
 Session 13c6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico

29th ASEE/IEEE Frontiers in Education Conference
13c6-12

VLSI Hardware Design by Computer Science Students: How early can they start?
How far can they go?

Ney Laert Vilar Calazans, Fernando Gehm Moraes
Faculdade de Informática - Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS)

Porto Alegre - RS – BRAZIL - ZIP Code: 90619-900
E-mail: {calazans, moraes}@kriti.inf.pucrs.br

Abstract - This work describes a novel approach to teach
computer organization concepts with extensive hands-on
design experience very early in Computer Science curricula.
While describing the proposed teaching method, it addresses
relevant questions about teaching VLSI design to students in
computer science and related fields. The approach involves
the analysis, simulation, design and effective construction of
processors. It is enabled by the use of both, VLSI hardware
prototyping platforms constructed with reconfigurable
hardware and powerful computer aided design tools for
design entry, validation and implementation. The approach
comprises a 4-hour a week lecture course on computer
organization and a 2-hour a week laboratory, both taught in
the 3rd semester. In the first two editions of the course, most
students have obtained successful processor
implementations. In some cases, considerably complex
applications such as bubble sort and quick sort procedures
were programmed and run in the designed processors.

Introduction

Computer architecture and organization are well-established
disciplines in Computer Science and Computer Engineering
curricula. Quite often, these contents are covered early in
undergraduate courses, and the approach is absolutely sound.
This happens because of the crucial need to provide the
student soon with a strong understanding of the relationship
between the physical reality of hardware and the software
abstractions it implements.

On the other hand, VLSI digital systems design is a
subject usually covered, if at all on elective courses, at the
end of the undergraduate curriculum. Also, these VLSI
courses frequently deal mostly with low level aspects of the
design process. Examples of such low level aspects are
tackling only physical and logical abstraction levels.

However, computers are VLSI digital systems, formed
either by a composition of several VLSI subsystems or even
by a single VLSI chip. Thus, an excellent way to teach and
to understand their power and limitations is by effectively
designing them. Two recent technological advances allow
this to become a reality in the classroom. First, the
availability of cheap, powerful VLSI hardware prototyping
platforms based on reconfigurable hardware such as FPGAs
and CPLDs. A good example of the profusion of available
hardware aids is the list maintained by Guccione [1]. Second
the existence of easy to use, powerful, free and/or

commercial computer aided design tools for high-level
design entry, validation and implementation. Examples of
these tools are the current simulators and synthesizers based
on Hardware Description Languages (HDLs).

This work describes a novel approach to teach computer
organization through the analysis, simulation, design and
effective construction of processors using the
aforementioned advanced facilities. The next Section
describes the context and structure of the implemented
courses. Section 3 considers the merging of VLSI design
techniques into computer organization, and suggests ways to
do this into Computer Science and Engineering curricula. In
Section 4, the teaching methods employed are introduced
and discussed. Section 5 assesses issues arising from the
choices of tools and problem solving strategies. Section 6
presents the current state and the future of the reported work,
while Section 7 provides a few conclusions.

Courses Context and Structure

The proposal for computer organization teaching is part of a
revised Computer Science undergraduate 9-semester
curriculum, which went into effect in the 1st semester of
1997 (starting in March) at the authors’ institution. It was
implemented as two required courses, a 4-hour a week
course on computer organization and a 2-hour a week
laboratory course both taught in the 3rd semester. The basic
prerequisites for both courses are an introduction to Digital
Circuits, a course on Algebraic Structures and another on
Physics for Computer Science. These courses provide the
student with traditional combinational and sequential logic
design techniques, lattice and Boolean algebra theory, and a
brief account of circuit and electronics theory and
instrumentation, respectively. Three other required courses,
two on computer architecture and one on microprocessors
follows those on computer organization. There is also the
possibility of taking some elective courses on selected
advanced topics on digital systems. In this way, the student
is exposed during the whole curriculum to hardware issues
regarding his future profession. This was one of the
objectives of the 1997 revision.

