
Incremental Reduction of Binary Decision Diagrams

R. Jacobi, N. Calazans, C. Trullemans.
Université de Louvain

Laboratoire de Microélectronique - Place du Levant, 3
B1348 Louvain-la-Neuve Belgium

Tel: (32) 10 472583 Fax: (32) 10 452272

Abstract

Binary Decision Diagrams (BDDs) became popular after the ordering constraints
proposed by Bryant [1]. BDDs can provide compact canonical representations of Boolean
functions. BDDs have been widely used in circuit testing, verification and synthesis
[1 2 3 4]. An associated problem is to find good variable orderings to avoid the
exponential explosion of the number of nodes and also to speed up the algorithms that
manipulate BDDs. Some heuristic techniques are emploied to find good initial orderings
based on the circuit structure. Usually, after the complete BDD is built no further
reduction is tried. We present here a new method to reduce the number of nodes of a BDD
after its construction, which we call incremental reduction. It is based on an algorithm
that swap two adjacent variables in the BDD ordering. The initial ordering is obtained by
an algorithm based on [2]. Our experiments have shown that an average reduction of
20% on the number of nodes of these initial BDDs can be achieved with our method.

1. Introduction

Binary Decision Diagrams are acyclic graphs obtained by applying an ordering constraint
over the input variables and reduction operations on a Binary Decision Tree, as proposed
by Bryant [1]. In figure 1 we exemplify the tree and diagram for a function f = ab + ac +
bc. The ordering consists in associating to each level of the tree a unique input variable.
Each variable has an index that identifies its level in the BDD.

Figure 1. (a) binary decision tree (b) binary decision diagram

0 1

x1

x2x2x2

x0

x1

110 0 0 1

x2

(a)

x2

x1

x0

x1

0 1

(b)

Reduction operations consist in eliminating redundant nodes from the binary tree. A node
can be eliminated if

a. its low and high sons are equivalent
b. there is another node in the graph with the same index (1)
 and with equivalent low and high sons, respectively.

A BDD can be viewed as a compact representation of a truth-table. The value of the
function for a given input vector is obtained by traversing the diagram, starting at the root
node and taking either the low or the high son if the value of the variable is 0 or 1,
respectively, up to reach a terminal node. Here we use a graphical convention in which
the low branch is identified by a small mark near the node.

In section 2 we present some basic definitions. In section 3 we describe the heuristics to
find a good initial ordering. Section 4 shows the incremental reduction method and
algorithms. In section 5 we present some results and section 6 is the conclusion.

2. Definitions

Some concepts used in this paper are informally defined in this section.

3. Initial Ordering

The input to our system can be either an Espresso-like PLA description or a set of
Boolean equations. Algebraic division techniques are used to produce a Boolean network
multi-level representation of the circuit. Over this Boolean network we run a heuristic
algorithm based on [2] to find a good initial ordering. In [2] a very simple algorithm is
proposed that traverses the circuit structure in a depth first way and put the variables
found in a list. An auxiliary heuristic is to put an input which fans-out to more than one
gate before the set of inputs currently processed. This heuristic has produced good
results, but is too much dependent on the circuit traversing order. We have tried to
circumvent this dependency while improving the algorithm efficiency. We built lists of
related (through the transitive fan-in) variables and apply some priority rules to
concatenate them in a global ordering. A more detailed description of the algorithm can be
find in [5].

4. Incremental Reduction

The basic idea is to find new orderings by swapping two adjacent variables in the BDD
variable ordering. The new ordering can lead to a smaller diagram. The incremental
reduction is divided into two main operations: swap and local-reduction. It has a local
nature: only the nodes at the swapping levels can be eliminated, as enunciated by the
following theorems.

Theorem 1: Let F be a Boolean function of the input variables X = {x0, x1, ... , xn-1}.
Let B1 be a BDD of F, constructed using the input variables ordering O1 = <a0, a1, ... ,
an-1>, where {ai} is a permutation of {xi}. Let O2 = <a0, a1, ... , ai, ai-1, ... , an-1>
be another ordering obtained from O1 by exchanging two adjacent variables ai-1, ai. The
BDD B2 of F, corresponding to this new ordering, differs from B1 only at levels i and
i+1.

