
Comments?
E-mail your comments about Synopsys
documentation to doc@synopsys.com

Getting Started
With CoCentric®
System Studio
Version U-2003.03, March 2003

ii

Copyright Notice and Proprietary Information
Copyright � 2002 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Product contains binaries derived from Esterel® V5 Sources developed by ARMINES/C.M.A (France) and INRIA
(France), and licensed to Synopsys, Inc. by Transvalor (France).

Product contains binaries derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm. Copyright �
1991-1992, RSA Data Security, Inc. Created 1991. All rights reserved.

Product contains the expat XML parser, copyright � 1998, 1999, 2000 Thai Open Source Software Center Ltd.
The expat software is provided "as is", without warranty of any kind, express or implied, including but not limited to the
warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or
copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use or other dealings in the software.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks, Trademarks, and Service Marks
of Synopsys, Inc.

Registered Trademarks (®)
Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, CoCentric, COSSAP, CSim, DelayMill, DesignPower,
DesignSource, DesignWare, Eaglei, EPIC, Formality, in-Sync, LEDA, ModelAccess, ModelTools, PathBlazer, PathMill,
PowerArc, PowerMill, PrimeTime, RailMill, RapidScript, SmartLogic, SNUG, Solv-It, SolvNet, Stream Driven Simulator,
Superlog, System Compiler, TestBench Manager, TetraMAX, TimeMill, and VERA are registered trademarks of
Synopsys, Inc.

Trademarks (™)
BCView, Behavioral Compiler, BOA, BRT, Cedar, ClockTree Compiler, DC Expert, DC Expert Plus, DC Professional, DC
Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Compiler, DesignTime, DFT Compiler SoCBIST, Direct
RTL, Direct Silicon Access, DW8051, DWPCI, ECL Compiler, ECO Compiler, ExpressModel, Floorplan Manager,
FormalVera, FoundryModel, FPGA Compiler II, FPGA Express, Frame Compiler, HDL Advisor, HDL Compiler, Integrator,
Interactive Waveform Viewer, JVXtreme, Liberty, Library Compiler, ModelSource, Module Compiler, MS-3200, MS-3400,
NanoSim, OpenVera, Physical Compiler, Power Compiler, PowerCODE, PowerGate, ProFPGA, Protocol Compiler,
RoadRunner, Route Compiler, RTL Analyzer, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger,
SmartLicense, SmartModel Library, Source-Level Design, SWIFT, Synopsys EagleV, Test Compiler, TestGen, TetraMAX
TenX, TimeTracker, Timing Annotator, Trace-On-Demand, TymeWare, VCS, VCS Express, VCSi, VHDL Compiler, VHDL
System Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
DesignSphere, SVP Café, and TAP-in are service marks of Synopsys, Inc.

Registered Trademarks and Trademarks of Avant! Corporation LLC,
a Subsidiary of Synopsys, Inc.

Registered Trademarks (®)
ASYN, CALAVERAS ALGORITHM, CUT THE RISK GET IT RIGHT MAKE IT REAL, DESIGN INSIGHT, DEVICE MODEL
BUILDER, EDA WORKSHOP, EDAASSIMILATOR, EDAVALIDATOR, Enterprise, GET REAL. GET ACEO!, HSPICE,
HYDRAULICEXPRESS, HYPERMODEL, I, INSPECS, MAST, MASTER TOOLBOX, META, META-SOFTWARE,
MODELEXPRESS, Raphael, Saber, TESTIFY, TMA, VERIASHDL, WAVECALC, XYNETIX

Trademarks (™)
Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, ASTRO, Astro-Rail, Astro-Xtalk,
ATRANS, Aurora, AvanTestchip, AvanWaves, CALAVARAS, ChipPlanner, Circuit Analysis, Columbia, Columbia-CE,
Comet 3D, Cosmos, Cosmos SE, CosmosLE, Cosmos-Scope, Cyclelink, Davinci, DFM-Workbench, Dynamic-
Macromodeling, Dynamic Model Switcher, EDAnavigator, Encore, Encore PQ, Evaccess, FASTMAST, Formal Model
Checker, FRAMEWAY, GATRAN, Hercules, Hercules-Explorer, Hercules-II, Hierarchical Optimization Technology, High
Performance Option, HotPlace, HSPICE-LINK, iQBus, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, Libra-Passport,
Libra-Visa, LRC, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Metacircuit, Metamanager, Metamixsim, Milkyway,
Nova Product Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, Optimum Silicon, Orion_ec,
Parasitic View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Progen, Prospector, Proteus
OPC, PSMGen, Raphael-NES, Saber Co-Simulation, Saber for IC Design, SaberDesigner, SaberGuide, SaberRT,
SaberScope, SaberSketch, Saturn, ScanBand, Silicon Blueprint, Silicon Early Access, SinglePass-SoC, Smart
Extraction, SOFTWIRE, Star, Star-DC, Star-Hspice, Star-HspiceLink, Star-MS, Star-MTB, Star-Power, Star-Rail,
Star-RC, Star-RCXT, Star-Sim, Star-Sim XT, Star-Time, Star-XP, Taurus, Taurus-Device, Taurus-Layout,
Taurus-Lithography, Taurus-OPC, Taurus-Process, Taurus-Topography, Taurus-Visual, Taurus-Workbench, The Power
in Semiconductors, THEHDL, TimeSlice, TopoPlace, TopoRoute, True-Hspice, TSUPREM-4, Venus, VERIFICATION
PORTAL, VERIVIEW, VFORMAL

SystemC™ is a trademark of the Open SystemC Initiative and is used under license.
All other product or company names may be trademarks of their respective owners.
Printed in the U.S.A.