The computer organization (INF46183) course contents
are distributed into four units:

• Unit 1: The digital systems design process – where
models for the design process like the Y-diagram [2]
and others [3] are introduced, together with a

 Session 13c6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico

29th ASEE/IEEE Frontiers in Education Conference
13c6-13

discussion of digital systems’ classifications and the
basic digital circuit design flow with the use of CAD
tools.

• Unit 2: The CPU classical model – where the datapath
and control unit partitioning is explored through the
presentation of both von Neumann and Harvard
organization models and the development of a case
study design at the RTL abstraction level.

• Unit 3: Hardware description languages (HDL) – in
which is presented another, more abstract way of
designing digital systems and, in particular,
processors. This includes the redesign of the CPU
case study of Unit 2.

• Unit 4: Advanced topics on computer organization –
where the previously studied concepts are
complemented by introducing advanced hardware
structures for datapath and control unit performance
enhancement, such as pipelining and floating point
arithmetic hardware.

On the other hand, the computer organization laboratory
course (INF46184) is divided into three parts:

• Unit 1: Classical digital circuit design - where the
students familiarize with schematic capture and
simulation tools. In this unit they implement basic
combinational and sequential blocks such as adders,
ALUs, counters and finite state machines.

• Unit 2: Classical CPU design – employing the same
tools of the previous unit, the case study of the lecture
course is implemented step by step, using RTL
modules.

• Unit 3: HDL hardware design – where an HDL
language is introduced and used to describe hardware
at the behavioral and structural levels, contrasting the
complexity of the circuits they can handle with that of
the previous approach.

Computer Organization and VLSI Design
Teaching

There are two quite different ways of approaching the design
of digital systems at the undergraduate level, the one
employed in Electrical and/or Electronic Engineering, and
that of Computer Science and/or Computer Engineering.

Electrical engineering students start with a strong
emphasis in linear circuits, which are used later as the
foundation to investigate electronic phenomena and devices.
The study of digital circuits and systems principles and
techniques comes very often late in the curriculum as a
special case behavior. In this way, electrical engineers are
usually strongly aware of physical consequences of
designing digital circuits, like clock distribution problems
and timing constraints. However, they often fail to grasp
architectural and software issues of a complex VLSI design.

On the other hand, Computer Science students get
acquainted with digital systems much earlier than Electrical

Engineering students get. They employ abstract models from
Boolean Algebra as basis, instead of circuit theory models.
Thus, it is hard for them to deal with timing and power
constraints affecting the performance or even the
functionality of the whole system. However, they are usually
well equipped to deal with higher levels of abstraction such
as architectural and software issues of VLSI systems.

As mentioned in the beginning of this paper, two
technological advances, CAD tools and fast prototyping
facilities enable to teach computer organization through the
effective implementation of processors. They do so by
allowing designers to overlook most physical synthesis
issues, shifting the design effort to more abstract levels. This
approach is particularly well suited to Computer Science
students, since they may then use physical synthesis as a
push-button activity, concentrating on higher level
organization and architecture problems.

Teaching computer organization and architecture in this
way helps Computer Science students demystifying
hardware design activities. Also, the students are able to
understand more thoroughly problems appearing in future
courses like compiler performance optimization, memory
management and input-output bottlenecks at the system and
operating system level.

However, the same set of tools can most often be used
with lower level preoccupations in mind, since they include
aids for performing tasks such as IC floorplanning,
performance-driven placement, routing and clock
distribution. This would of course be a more appropriate
approach to Electrical Engineering students.

From the above discussion, it is reasonable to conclude
that the ideal team to design VLSI systems, and particularly
computers, must be a composition of both engineers and
computer scientists. One problem with multidisciplinary
teams is that they often fail to communicate properly, due to
the different views each professional has of the same basic
concepts. Another beneficial side effect of using the above
teaching approaches is to bridge this communication gap, by
providing common ground knowledge in these concepts to
both classes of professionals. This issue is better understood
by presenting a few examples of practical subjects where
communication problems arise. Let these examples be
external/internal memories and pipelining. We consider in
the analysis only what computer science students acquire to
bridge the mentioned communication gap. Several other
example subjects and the engineering student side of
bridging the gap could be devised as well. A computer
science student often learns to view memories simply, as
tables coupled with means to access their data. We propose a
simultaneous VLSI view of memory technology, which is
helpful in understanding the need to address the memory
bandwidth problem not only in hardware design, but also in
software and, above all, operating system design.