Proof: in the final paper.

Theorem 2: Let B2 be the BDD obtained by the the application of the swap function on
indices i and i+1 of a reduced BDD B1. It can be shown that only the nodes at level i+1
can be eliminated by the application of the reduction operations (1) after swapping.

Proof: in the final paper.

4.1 Swap

To explain how swap can be implemented, we will analyze all the possible
subgraphs configurations in levels i and i+1 and its respective transformations.

The swap is based on the independence of the cofactor operation with respect to
the order of the cofactored variables. The BDD can be built by successively cofactoring
the function up to hit a terminal value. Consider the function f(Xn) where Xn = {x0, x1,
... xn-1}. We can build the BDD by successively calculating fx0, fx0x1, etc. Considering
that fx0x1 = fx1x0, we can verify the equivalence between subgraphs of figure 3. The
subgraphs represent possible configurations of nodes in the swapping levels i, i+1. In
short, the transformations consist in creating new nodes and exchanging some sons
between the nodes.

X0

S

X1

xi

xi+1

Figure 2. BDD partition.

x

y

y

x x

A B C A C B C

(a) (b)
A B C A B A C

x

y x x

y

x level 0

level 1 x

(d)

level 0

level 1

(e)

y

y

Figure 3. Swapping cases for the subgraphs

(c)

x

yy

A B C D

x

y

A BC D

x

4.2 Local Reduction

After swapping the variables we may have redundant nodes that must be
eliminated. As the only nodes that can be eliminated are those from level i+1, we
developed an incremental reduction function based on [1] that is applied to only one level.
Redundant nodes can be generated at level i+1 due to the subgraphs rearrangement
produced by the swap. The algorithm looks for nodes with equivalent low/high sons and
for isomorphic subgraphs. It builds a list of keys and associates each key to a unique
node. A list with the redundant nodes is built and these nodes are replaced by its
equivalent nodes in the BDD.

4.3 Algorithms

We present here the two basic algorithms developed to implement the incremental
reduction operation: swap-index and local-reduce. A pseudo-PASCAL code for these
algorithms is shown in figures 4 and 5. We give detailed explanations in the final paper.

4.4. Heuristics

Two basic heuristics are employed when trying to reduce BDDs with swap: swap-all-red
and swap-run-down. Swap-all-red evaluate first all possible swappings without changing
the MBD, and execute the swapping at the level which produces the greater reduction.
This procedure is repeated until no more reduction is achieved. Swap-run-down start at
level 0 and execute all the swappings that does not increase the BDD. The pseudo-code
for these algorithms and more details in the final paper. We will describe also some
improvements that have increased the throughput of the heuristics by one order of
magnitude.

5. Results

In our multi-level logic synthesis system we have extended the BDDs to represent
multiple-output incompletely specified functions, which we called Modified Binary
Diagrams [5]. The incremental reduction method has been extended to deal with MBDs
and we have obtained comparable results.

We have run the swap heuristics on a set of benchmark examples generated with MisII
[6]. These results were obtained in a Mac II computer, the algorithms programmed in
common LISP. The programs where also ported to a Sun 3/80 and a Microvax 3600,
where similar results were obtained. The results of the examples are presented in Table 1.
The initial ordering obtained by a LISP version of the algorithm proposed by [2] and by
our extension is shown in the first two columns. The results for the incremental reduction
refers to the orderings obtained by our algorithm. An asterisk indicate a multiple output
circuit. We can verify an average reduction of 20 per cent for the MBDs and 25 per cent
for the BDDs size.