Document Order Number: 37471-000 PA
Getting Started With CoCentric System Studio, vU-2003.03
iii

iv

Contents

What’s New in This Release . xx

About This Manual . xx

Customer Support . xxiii

1. Introduction

System Studio Models. 1-2

Model Views. 1-4

Model Ports . 1-6

Model Parameters . 1-6

Supported Data Types . 1-8

Specification Language . 1-9

System-Level Simulation. 1-10

2. Exploring System Studio

Starting System Studio . 2-2

Opening a Workspace . 2-3
v

Using the System Studio Design Center Windows 2-6

Menus . 2-7

Toolbars . 2-8
Standard Toolbar . 2-9
Navigation Toolbar . 2-10
Design Toolbar . 2-11
Schematic Toolbar . 2-12
Graphics Toolbar . 2-13
Zooming Toolbar. 2-13
Find Toolbar . 2-14

Workspace Window . 2-14
Models Page . 2-15
Hierarchy Browser . 2-20
Code Generation Page. 2-22
Simulation Control Panel . 2-23
Design Area . 2-25

Working in the Design Area . 2-30

Message Window . 2-32

Status Bar . 2-32

Selecting Design Objects . 2-33

Editing Design Objects . 2-33

Moving . 2-34

Copying . 2-34

Cutting . 2-35

Deleting . 2-36

Pasting. 2-36

Setting the Properties . 2-37
vi

3. Data Flow Model Tutorial

Data Flow Graph Models. 3-2

Creating the Model Structure. 3-3

Starting System Studio. 3-4

Creating a Workspace . 3-4

Creating a Library . 3-5

Creating a Model . 3-6

Defining the Model Behavior . 3-8

Creating the Model Schematic . 3-9

Simulating the Model. 3-13

Automatically Building the Simulation . 3-13

Manually Building the Simulation . 3-13

Controlling the Simulation . 3-15

Displaying System Studio Data . 3-18

Graphical Display. 3-19

Acquiring and Interpreting Data . 3-19

Displaying the Output Data Set . 3-20

Creating and Viewing Model Documentation 3-24

Creating Model Documentation . 3-25

Viewing Model Documentation . 3-26

4. OR Model Tutorial

The OR Model . 4-2

Creating the Model Structure. 4-3
vii

Starting System Studio. 4-4

Creating a Workspace . 4-4

Creating a Library . 4-4

Creating a Model . 4-5

Creating the Model Schematic . 4-7

Creating and Configuring the States . 4-8

Entering and Configuring the Transitions. 4-11

Defining the Interface . 4-19

Defining the Model Parameters. 4-23

Defining the Local Variables . 4-24

Creating the Testbench . 4-26

Configuring the Model Instances . 4-31

Checking the Model. 4-35

Building and Running the Model Simulation 4-36

Automatically Building and Running the Simulation. 4-36

Manually Building the Simulation . 4-38

Controlling the Simulation . 4-41
Checking the Output. 4-44

5. GATED Model Tutorial

The Gated Model. 5-2

Creating the Model . 5-2

Defining the Model Behavior . 5-3

Defining the Interface . 5-5
viii

Creating the Model Schematic . 5-8

Creating the First Model Page . 5-9

Creating the Second Model Page . 5-11

Defining the Gating Condition . 5-13

Finishing Up . 5-13

6. AND Model Tutorial

The AND Model . 6-2

Creating the AND Model . 6-3

Defining the Model Parameters . 6-6

Declaring the Local Variables . 6-8

Creating the FSM Model . 6-11

Defining the Transitions . 6-12

Defining the Inline Actions . 6-14

Creating The DFG Model . 6-17

Inserting the Blocks . 6-17

Inserting the Nets. 6-20

Setting the Parameter Values . 6-22

Simulating the Design . 6-25

7. Architectural Modeling

Creating an Architectural Primitive Model . 7-2

Creating the Printer Model . 7-15

Creating a Hierarchical Model . 7-21
ix

Simulating the Model. 7-27

Visualizing the Simulation With DAVIS . 7-29

Changing the Simulation Data . 7-32

Port Cloning and MultiPort Adapters . 7-35

Port Cloning . 7-35

Using Multiport Adapters . 7-45

Using CoCentric System Studio VirSim. 7-47

Simple Bus Example . 7-54

8. Exploring the Float-to-Fixed Capabilities

About the Demo . 8-3

Preparing the Demo . 8-3

Statistic Functions . 8-5

Simulating and Back-Annotating the Design 8-9
Using DAVIS to Visualize the Output 8-11