 Session 13c6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico

29th ASEE/IEEE Frontiers in Education Conference
13c6-14

BUS_A BUS_B
Memory

Data/
Instruction

ad
dr

es
s

data

BUS_C
ALU

PC (inc)

data

16 x 16
general purpose

registers

MAR

SP (inc/dec)

mux2

mux1

mux3

Source 1

Source 2
MAR

MDR

IR

RS

PC

AC

ALU

BUS_B BUS_A
0
 mux
1

write to memory

ADDRESS (memory)

DATA (memory)

write
decoder

read
decoder

w
ri

te
_r

eg

read_reg

al
u_

op

CE
RW

CE RW

n'

BUS_C

read from
memory

sel

N Z C

z’ c’
lclnzlnz

(a) Cleopatra datapath higher level schematics (b) Ramses datapath higher level schematics

Figure 1 – Case study and final work datapaths for 1998/2 edition of INF46183 course.

In this way, computer scientists are able to better interact
with hardware designers in issues like the SRAM/DRAM
trade-off. Pipelining is another point where communication
can be a problem between hardware and software personnel.
Software people usually deal with an abstract view of
pipelines, as provided by the assembly language level, which
resembles very little the multistage organization of modern
hardware pipelines. The exercise of implementing VLSI
pipelined hardware enables the computer science student to
better understand the hardware issues as well as the
implementation of the assembly language abstraction, and
thus to enhance his/her capacity to communicate with
hardware specialists.

Finally, there is the recent trend to provide curricula that
are midway between Electrical Engineering and Computer
Science such as Computer Engineering. The students of
these latter courses should benefit of the approaches
proposed above, applied in early and late moments of their
undergraduate academic experience, respectively. The basic
idea here, as well as on computer science curricula is to
modify the traditional early courses on computer
organization and architecture to include training with the
VLSI implementation of the hardware structures needed to
support the abstract view of computers in these disciplines.
Second, to employ elective courses at the end of the
curricula to deepen the training of the interested student in
topics of VLSI and computer abstract design.

Employed Methods

Both the lecture and lab courses are based mostly on the
stepwise analysis of a single processor case study named

Cleopatra [4]. Its datapath is depicted in Figure 1(a). Since
the emphasis is on computer organization models, the case
study is neither complex nor modern. It consists in a simple
8-bit, accumulator-based von Neumann core, with 13
operation codes and 4 addressing modes, amounting to 37
distinct instructions.

The Cleopatra core assists in introducing and discussing
several new concepts in the lecture course. The specification
allows exploring instruction sets, addressing modes and
principles of assembly language programming. Once these
few architectural concepts are apprehended, a processor
datapath organization of Figure 1(a) is proposed and studied.
Among the concepts introduced, it is worth highlighting:

• Control and data registers and their role.
• Memory-processor interaction, differentiating von

Neumann and Harvard organizations.
• ALU implementation and busing strategies.
• Control unit structure, comparing hardwired and

microprogrammed implementations.
The lab course examines the VLSI design view of

computer organization in detail, using CAD tools to
construct increasingly more complex modules of Cleopatra.

Both courses start with a traditional, schematic-based
approach of the core design. Later, the whole design work is
redone with modern, HDL-based tools. There are three main
reasons for doing so:

• Showing that it is possible to design at very high
abstraction levels and still obtain competitive
implementations, due to the current quality of current
CAD tools.

• Providing students with a comprehensive insight into
the panoply of hardware design methods and tools, by
comparing these two significantly distinct approaches.

 Session 13c6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico

29th ASEE/IEEE Frontiers in Education Conference
13c6-15

• Making it clear to students that HDLs are not
programming languages, which is achieved by the
mapping of schematic symbols and structures to the
syntactic and semantic structures of the chosen HDL.

The theoretical course comprises approximately 30 2-
hour lectures distributed roughly as follows:

• 25% to revisit digital circuits basics and to present
design process models and taxonomy.

