11 000100000 001000000 01
01 000100000 000100000 01
00 000100000 000010000 01
01 000010000 000100000 01
00 000010000 000010000 01
10 000010000 000001000 01
00 000001000 000010000 01
10 000001000 000001000 01
11 000001000 000000100 01
10 000000100 000001000 01
11 000000100 000000100 01
01 000000100 000000010 01
11 000000010 000000100 01
01 000000010 000000010 01
00 000000010 000000001 01
01 000000001 000000010 01
00 000000001 000000001 01
. e

Figure 2 - The mixed binary/multiple-valued description for lion9

.mv 4 2 9 9 2

.p 11
00 110000000 100000000 10
01 001000000 000100000 10
10 111000000 010000000 10
11 011000000 001000000 10
11 000100000 001000000 01
00 000000011 000000001 01
01 000110000 000100000 01
10 000011100 000001000 01
00 000111000 000010000 01
11 000001110 000000100 01
01 000000111 000000010 01
. e

Figure 3 - The minimized mixed binary/multiple-valued description for lion9

The next step in the Yang and Ciesielski procedure would be to add the seed dichotomies to
guarantee the injectivity of the encoding mapping, in case any is needed. Here resides the
fundamental change we propose. Instead of adding the injectivity constraints, we propose first
to make a state-pair compatibility analysis for the machine. The result of this analysis is
depicted in Figure 5. Note here that this machine has no conditionally compatible state pair, as
stated before. This implies that any set of compatibles covering the initial set of states is
acceptable as a solution of the state minimization problem. Closure constraints are, in general
harder to satisfy than the covering ones, so we decide to treat first the special case where they
do not exist or are trivial.

   MR Seed Dichotomies
110000000 - (01:2) (01:3) (01:4) (01:5) (01:6) (01:7) (01:8)
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001000000 - (2:0) (2:1) (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
111000000 - (012:3) (012:4) (012:5) (012:6) (012:7) (012:8)
011000000 - (12:0) (12:3) (12:4) (12:5) (12:6) (12:7) (12:8)
000100000 - (3:0) (3:1) (3:2) (3:4) (3:5) (3:6) (3:7) (3:8)
000000011 - (78:0) (78:1) (78:2) (78:3) (78:4) (78:5) (78:6)
000110000 - (34:0) (34:1) (34:2) (34:5) (34:6) (34:7) (34:8)
000011100 - (456:0) (456:1) (456:2) (456:3) (456:7) (456:8)
000111000 - (345:0) (345:1) (345:2) (345:6) (345:7) (345:8)
000001110 - (567:0) (567:1) (567:2) (567:3) (567:4) (567:8)
000000111 - (678:0) (678:1) (678:2) (678:3) (678:4) (678:5)

Figure 4 - The input constraints matrix MR and the seed dichotomies for machine lion9

Figure 6 shows the merge graph for this example, from which the maximal compatibles
(represented by the maximal cliques in the graph) can be easily extracted by inspection.

1 -
2 - -
3 X X X
4 X X X -
5 X X X X -
6 X X X X X -
7 X X X X X X -
8 X X X X X X - -

0 1 2 3 4 5 6 7

Figure 5 - The state pairs compatibility analysis for machine lion9
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Figure 6 - The merge graph for machine lion9

Our procedure is the following. Associate with each pair of states one elementary dichotomy, in
the obvious way. Each dichotomy corresponding to a pair of incompatible states is to be added
to the set of seed dichotomies coming from the input coding constraints, in case it is not already
covered by any of the seed dichotomies. This amounts to impose that distinct (or incompatible)
codes are to be assigned to the states of an incompatible pair of states. On the other hand, each
dichotomy in the present set of seed dichotomies that has elements of a compatible pair in
different blocks (in other words, each dichotomy that covers some elementary dichotomy
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generated by a pair of compatibles) is to be transformed, so as to eliminate the part of the
dichotomy that prevents the assignment of identical (or compatible) codes to states belonging to
a single class of compatibility. The set of dichotomies created by the compatible pairs of states
are thus forbidden dichotomies. In our example, no elementary dichotomy is added, since
every elementary dichotomy coming from pairs of incompatible states is already covered by
some seed dichotomy. On the other hand, some seed dichotomies must be replaced. The
forbidden elementary dichotomies, together with the set of seed dichotomies resulting from the
replacement process described above are depicted in Figure 7. Replaced dichotomies are
marked with *. In some cases, the dichotomy vanishes completely, since no constraint remains
after eliminating the forbidden part.

Finally, we eliminate those seed dichotomies covered by others in the set. The resulting set of
constraints to be satisfied by the implementation is shown in Figure 8. Note that the order of the
operations described here is not the only one possible. In fact, if the forbidden dichotomies are
generated in the first place, there is no need to store the whole set of seed dichotomies, making
a practical application more efficient in terms of memory space.