9. Importing From COSSAP

Setting Up Your Environment . 9-2

Importing COSSAP Models and Schematics 9-2

Importing a COSSAP Assignment File . 9-5

Importing a COSSAP Generic C (.gc) File 9-5

Glossary

Index
x

Figures

Figure 1-1 The System Studio Design Center 1-6

Figure 2-1 System Studio Design Center . 2-2

Figure 2-2 Open Workspace Dialog Box . 2-4

Figure 2-3 A System Studio Workspace Structure 2-5

Figure 2-4 The System Studio Design Center Window 2-7

Figure 2-5 The Standard Toolbar . 2-10

Figure 2-6 The Navigation Toolbar. 2-10

Figure 2-7 The Design Toolbar. 2-12

Figure 2-8 The Schematic Toolbar . 2-12

Figure 2-9 The Graphics Toolbar . 2-13

Figure 2-10 The Zooming Toolbar . 2-13

Figure 2-11 The Find Toolbar. 2-14

Figure 2-12 Models Page With Workspace Tree View. 2-16

Figure 2-13 Library List View . 2-17

Figure 2-14 Model Category Tree View . 2-18

Figure 2-15 Searching with The Advanced Feature. 2-19
xi

Figure 2-16 The Hierarchy Browser . 2-20

Figure 2-17 The Hierarchy Browser Configuration Properties 2-21

Figure 2-18 Setting the Code Generation Parameters. 2-22

Figure 2-19 Setting the Simulation Execution Options. 2-23

Figure 2-20 The Simulation Control Panel . 2-24

Figure 2-21 Viewing the Model Interface . 2-26

Figure 2-22 Setting a Parameter for the Model Interface. 2-27

Figure 2-23 Viewing the Model Implementation 2-28

Figure 2-24 A Typical Model Symbol . 2-29

Figure 2-25 The Basic Design Area . 2-31

Figure 2-26 The Message Window . 2-32

Figure 2-27 The Status Bar . 2-32

Figure 2-28 Setting the Graphic Object Properties 2-37

Figure 2-29 Setting the Text Object Properties 2-38

Figure 3-1 Creating a Workspace . 3-4

Figure 3-2 Creating a Library . 3-5

Figure 3-3 Creating a Model . 3-6

Figure 3-4 Viewing the Model Interface . 3-7

Figure 3-5 Defining the Model Implementation 3-8

Figure 3-6 Inserting Blocks . 3-10

Figure 3-7 View After Connecting the Blocks. 3-11

Figure 3-8 Setting the Model Parameters . 3-12

Figure 3-9 Controlling the Code Generation 3-14

Figure 3-10 Controlling the Simulation Execution 3-15
xii

Figure 3-11 Selecting the Simulation . 3-16

Figure 3-12 The Simulation Control Panel . 3-17

Figure 3-13 The Default DAVIS Workbook Display 3-21

Figure 3-14 Opening a System Studio Simulation in DAVIS 3-22

Figure 3-15 The Data File Displayed in DAVIS 3-23

Figure 3-16 Zooming the Simulation Data Graph Display 3-24

Figure 3-17 Creating the Model Documentation 3-25

Figure 3-18 Viewing the Model Documentation 3-26

Figure 4-1 Creating a Library . 4-5

Figure 4-2 Creating the Model . 4-6

Figure 4-3 Viewing the Model Implementation 4-7

Figure 4-4 Inserting the Atomic States . 4-9

Figure 4-5 Configuring the Atomic States . 4-10

Figure 4-6 Drawing the Transitions . 4-13

Figure 4-7 Drawing Transitions . 4-14

Figure 4-8 Defining Transition Tr1 . 4-15

Figure 4-9 Defining Transition Tr2 . 4-16

Figure 4-10 Defining Transition Tr3 . 4-17

Figure 4-11 Defining Transition Tr4 . 4-18

Figure 4-12 The Complete OR Model . 4-19

Figure 4-13 Defining the Ports . 4-21

Figure 4-14 The Model Symbol . 4-22

Figure 4-15 Specifying the Model Parameters 4-24

Figure 4-16 Declaring the Local Variables . 4-25
xiii

Figure 4-17 The OR Model Implementation. 4-27

Figure 4-18 Adding the Constant Model . 4-28

Figure 4-19 Adding the Multiplexer Model . 4-29

Figure 4-20 Adding the BitstoSymbol Model 4-29

Figure 4-21 Adding the WriteSignal Model . 4-30

Figure 4-22 The Completed Test Harness Schematic 4-31

Figure 4-23 Defining the Constant Model Data Type Parameter 4-32

Figure 4-24 Defining the Multiplex3 Model Parameters 4-33

Figure 4-25 Defining the BitsToSymbol Model Parameters 4-34

Figure 4-26 Defining the WriteSignal Model Parameters 4-35

Figure 4-27 Message Window . 4-37

Figure 4-28 Simulation Message . 4-38

Figure 4-29 Controlling the Code Generation 4-39

Figure 4-30 Simulation Started in Paused Mode 4-40

Figure 4-31 Selecting the Simulation . 4-41

Figure 4-32 Setting Data Watch Points . 4-43

Figure 4-33 Watching Data Points . 4-44

Figure 5-1 Defining the Design Page Types 5-4

Figure 5-2 Schematic Editor. 5-5

Figure 5-3 Gated Model Interface Definition 5-7

Figure 5-4 The Model Symbol . 5-8

Figure 5-5 Inserting a Block . 5-9

Figure 5-6 Selecting a Port to Insert . 5-10

Figure 5-7 The First Page Completed . 5-11
xiv

Figure 5-8 The Second Page Completed. 5-12

Figure 6-1 Creating the AND Model. 6-4

Figure 6-2 The Empty AND Model . 6-5

Figure 6-3 Defining the Model Parameters 6-7

Figure 6-4 Defining the Variables. 6-9

Figure 6-5 Defining the Signals . 6-10

Figure 6-6 The FSM Page . 6-12

Figure 6-7 Defining a Transition . 6-13

Figure 6-8 Defining an Inline Action . 6-15

Figure 6-9 The Completed FSM Model in Page 1 6-16

Figure 6-10 Creating the DFG . 6-18

Figure 6-11 Selecting the Port sig1 . 6-19

Figure 6-12 Inserting the Port sig1. 6-20

Figure 6-13 The Completed DFG. 6-21

Figure 6-14 Configuring a DFG Block . 6-22

Figure 6-15 Configuring the WriteSignal Block 6-23

Figure 6-16 The Completed AND Model . 6-24

Figure 6-17 Preparing for Code Generation. 6-25

Figure 6-18 The Output Waveform. 6-26

Figure 7-1 Creating the Library . 7-2

Figure 7-2 Creating the Model . 7-3

Figure 7-3 Creating the Ports. 7-4

Figure 7-4 Creating the Parameter . 7-5

Figure 7-5 The Header View . 7-6
xv

Figure 7-6 Adding a Member Process . 7-7

Figure 7-7 The Header View . 7-8

Figure 7-8 Creating the Member Data . 7-9

Figure 7-9 The Header View . 7-10

Figure 7-10 The Header View (Parameter Initialization) 7-11

Figure 7-11 Implementing the Process . 7-12

Figure 7-12 Creating the Port. 7-16

Figure 7-13 Creating the Member Process . 7-17

Figure 7-14 The Header File of the Second Instance 7-18

Figure 7-15 Creating the Process Implementation. 7-19

Figure 7-16 Instantiating the Models . 7-22

Figure 7-17 Connecting a Clock Channel . 7-23

Figure 7-18 Connecting the Instances . 7-24

Figure 7-19 Checking the Design. 7-25