• 30% to present the Cleopatra case study , developing
and discussing its schematic-based design.

• 25% to introduce a HDL and to redesign the case
study with it.

• 20% to analyze advanced concepts in computer
organization.

In the lecture course the students are required to design
a load-store 16-bit processor as final work using the target
HDL. The processor specification includes the instruction
set, addressing modes and the datapath organization. One
example datapath, provided in the last edition of the course
appears in Figure 1(b). The most important design constraint
imposed by the specification is a fixed number of clock
cycles per instruction (CPI=2). The specification of this final
work is delivered to the students during the first HDL
introductory lectures. In this way, they have 45-50 days to
complete the design and present a running functional HDL
simulation.

The lab course comprises around 15 2-hour sessions
with the following distribution:

• 60% to get acquainted with the CAD tools and
explore the schematic based approach to processor
implementation.

• 30% to investigate the HDL-based approach.
• 10% to introduce physical synthesis concepts and

training using reconfigurable devices.
At the end of the semester, the students have obtained a

deep understanding of VLSI processors design at high levels
of abstraction. They write assembly language programs that
run on the machine they implemented by themselves. Thus,
they are able to develop software and follow the data and
control information flow internal to the hardware.

Tools

It is common in teaching environments the adoption of the
so called educational or academic tools to support several
disciplines, particularly in those related to digital systems
design and validation [5,6,7]. The justification for doing so
is to avoid the alleged disadvantages associated with
commercial tools. Among these disadvantages are their steep
learning curves, the necessarily expensive hardware
platforms they require, and their limiting licensing
requirements. These last requirements reduce access in the
educational institutions to a few sites and avoid that students
have copies of the tools in their home computers. Also,
commercial tools come professedly with very complex

manuals [5]. Another frequent justification is that in some
cases no commercial tool is available to explore the subject
of the courses, as in the case of hardware formal verification
and other recent advances.

The current academic experience of the authors leads
them to disagree with all but the last of the above pleas, at
least in the case of the work reported here. Steep learning
curves and complex manuals are a fact of life, but it is
important to avoid underestimating the capacity of the
students to cope with it. On the other hand, much time is
spent in the courses convincing the students that designing
VLSI systems is indeed a formidable task. The complexity
of the tools is an invaluable help in this sense. Educational
tools may indeed ease learning, but they provide a poor
picture of the real world tools used to solve real world
problems. The adopted option here is to face them early with
the use of real world tools, even if the problems they solve
are obviously away from the state of the art by some years.
In practice, students have reacted quite favorably to the use
of commercial tools with regard to the educational tools
employed in previous courses. This occurs in response to
either the power of the tools, or to the fact they feel part of
the real world of solving complex design problems. With
regard to hardware platforms, the present state of the art in
personal computers and CAD systems technology allows the
use of professional tools on inexpensive platforms. This
combination has sufficient power to solve the biggest
problems found in undergraduate courses easily. As for
licensing requirements, many software and hardware
enterprises have formal or informal university cooperation
programs that allow charging very little or nothing for an
unlimited number of software licenses.

For example, the lab course mentioned above is
provided with two professional systems (around 30 licenses
of each), 20 hardware prototyping kits and 20 Pentium-based
NT-workstations. The only investment needed to keep the
lab up-to-date is around US$600 a year for maintenance of
one of the CAD systems.

The authors have chosen to use VHDL as the Hardware
Description Language in both courses. Again, this is not the
easiest way to approach higher level abstract design entry,
but they consider it worth, since VHDL is not only the most
complete, but also the most used of HDLs today.

The lecture course final work must be developed using a
VHDL simulator. The students have available the Aldec
Active-VHDL simulator [8] for this. The lab course employs
the Xilinx Foundation CAD system [9] for schematics and
VHDL design entry, synthesis and implementation.
Functional and timing validation for schematics is attained
through the built-in logic simulator in the Foundation
system. The Active-VHDL tool is used to guarantee
functional validation of VHDL code. This simulator can be
fully integrated in the current version of the Foundation
CAD system.