6. Conclusion

We have presented a method that allows the incremental reduction of the BDDs which in
most of the cases results in a significant reduction of the global BDD size. This reduction
allows several algorithms that manipulate BDDs, like Boolean verification, to run faster.
As multi-level logic minimization systems spend most of the time running this kind of
algorithms [4], this reduction can represent a significant improvement in processing time.

function swap-index (i0,i1: index)

var first, {list of nodes with index = i0}
second, {list of nodes with index = i1}
fathers, {list of fathers of a node}
gfathers: {list of grandfathers of a node}

list;

begin
first := get-brothers (Brothers-Array, i0); {take all nodes with index i0}
second := get-brothers (Brothers-Array, i1); {take all nodes with index i1}
for each node n in second
begin
 fathers := get-fathers (n, Fathers-Table);
 gfathers := {n in fathers | index (n) < i0}
 fathers := fathers - gfathers;
 if (gfathers # null or is-output (n))
 then

let the original node to the gfathers or to the output function
 else {let the original node to the first father}

 fathers := remove-first-element(fathers);
for each f in fathers
 begin

duplicate-node (n);
update MBD, Fathers-Table, Brothers-Array and MBD-size;

end
 end

for each n in first
begin

il := index(low(n));
ih := index(high(n));
if (il=ih)

then if (ih = i1) {n has low and high sons at i1}
 then begin

exchange high(low(n)), low(high(n));
update Fathers-Table;

end
else begin {no high son at i1}

create a new node and place it at high(n);
update Fathers-Table, Brothers-Array, MBD-size;

end
else if (ih = i1) {n has no low son at i1}

then begin {n has high son at i1
create a new node;
place it at low(n);
update Fathers-Table, Brothers-Array and MBD-size;

end
else {no sons at i1}

change n from level, update Brothers-Array;
end
update variable order in MBD-order;

end

Figure 4. SWAP-INDEX algorithm.

function inc-reduce (i: index)

var redundat-nodes, {nodes to be eliminated}
 reduced-lis, {nodes that will stay}
 Keys, {list of node keys}
 node-lis: list; {nodes at level i}

begin
node-lis := get-nodes (Brothers-Array,i);
for each n in node-lis
begin

if (low(n) = high(n))
then redundant-lis := append (<n,low(n)>, redundant-lis)
else if (find (<low(n), high(n)> , Keys) {isomorphic subgraphs}

then begin
new-node := get isomorphic subgraph root from Keys;
redundant-lis := append (<n, new-node>, redundant-lis);

end
end;
reduced-lis := node-lis - redundant-lis;
update Brothers-Array, MBD-size;
for each pair <n,newn> in redundant-lis

for each father in get-parents(n, Fathers-Table)
begin

replace n by newn in father;
update Father-Table;

end
regenerate node identifiers in MBD;

end

Figure 5. INC-REDUCE algorithm.

Circuit Fuji Our Swap Reduction%

Duke2
X9DN
SN181
Signet
Duke2*
Misex2*
P1*
Risc*
Signet*
SN181
X9DN*

 132
 98
 247
1857
 895
 147
 275
 110
3340
 847
 471

 70
 86
 211
2053
 463
 152
 269
 112
3611
 842
 352

 52
 49
 192
1491
 427
 115
 209
 98
2418
 723
 248

25
43
 9
27
 8
24
22
13
33
14
30

Table 1. Results of incremental reduction

7. References

[1] R. E. Bryant. "Graph-Based Algorithm for Boolean Function Manipulation". In:
IEEE Trans. on Computers, vol. C-35, no. 8, Aug. 1986.

[2] M. Fujita, H. Fujisawa, N. Kawato. "Evaluation and Improvements of Boolean
Comparison Method Based on Binary Decision Diagrams", In Proceedings of the
IEEE International Conference on Computer-Aided Design, 1988.

[3] S. Malik, A. R. Wang, R. K. Brayton and A. Sangiovanni-Vincentelli. "Logic
Verification using Binary Decision Diagrams in a Logic Synthesis Environment". In
Proceedings of the IEEE International Conference on Computer-Aided Design, 1988.

[4] Y. Matsunaga, M. Fujita. "Multi-Level Logic Optimization Using Binary Decision
Diagrams". In: IEEE International Conference on Computer Aided Design,
November, 1989.

[5] N. Calazans, R. Jacobi, C. Trullemans. "Modified Binary Diagrams: an approach to
the manipulation of multiple output incompletely specified functions". Submitted to
ISCAS 91.

[6] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A. Wang. “MIS: A
Multiple-Level Logic Optimization System”, IEEE Trans. on Computer-Aided
Design, vol. CAD-6, no. 6, Nov. 1987.