Figure 7-20 Creating the Library Object Code 7-26

Figure 7-21 Creating the Simulation . 7-28

Figure 7-22 Controlling the Simulation. 7-29

Figure 7-23 The Select Simulation Dialog Box 7-30

Figure 7-24 The Connect To Simulation Dialog Box 7-31

Figure 7-25 DAVIS Display Counter Output. 7-32

Figure 7-26 Changing Simulation Parameters 7-33

Figure 7-27 Results of Changing the Parameter. 7-34

Figure 7-28 Creating a Multiport Source Model 7-36

Figure 7-29 The Member Process . 7-37
xvi

Figure 7-30 The Data Member. 7-38

Figure 7-31 Initializing the Count Parameter 7-39

Figure 7-32 The Model Source View . 7-40

Figure 7-33 The Sink Model Header View . 7-41

Figure 7-34 The Sink Model Source View . 7-42

Figure 7-35 Instantiate the Models. 7-43

Figure 7-36 Multiport Clone Test Bench. 7-44

Figure 7-37 Multiport Adapter Test Bench . 7-45

Figure 7-38 Creating the Multiport Channels - Step1. 7-46

Figure 7-39 Creating the Multiport Channels - Step 2 7-47

Figure 7-40 VirSim Main Menu and Interactive Window 7-49

Figure 7-41 Waveform Window . 7-50

Figure 7-42 VirSim Hierarchy Window . 7-51

Figure 7-43 VirSim Waveform Window . 7-53

Figure 7-44 Simple Bus Test Example . 7-54

Figure 8-1 The IIR Filter Design. 8-3

Figure 8-2 The Loaded Design . 8-5

Figure 8-3 Enabling Statistics Collection . 8-7

Figure 8-4 The Configuration Properties after Merging 8-10

Figure 8-5 The Histogram Dataset Displayed in DAVIS. 8-12

Figure 8-6 The Filter Output Displayed in DAVIS. 8-13

Figure 9-1 Importing a COSSAP File . 9-4

Figure 9-2 Importing a COSSAP GC File. 9-6

Figure G-1 Ancestors and Descendants. G-1
xvii

Figure G-2 Descendants. G-3
xviii

Preface FIX ME!

This preface includes the following sections:

• What’s New in This Release

• About This Manual

• Customer Support
xix

What’s New in This Release

To see the CoCentric System Studio Release Notes,

1. Go to the Synopsys Web page at http://www.synopsys.com and
click SolvNet.

2. If prompted, enter your user name and password. (If you do not
have a Synopsys user name and password, follow the
instructions to register with SolvNet.)

3. Click Release Notes in the Main Navigation section, find the
U-2003.03 Release Notes, then open the CoCentric System
Studio Release Notes.

About This Manual

This Getting Started With CoCentric System Studio manual is part of
the CoCentric System Studio documentation set and is intended for
novice-level System Studio users. Intermediate-level users will want
to read the CoCentric System Studio User Guide. Experienced
System Studio users or users who are looking for more detailed
technical information should also consult the CoCentric System
Studio Reference Manual.

The System Studio documentation suite consists of the following
manuals:

• Getting Started With CoCentric System Studio

• CoCentric System Studio User Guide

• CoCentric System Studio Reference Manual
xx

• CoCentric System Studio HDL CoSim User Guide

• CoCentric System Studio VirSim User Guide

• CoCentric System Studio Model Guide

• CoCentric System Studio Developer Kit Guide

• CoCentric System Studio DSP Developer Kits User Guide

• CoCentric System Studio Filter Design Tool User Guide

Audience

Getting Started with CoCentric System Studio is written for system
designers and electronics engineers designing systems who use
System Studio for modeling and simulation.

Related Publications

For additional information about CoCentric System Studio, see

• Synopsys Online Documentation (SOLD), which is included with
the software for CD users or is available to download through the
Synopsys Electronic Software Transfer (EST) system

• Documentation on the Web, which is available through SolvNet
at http://solvnet.synopsys.com

• The Synopsys MediaDocs Shop, from which you can order
printed copies of Synopsys documents, at
http://mediadocs.synopsys.com
xxi

Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys
syntax, such as object_name. (A user-defined
value that is not Synopsys syntax, such as a
user-defined value in a Verilog or VHDL
statement, is indicated by regular text font
italic.)

Courier bold Indicates user input—text you type verbatim—
in Synopsys syntax and examples. (User input
that is not Synopsys syntax, such as a user
name or password you enter in a GUI, is
indicated by regular text font bold.)

[] Denotes optional parameters, such as
pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as
low | medium | high
(This example indicates that you can enter one
of three possible values for an option:
low, medium, or high.)

_ Connects terms that are read as a single term
by the system, such as
set_annotated_delay

Control-c Indicates a keyboard combination, such as
holding down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.
xxii

Customer Support

Customer support is available through SolvNet online customer
support and through contacting the Synopsys Technical Support
Center.

Accessing SolvNet

SolvNet includes an electronic knowledge base of technical articles
and answers to frequently asked questions about Synopsys tools.
SolvNet also gives you access to a wide range of Synopsys online
services including software downloads, documentation on the Web,
and “Enter a Call to the Support Center.”

To access SolvNet,

1. Go to the SolvNet Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password. (If you do not
have a Synopsys user name and password, follow the
instructions to register with SolvNet.)

If you need help using SolvNet, click SolvNet Help in the Support
Resources section.
xxiii

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the
Synopsys Technical Support Center in the following ways:

• Open a call to your local support center from the Web by going to
http://solvnet.synopsys.com (Synopsys user name and
password required), then clicking “Enter a Call to the Support
Center.”

• Send an e-mail message to support_center@synopsys.com.

• Telephone your local support center.