 Session 13c6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico

29th ASEE/IEEE Frontiers in Education Conference
13c6-16

Memory contents

Clock

Internal registers

Microinstruction

Functional simulation, relative to the clock transition

LOAD (indirect) ADD (indirect) STORE (indirect) LOAD (direct)

Figure 2 – Partial functional simulation of an object code program in the Cleopatra processor.

Functional VHDL simulation is the most used tool for

initial validation and error correction in the first phases of
design. As an illustration of the complex simulation run by
students, Figure 2 depicts a partial view of an object code
program execution, showing four complete instruction
cycles. The Figure stresses the functional nature of the
simulation, where no relative delay among signals is
considered.

Also employed is the SIS public domain synthesis
system from Berkeley [10], for illustrating control unit logic
synthesis strategies. Assemblers and simulators have been
developed by one of the students for the two case studies.

On the hardware side, the prototyping kit is the
combination of two products of Xess Corporation [11]: the
XS40-005XL and XST-1 boards. The first board contains a
Xilinx FPGA for hardware prototyping, an Intel 8051
microcontroller, memory and a parallel port interface for
communication with a PC host. The second board enhances
the I/O and memory capabilities of the first, providing video
and audio interfaces, as well as extended memory.

FPGA programming, software development and
hardware-software downloading and execution are achieved
directly from the NT-workstation through the parallel port
and dedicated software tools.

Current State and Evolution

In the first two editions of the computer organization courses
(98/1 and 98/2) only design entry and functional simulation
tools have been employed, due to the lack of prototyping
platforms, obtained only in 1999/1. The next step is adapting
the course contents to the new reality, inserting lab
experiments to address:

• Physical synthesis, approaching performance results
of this step.

• Timing simulation with delays computed at the
physical synthesis.

• Performance driven synthesis, with the use of timing
or area constraints.

• Downloading and testing of designs on the
prototyping platform.

This implies a major reformulation of lecture and lab
contents, and a good balance between abstract design issues
and effective VLSI hardware implementation must be
achieved in the available time.

Another consequence of the availability of effective
hardware design resources is the extension of the approach
proposed here in a near future to the computer architecture
and microprocessor courses in the same curriculum. The
main objective is to provide students with a continued
exposition to hardware design issues during their academic
life. Advanced topics that are to be covered in such
extensions are for example pipeline and cache hardware
implementation issues.

Connecting the subjects covered here to the elective
courses on digital systems at the end of the curriculum is
another possibility of extending the work. The objective can
be either to explore in more depth the CAD systems
available to implement more realistic designs or the
development of CAD algorithms. With the hardware and
software support tools available, there is one recent and
important subject that can be examined in elective courses,
the hardware software partitioning and codesign. Last but
not least, we are considering the application of this VLSI
design technology to other, apparently unrelated disciplines
in Computer Science, such as:

• Compilers – to develop as course work a C compiler
for the case study processor and/or the prototyping
platform microprocessor.

 Session 13c6

0-7803-5643-8/99/$10.00 © 1999 IEEE November 10 - 13, 1999 San Juan, Puerto Rico

29th ASEE/IEEE Frontiers in Education Conference
13c6-17

• Computer networks – to implement the lower layers
of the OSI/ISO protocol.

• Computer graphics- to implement in hardware time-
consuming algorithms, like rendering and texturing.

Conclusions

The main goals set when developing the approach proposed
in this paper are considered attained. Integrating VLSI
design and computer organization subjects were successfully
achieved.

After teaching the courses twice, the authors have
achieved a considerable level of satisfaction on the part of
the students. Several successful processor implementations
have been obtained and some of these present outstanding
functional quality. In some cases, considerably complex
applications such as bubble sort and quick sort procedures
were programmed and run in the designed processors.

It is possible now to turn the attention to the questions in
the title. How early can Computer Science students start
designing VLSI hardware design? The authors’ experience
demonstrates that students may start at the 3rd semester of
an undergraduate curriculum, and yet achieve a high degree
of success. How far can Computer Science students go in
doing VLSI hardware design? So far, it has not been
possible to answer this question fully, since only now the
hardware and software resources to do so are complete.
Before these were available it was not possible to evaluate
the potential of students to deal with lower abstraction levels
involving timing constraints and performance driven
synthesis. However, there are very optimistic expectations
regarding the future accomplishments of Computer Science
students in both VLSI design and computer organization, as
well as on other related courses.