Forbidden Dichotomies: (0:1) (0:2) (1:2) (3:4) (4:5) (5:6) (6:7) (6:8) (7:8)

MR Seed Dichotomies
110000000 -          (01:3) (01:4) (01:5) (01:6) (01:7) (01:8)
001000000 -                 (2:3) (2:4) (2:5) (2:6) (2:7) (2:8)
111000000 - (012:3) (012:4) (012:5) (012:6) (012:7) (012:8)
011000000 -           (12:3) (12:4) (12:5) (12:6) (12:7) (12:8)
000100000 - (3:0) (3:1) (3:2)         (3:5) (3:6) (3:7) (3:8)
000000011 - (78:0) (78:1) (78:2) (78:3) (78:4) (78:5) (78:6)
000110000 - (34:0) (34:1) (34:2) (3:5)* (34:6) (34:7) (34:8)
000011100 - (456:0) (456:1) (456:2) (56:3)* (45:7)* (45:8)*

000111000 - (345:0) (345:1) (345:2) (34:6)* (345:7) (345:8)
000001110 - (567:0) (567:1) (567:2) (567:3) (67:4)* (5:8)*

000000111 - (678:0) (678:1) (678:2) (678:3) (678:4) (78:5)*

Figure 7 - The forbidden dichotomies and the seed dichotomies set after elimination for machine
lion9

     MR Seed Dichotomies
110000000 -
001000000 -
111000000 - (012:3) (012:4) (012:5) (012:6) (012:7) (012:8)
011000000 -
000100000 -                                 (3:5)
000000011 -
000110000 -                                         (34:6)
000011100 - (456:0) (456:1) (456:2)
000111000 - (345:0) (345:1) (345:2)             (345:7) (345:8)
000001110 - (567:0) (567:1) (567:2) (567:3)
000000111 - (678:0) (678:1) (678:2) (678:3) (678:4)

Figure 8 - The final set of seed dichotomies after eliminating covered dichotomies for machine
lion9

From this last set of dichotomies we have to arrive to the coding of states in the best possible
way. The graph colouring approach can be used, but more powerful cost functions must be
developed for evaluating the quality of the result, since we have more degrees of freedom for
generating the final encoding. For this particular example, we know that the least number of
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states possible is four, and the least number of encoding bits is thus two. A first solution can be
obtained by using the knowledge we have from the problem. We know the maximal
compatibility classes and we can force the merging of dichotomies to be as balanced (according
to [Yan91]) as possible. One solution for the minimum covering of the set of seed dichotomies
is presented in Figure 9, with the corresponding assignments shown.

Final Dichotomies: (01234:5678)
(01278:345)
(456:012)

Encodings
Initial Final

St Code St Code
0 001 {0, 1, 2} 001
1 001 {3, 4} 010
2 001 {5, 6} 110
3 01- {6, 7, 8} 100
4 010
5 110
6 1-0
7 10-
8 10-

Figure 9 - The solution of the seed dichotomy set covering for machine lion9

Note that the first encoding is partial, allowing don’t-cares to appear in the code of some states.
These don’t-cares can then be used to arrive to a final solution where the compatibles are not
necessarily disjoint, i. e. the general case for traditional state minimization procedures. The
cover is obviously closed, due to the nature of the example, as discussed before. Note also that
in the final solution, the last bit of the code can be discarded completely, since it is not needed
to distinguish between any pair of states. This arises because the two last pseudo-dichotomies
are compatible, and can thus be merged. This was not done here, so as to illustrate the
possibility of having don't cares in the first solution of the encoding.

III - Discussion

We have seen that pseudo-dichotomies provide an easy way to unify state assignment and state
minimization for a special class of machines, those without closure constraints. An important
question is: can extend the techniques above to deal also with closure constraints? In other
words could we translate closure constraints into dichotomies? Our experience showed that this
is not an easy task. The explanation resides in the mathematical weaknesses of the pseudo-
dichotomy concept. The concept cannot be mapped directly to any well known algebraic
structure, even though pseudo-dichotomies emanate directly from the mathematically well
behaved partition concept. The sum of dichotomies is defined only if special conditions hold on
the members of the structure, the same being true of the product of dichotomies. In the general
case, neither supremum nor infimum elements can be defined for a pair of dichotomies.

When we merge dichotomies, we automatically lose some degrees of freedom. For example,
suppose we have two dichotomies (12:34) and (15:36). If we merge them, we have
(125:346), which has the additional seed dichotomies (4:5) and (2:6), neither of them
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present in any of the original dichotomies. In our case study, we can see that the initial set of
dichotomies does not allow the merging of states 4 and 5 in a single state, since their codes are
incompatible. Nonetheless, we know from the compatibility analysis that these states do form a
compatible. If dichotomies are to be retained as a general framework, better algorithms for the
dichotomy merging have to be found.

Another problem is how to proceed systematically from the final set of seed dichotomies until
finding the most adequate set of merged dichotomies. The cost functions to minimize must be
carefully studied, since they must lead to:

a)   the     least      number      of      distinct     codes   - meaning greatest state minimization;
b)   the     code     the       most     sparse   - meaning the greatest possibility of minimization of the final

combinational part and use of state splitting techniques;
c)   the     code       with     the       minimum     length     in      bits   - meaning the least number of outputs for

the combinational part of the machine.

To allow c) above to arise, we need to minimize the cardinality of the final set of merged
dichotomies. To allow b) above to be attained, the dichotomies must be the smaller the
possible, which in fact conflicts indirectly with the requirement of c). Finally, to easy the
fulfilment of a),  compatible states must be the more frequently the possible in the same block
of the dichotomies. Also, the last desirable situation which favours b) to happen can be seen as
a secondary goal to obtain compatible codes for sets of compatible states, since this creates
more possibilities for merging codes (due to the arising of don’t-cares).

Every time states are not coded directly as equal values but present, nonetheless compatible
codes, we can merge them. For example, state 6 code in the case study was “customized” to
belong to more than one compatibility class.

Due to all the above results in trying to use dichotomies for studying the correlation between
state minimization and assignment, we are presently investigating alternatives to the unified
framework. The most promising way, up to now has been the application of Boolean equations
to model all of the constraints associated with both problems.
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