- Call (800) 245-8005 from within the continental United States.

- Call (650) 584-4200 from Canada.

- Find other local support center telephone numbers at
http://www.synopsys.com/support/support_ctr.
xxiv

Introduction 1

CoCentric System Studio is a system-level design solution
consisting of tools, methodologies, and libraries that facilitates the
design and simulation of systems-on-a-chip. Such systems are at
the heart of advanced applications such as third-generation digital
cell phones with voice, data, and video capabilities; in-car
entertainment; communications and navigation systems; digital
audio; and video broadcast systems.

System Studio is a member of the Synopsys CoCentric family of
tools. It supports

• Design abstraction

• System-level reuse

• Hardware-software co-design

This chapter contains the following sections:
1-1

• System Studio Models

• Specification Language

• System-Level Simulation

System Studio Models

System Studio offers a wide variety of modeling capabilities,
providing you with the means to capture complex systems quickly
and efficiently. The modeling paradigms supported can be
hierarchically mixed at all levels, making System Studio an extremely
versatile system modeling platform.

With System Studio, you can mix control models within dataflow
models and vice versa. You can embed a data-flow model (whether
it is itself a primitive or a hierarchical model) inside a state machine
so that it appears to be just another state. In the same way, you can
embed control inside a data-flow graph and from the outside it looks
like just another data-flow block.

System Studio's models are divided into two distinct domains,
algorithmic and architectural, reflecting the primary design focus that
each type of model supports:

• Algorithmic Models

These models describe the functionality of a system at an
untimed level. The design is captured using a mixture of data flow
and extended hierarchical state machine models.
1-2

Introduction: System Studio Models

Implementation details such as the clock and reset signals are
not modeled, which gives you

- a simple and efficient modeling process

- the best possible simulation speed, which facilitates the
analysis of computationally intensive signal processing
algorithms

- a design space that is not over constrained during early project
phases

There are several types of algorithmic models:

- DFG (Data Flow Graph) models: These are data-flow models
in which the instances they contain communicate by means of
FIFO (first in, first out) queues of data traveling on nets.

- OR models: These are hierarchical control models that specify
a state transition diagram in which the instances they contain
behave like states. Only one instance is active at a time.

- AND models: These are hierarchical control models with
multiple sub-instances, called pages, that execute in parallel.

- GATED models: These are hierarchical control models
consisting of one or two sub-instances, called pages, and a
gating condition that controls which page is executed and
which page is suspended.

- PRIM models: These are primitive (non-hierarchical) models,
specified as source text. You can use PRIM models inside both
data-flow and control models.
1-3

Introduction: System Studio Models

- SDS models: these are a primitive (COSSAP) Stream Driven
Simulator models. You can create an SDS model in System
Studio, or you can import and convert existing COSSAP
models.

• Architectural Models

Architectural (SystemC) models capture the architecture of a
system at various levels of granularity and abstraction. These
models allow you to describe the overall platform architecture in
terms of its buses, memories, processors, and ASIC content, as
well as making it possible for you to describe the internal
architecture of the individual components.

The models span a broad range from high-level abstractions
suitable for early architectural analysis down to cycle-accurate
and pin-accurate synthesizable hardware models.

System Studio integrates both model domains seamlessly. The
same design capture and model management functionality is
available for all model types. Algorithmic and architectural models
can also be nested to give you the unique ability to verify your
designs at all stages of the design process within a single
environment.

Model Views

In System Studio, the implementation of the model and its interface
are separate. You edit and view the implementation details, the
interface, and the model symbol in separate views of the model. The
views that you see depend on the type of the model:
1-4

Introduction: System Studio Models

• An Interface View gives you access to the model’s ports and
parameters. You can define port directions and assign port types.
Additionally, you can add a set of parameters, define types and
other characteristics of a parameter, and even assign default
values. A default value can be a literal or an expression.

• An Implementation View gives you access to a graphical
representation of the model design (schematic) for hierarchical
models, or the model source code for primitive models. System
Studio allows you to browse through the complete hierarchy until
you end at either a control flow graph, a primitive model, or a
source code view at the leaf level. For SystemC hierarchical
models this view is called the Schematic view.

• A Symbol View gives you access to the graphical representation
of the model itself. The Interface and Symbol views of a model
are interrelated. You create the ports in the Interface View and
then you position and configure the pins in the Symbol View.

• For SystemC architectural models, a Source View gives you
access to the model’s source code.

• For SystemC architectural models, a Header View gives you
access to the model’s header file.

The model views are logically connected so that each change in one
view causes all the other views to be updated automatically. This
means that you can simply choose the editing scheme that you
prefer.

You access each view individually through the System Studio Design
Center (see Figure 1-1), which is a multiple-pane easy-to-use
graphical user interface. You can not only view and edit the various
aspects of your models, but you can also manage your design by
organizing the library and model files that your System Studio
workspace contains.
1-5

Introduction: System Studio Models

Figure 1-1 The System Studio Design Center

Model Ports

Model ports provide the external interface for a model. Ports have a
data type and a direction (in, out, or inout).

Model Parameters

Model parameters have a data type and an access mode. System
Studio supports the following types of access modes:

• Structural
1-6

Introduction: System Studio Models

A structural parameter resolves to a constant value during
compilation and code generation.

• Read-on-reset

A read-on-reset parameter value is refreshed (read from
memory) every time the corresponding model is reset. This type
of parameter can be bound to expressions that contain signals at
the boundary between a control model and a dataflow model,
thus enabling a control model to control the parameters of a
dataflow model. This is the default.

• Dynamic

A dynamic parameter value is refreshed (read from memory)
every time it is used, and hence it is possible to poke its value
from the surrounding environment. If a dynamic parameter is
used in an expression that is bound to a parameter that is not
marked dynamic, it will behave like a read-on-reset parameter
and the values will be sampled only when the corresponding
model is reset.