One very important issue we are currently addressing is
the adaptation of the approach to the courses following
computer organization, computer architecture I and II. This
is fundamental to keep students simultaneously in contact
with both VLSI and computer design during the period
before they are able to follow elective courses on the subject.

A problem that only now starts to be treated by the
authors is the quantitative assessment of student
performance and effectiveness of the approach, and this
should receive increasing attention in the next editions of the
courses.

Most of the material employed in the implemented
courses, like case study specifications and design, lecture
presentations, course notes and free software are available at
the following URLs (in Portuguese):

• http://www.inf.pucrs.br/~moraes/Dorglab.html
• http://www.inf.pucrs.br/~calazans/org_comp.html
Material that is not freely available to students can be

obtained by contacting the authors directly by e-mail.

Acknowledgements

The authors would like to acknowledge the continued
support of Xilinx, Inc., which through its University
Program gracefully provided the authors’ institution with
unlimited free software licenses and prototyping boards
needed to make the full lab course implementation possible.
Aldec, Inc. has provided us with two years of free licenses of
its VHDL simulator. The authors are also grateful to the
institutions CNPq (Research grants 522939/96-1 and
520091/96-5) and FAPERGS (Research grant 94/01340-3),
which through the years have been funding the research
work of the authors, making possible the developments
reported here. The authors are in great debt with Daniel
Liedke, a former student of the computer organization
courses, who implemented assembler and simulator
programs for the two case studies used in both courses.

References

[1] Guccione, S. List of FPGA-based Computing Machines.
Available at: http://www.io.com/~guccione/HW_list.html.
[2] Gajski, D. and Kuhn, R.. New VLSI tools. Computer,
16(12):11-14, December 1983.
[3] Calazans, N. Automated Logic Design of Sequential Digital
Systems, Chapter 1: Introduction. Imprinta Gráfica e Editora Ltda,
Rio de janeiro, RJ, 1998. pp 1-42. (in Portuguese). Also available at
ftp://ftp.inf.pucrs.br/pub/ calazans/pubs/prjlog/v1.0/Cap1.ps.
[4] Moraes, F., Calazans, N., Silva, F. and Barrios,M.. Cleo-
LIRMM: um experimento de implemetação de processadores
dedicados em plataformas de prototopação de sistemas embarcados,
In: V Workshop IBERCHIP, 01-03/03/1999, Lima (Peru), p. 81-90.
[5] Maurer, P. Enhancing the Hardware Design Experience for
Computer Engineers, In: 1998 Frontiers in Education Conference,
Tempe, AR. Session T1E, pp. 60-63, November 1998. Available at:
http://fairway.ecn.purdue.edu/~fie/.
[6] Rodríguez Pardo, L., Moure, M., Valdés, M. & Mandado, E.
VISCP: a Virtual Instrumentation and CAD tool for Electronic
Engineering Learning, In: 1998 Frontiers in Education Conference,
Tempe, AR. Session S2B, pp. 1095-1099, November 1998.
Available at: http://fairway.ecn.purdue.edu/ ~fie/.
[7] Grünbacher, H. Teaching Computer Architecture/Organization
using Simulators, In: 1998 Frontiers in Education Conference,
Tempe, AR. Session S2C, pp. 1107-1112, November 1998.
Available at: http://fairway.ecn.purdue.edu/~fie/.
[8] Aldec Inc. Homepage: http://www.aldec.com/.
[9] Xilinx Inc. Homepage: http://www.xilinx.com/.
[10] Sentovich,E. et al. SIS: a system for sequential circuit
synthesis. Technical report UCB/ERL M92/41. Universy of
California, Berkeley, CA, May 1992. Available at
http://www.cad.eecs.berkeley.edu/Respep/Research
/vis/usrDoc.html.
[11] Xess Corporation. FPGA products:
http://www.xess.com/FPGA/.