• Hidden

Hidden parameters are static constants. These parameters are
not visible from the outside and must have a specified value.
These are equivalent to const variables in C++.

• Generic parameters

To make model creation easier, System Studio permits the use of
generic data types. Generic data types are parameters to a
model. These parameters are denoted by the keyword
type_param and can assume values of any of the permitted
data types. An object of type type_param can appear wherever
1-7

Introduction: System Studio Models

the corresponding specialized types (that is, the resulting type
when an actual type is bound to a type_param) can legally
appear.

Using type parameters greatly enhances the reusability of a
model because they allow just one model to be used for integer,
fixed-point, single-precision or double-precision floating-point
variants.

Supported Data Types

System Studio supports the following rich set of native types for
ports, signals, parameters, and variables:

• bool

• int

• unsigned

• float

• double

• fixed

• sub_range

• bit_vector

• complex_double

• complex_float

• complex_fixed

• arrays of any type
1-8

Introduction: System Studio Models

Two-dimensional arrays of scalar types (bool, int, float,
double, complex_float, and complex_double) are also
permitted. They behave like C arrays with valid indexes in the range
0 to n-1, where n is the size of the array; for example, int[3][4].

There are special one-dimensional data types for sub_range,
fixed, complex_fixed, and bit_vector. These data types
have the suffix “_array”; for example, bit_vector_array.

Some data types require further specification; for example,
sub_range(3,7). This specifies that it can hold only the values 3,
4, 5, 6, and 7.

For full details of the data types supported in System Studio, and
details of how to use your own user-defined types, see the CoCentric
System Studio Reference Manual.

Specification Language

At the primitive model level, the description is code written in the
System Studio native specification language. This feature enables
you to specify the model in a C-like language, with some extensions
to capture the model structure. There is full editor support for
generating these extensions, which means that you need only to
enter C code as text, or you can easily learn the extensions and enter
the full native language directly if you prefer. In this way you can
concentrate on the behavior of your algorithm.

The System Studio language is intended for the specification of
untimed system behavior. This is in contrast to the SystemC
modeling language, which captures timed behavior (typically at a
more detailed level).
1-9

Introduction: Specification Language

System-Level Simulation

System Studio provides a compiled simulation kernel that optimizes
parts of your system model. The compiled simulation can be
statically scheduled and linked with the dynamically scheduled parts
of your system. System Studio contains a full COSSAP-compliant
stream driven simulation engine for the accurate execution and
reuse of COSSAP Stream Driven Simulator models.

System Studio has a debug mode that produces an efficient, yet fully
debuggable simulation. In debug mode, you can pause or
single-step the simulation, set breakpoints, and examine the state of
the simulation. You can also use the DAVIS data visualization tool to
monitor any stream of data.

System Studio also has an optimize mode that produces the fastest
possible code.

Finally, to trade off speed against observability, you can specify that
certain portions of a System Studio model will be observable for
debugging purposes, while other portions will be compiled for
maximum possible speed.
1-10

Introduction: System-Level Simulation

Exploring System Studio 2

This chapter gives a brief introductory overview of System Studio. It
contains the following sections:

• Starting System Studio

• Opening a Workspace

• Using the System Studio Design Center Windows

• Selecting Design Objects

• Editing Design Objects

For more complete information on using System Studio, see the
CoCentric System Studio User Guide.
2-1

Starting System Studio

To start System Studio, enter

% ccss &

When System Studio first opens, the design center is displayed as
shown in Figure 2-1. However, you can configure System Studio to
reload the last workspace that you used with the Options ›
Preferences › General menu item.

Figure 2-1 System Studio Design Center
2-2

Exploring System Studio: Starting System Studio

Opening a Workspace

A workspace is your main working environment in System Studio. A
workspace typically contains all the libraries and models for a
particular project.

The four most recently opened workspaces are available on the File
menu.

To open an existing workspace,

• Click the Open toolbar button or choose File › Open.

• The Open Workspace dialog appears, similar to the one shown
in Figure 2-2.

• Navigate through the directory and file listing until you find the
workspace you want. Select the workspace you want to open and
then click Open or press Return.
2-3

Exploring System Studio: Opening a Workspace

Figure 2-2 Open Workspace Dialog Box

System Studio provides a quick-type feature as one method of
selecting an item in a selection list. To use this feature,

• Click in the selection list.

• Enter the first character of the list item you want displayed.

The selection list item that starts with the letter you entered is
scrolled into the visible part of the list and becomes the selected
item.

If more than one item starts with the letter you enter, the first
matching item is selected. You can then type the letter again or use
the arrow keys to move to the next matching item.
2-4

Exploring System Studio: Opening a Workspace

Note that a System Studio workspace is not a file system, and a
System Studio library is not a directory. A workspace is simply a
mapping of libraries into your own environment. A System Studio
library is specified by a name and the path to the directory containing
its definition; all models in the library’s directory belong to the library.
This organization allows models to be shared transparently across
libraries. Models in different libraries can have the same name, but
the name of a library must be unique within a workspace, as shown
in Figure 2-3.

Figure 2-3 A System Studio Workspace Structure

Libraries can be shared between workspaces, but the contents of
libraries are restricted to one physical directory. To see whether a
model is shared, open the properties for the model in question and
check the file path that is shown.

Workspace 1

Library A Library B

Model M1 Model M1

Library C

Model M1
Library D

Model M1
Model M2

Workspace 2

Library E
2-5

Exploring System Studio: Opening a Workspace

Using the System Studio Design Center Windows

The System Studio design center, shown in Figure 2-4, contains the
following elements:

• Menus

• Toolbars

• Workspace window

• Design area

• Message window

• Status bar
2-6

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-4 The System Studio Design Center Window

Menus

You use the System Studio menus to perform operations such as
opening and closing model libraries, editing the attributes of a
design, and invoking other tools.

Choosing a menu item performs one of the following actions:

Menus

Toolbars

Workspace
Window

Design
Area

Status Bar

Message
Window
2-7

Exploring System Studio: Using the System Studio Design Center Windows

• Opens a dialog box. Menu items that open dialog boxes have “...”
to the right of the menu item on the menu. Menu items that open
submenus have “›” to the right of the menu item.

• Performs a single action, for example, deleting a selected object.

• Enables or disables a mode, such as auto-route.

Some of the menu items are contained in convenience menus that
you can access by pressing the right mouse button.

Toolbars

Toolbar buttons enable you to use a single mouse click to perform
actions available in the menus.

You can individually display or hide a toolbar from view by choosing
the Options › Customize Toolbars menu item and then changing the
toolbar appearance and content, as described later in this chapter.

A toolbar can be “docked” or “floating.” A docked toolbar is attached
to an edge of the System Studio window. A floating toolbar is not in
a fixed position; you can move it anywhere on the screen.

To move a toolbar, click the “move” handle on a docked toolbar, or
click the title bar on a floating toolbar and drag it to a new location.

To dock a toolbar, drag it to the edge of the System Studio window.
You can dock a toolbar below the System Studio title bar or to the left,
right, or bottom edge of the System Studio window. When you drag
a toolbar to the edge of the System Studio window, the toolbar
outline snaps into place along the System Studio window edge.

To prevent a floating toolbar from docking, press and hold the
Control key while you move the toolbar.
2-8

Exploring System Studio: Using the System Studio Design Center Windows

There are seven toolbars, each of which can be toggled on and off
independently of the rest:

• Standard toolbar

• Navigation toolbar

• Design toolbar

• Schematic toolbar

• Graphics toolbar

• Zooming toolbar

• Find toolbar

You can add buttons to these toolbars, or remove buttons from them
to suit your personal preferences. You can also create new toolbars
containing buttons taken from other toolbars, or using buttons that
are not part of the default toolbar contents. For details of how to
change the contents of the toolbars and how to create your own
toolbars, see the CoCentric System Studio User Guide.

The default contents of these toolbars are described in the following
sections.

Standard Toolbar

The Standard toolbar, shown in Figure 2-5, contains buttons for
standard operations on currently selected objects.
2-9

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-5 The Standard Toolbar

Navigation Toolbar

The Navigation toolbar, shown in Figure 2-6, contains buttons for
moving up and down a hierarchical model design.

Figure 2-6 The Navigation Toolbar

• Use the Push In toolbar button to push into a specific
implementation of a model. If the selected model is a hierarchical
model, the Push In button moves to a lower level of hierarchy and

New

Open
Save

Save all modified

Cut

Paste

Undo

Copy
Redo

Show/Hide

Autoroute

Enable

last
Undo

models

Close
Current Model

Show/

Workspace
Window

Hide
Message
Window

On/Off

Text Move

Push In

Pop Out

Pop Top

Set Next

Previous
Message

MessageBookmark

Next
Bookmark

Previous
Bookmark

Clear
Bookmarks
2-10

Exploring System Studio: Using the System Studio Design Center Windows

displays the corresponding design. If the selected instance is a
primitive model, using the Push In button opens the source code
in the System Studio text editor.

• Use the Pop Out toolbar button to move to the next higher level
of hierarchy.

• Use the Pop Top toolbar button to move directly to the top level
of the hierarchy.

• Use the bookmark buttons to navigate through source code.
When the text editor is open (for example, after you push into a
model to display the code), the bookmark buttons are activated.
You can use bookmark buttons to find and clear bookmarks in the
file for this editing session. Using bookmarks makes moving
around the file much easier.

• Use the message buttons to navigate through the contents of the
message windows. When a message window is open and it
contains messages, you can use the Show Next Message and
Show Previous Message buttons to move quickly through the
messages.

Design Toolbar

You can use the Design toolbar, shown in Figure 2-7, to check your
design and run a simulation.
2-11

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-7 The Design Toolbar

Schematic Toolbar

You can use the Schematic toolbar, shown in Figure 2-8, to choose
the type of model object to add to a model. Buttons will be dimmed
if they are not applicable for the current type of model.

Figure 2-8 The Schematic Toolbar

Stop
Simulation

Build

Configure
Object

Check
Design

Simulate
Model

Simulate
Model
with

Control Panel

Select

Insert
Atomic

Insert
Hierarchical

Insert
Clock

State

State
Insert
Net/

Insert
Port

Insert
Transition

Mode

Insert
Instance

Channel

Channel
Type
2-12

Exploring System Studio: Using the System Studio Design Center Windows

Graphics Toolbar

You can use the Graphics toolbar, shown in Figure 2-9, to choose the
type of simple graphics object to add to a model schematic or a
model symbol.

Figure 2-9 The Graphics Toolbar

Zooming Toolbar

You can use the Zooming toolbar, shown in Figure 2-10, to zoom in
and out of a design in a variety of ways.

Figure 2-10 The Zooming Toolbar

Text

Rectangle

Line
Arc

Circle
Polyline

Zoom
In

Zoom
Out

Zoom
In with Zoom

Out with

Zoom
SelectedZoom

Full
Zoom
Out

Pan
factor 2

factor 2
2-13

Exploring System Studio: Using the System Studio Design Center Windows

Find Toolbar

The Find toolbar, shown in Figure 2-11, consists of a pop-up list from
which you can search for a named object or objects.

Figure 2-11 The Find Toolbar

Workspace Window

Your main working area is called a workspace. A workspace can
contain one or more libraries, each containing a collection of models.
In general, your workspace contains all the libraries (standard
libraries and user libraries) you have used for a project together with
your specific design. All of these objects are organized in a
collapsible hierarchical tree display that makes it easier for you to
navigate around your working environment. In a design team, the
workspace might easily contain a complete system-on-a-chip
design.

The Workspace window, shown in Figure 2-4 on page 2-7, contains
the four distinct pages:

• Models page

• Hierarchy browser

• Code Generation page

Search Field
Find
2-14

Exploring System Studio: Using the System Studio Design Center Windows

• Simulation control panel

You access these pages by a tab at the bottom of the window. The
pages are described in the following sections.

Models Page

The Models page is the default page, which is displayed when
System Studio is started.

The Models page shows a tree-like display of your current
workspace: the libraries and sublibraries, and the models contained
in each library, as shown in Figure 2-12. The libraries and models
you see in this page will, of course, depend on the contents of your
workspace.

You can expand and collapse parts of the tree display by clicking on
the + and - symbols, respectively.
2-15

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-12 Models Page With Workspace Tree View

The Models page contains the following three views of your
workspace. You select a view from the list at the top of the window.

• Workspace Tree view (this is the default view, shown in
Figure 2-12)

• Library List view (shown in Figure 2-13)

• Model Category Tree view (shown in Figure 2-14)

The Models page view is designed to give you the maximum in
model navigation capabilities for large systems, including extensive
collections of existing COSSAP legacy models.

Library

Page Tabs
2-16

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-13 Library List View

Library
2-17

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-14 Model Category Tree View

Libraries can be nested inside other libraries, and they can be
shared with other users.

You can click the Advanced button to display a more sophisticated
page layout that includes fields that enable you to select models
more quickly, as shown in Figure 2-15.

Library
2-18

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-15 Searching with The Advanced Feature

You can search for a specific model by entering part of its name or
description in the search fields and then clicking Search. You can
use the standard wildcard characters (* and %) as part of your
search pattern or you can click the Regular Expressions check box
to enable a search using regular expressions (for the syntax of
regular expressions, see the UNIX man pages on regular
expressions or consult the System Studio online Help).

Click to Sort

Page Tabs

Search Fields
2-19

Exploring System Studio: Using the System Studio Design Center Windows

Hierarchy Browser

The hierarchy browser, shown in Figure 2-16, allows you to browse
through the various parts of a model in much the same way as you
can browse through the models in the workspace. This browser is
especially helpful when you are trying to determine the location for
breakpoints and data and level watch points when you are
debugging simulations. Click on an object to show where it is used;
double-click on an object to show its implementation.

Figure 2-16 The Hierarchy Browser
2-20

Exploring System Studio: Using the System Studio Design Center Windows

Selecting “Show Configuration Properties” allows you to view the
configurations properties of those parts of a model that have them.
Values that can be edited have a white background, as shown in
Figure 2-17.

Figure 2-17 The Hierarchy Browser Configuration Properties
2-21

Exploring System Studio: Using the System Studio Design Center Windows

Code Generation Page

You use the Code Generation page, shown in Figure 2-18, to set
switches and the values of parameters that govern the simulation
code generation. The simulation execution options dialog box is
shown in Figure 2-19.

Figure 2-18 Setting the Code Generation Parameters
2-22

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-19 Setting the Simulation Execution Options

For details on using the Simulation control panel, see the CoCentric
System Studio User Guide.

Simulation Control Panel

Use the simulation control panel, shown in Figure 2-20, to control the
simulation execution and interact with the simulation to debug it.
2-23

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-20 The Simulation Control Panel

For details on using the Simulation control panel, see the CoCentric
System Studio User Guide.
2-24

Exploring System Studio: Using the System Studio Design Center Windows

Design Area

The Design Area occupies the major part of the System Studio
display. It is here that your design actually takes shape. The Design
Area gives you different views of your design, each accessible via a
tab. The number and types of view that are available depend upon
whether your model is an algorithmic, architectural primitive or
architectural hierarchical design.

For the algorithmic domain, the views are as follows:

• Interface View: through which you set the design’s ports and
parameters

• Implementation View: giving you a graphical representation of
the design, or a view of the source code, depending on the
model’s implementation

• Symbol View: giving you a view of the graphical representation of
the model that will be used when it is instantiated into a
higher-level model

Interface View. You use the interface view to describe the model’s
ports, parameters, description, classification, and history as shown
in Figure 2-21.
2-25

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-21 Viewing the Model Interface

To add an entry, delete an entry, or move a row up or down, click the
appropriate button.

To enter or change a value, click the entry and a list of possible
values for you to choose will be displayed, as shown in Figure 2-22.
Unsaved changes are shown in red.
2-26

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-22 Setting a Parameter for the Model Interface

Implementation View. You use the implementation view to create
the model behavior. See Figure 2-23 for an example of a dataflow
graph implementation of a model.
2-27

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-23 Viewing the Model Implementation

The implementation view is explained in more detail in the modeling
tutorials later in this manual.

Symbol View. You use the Symbol view, as shown in Figure 2-24,
to edit the appearance of model symbols.
2-28

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-24 A Typical Model Symbol

You can change the shape of a symbol, or add comment text and
lines for documentation purposes. You can add any of the graphics
from the Graphics toolbar. You cannot, however, change the
structural or behavioral attributes of the design object that the
symbol represents.

Pressing the right mouse button in the Symbol view opens a
context-sensitive menu that gives you quick access to commands for
working with the graphic objects.

Graphics shapes are ordered into “layers.” When shapes are
stacked on top of each other, the top-most shape is said to be at the
front and the bottom-most shape is said to be at the back. Using the
Simple Graphics option you can change the order (level) of the
selected shape(s) in one of four ways:

• Bring Forward - Moves the shape(s) one level to the front

• Send Backward - Moves the shape(s) one level to the back
2-29

Exploring System Studio: Using the System Studio Design Center Windows

• Bring To Front - Moves the shape(s) in front of all others

• Send To Back - Moves the shape(s) behind all others

Working in the architectural domain is similar to working in the
algorithmic domain with the exception that two more views are
available. The additional views are:

• The Header View

• The Source View

Header View. The header view is an empty template into which you
can add data members, method and processes for your SystemC
model. You may also read details of the port and parameter
information that is entered in other views.

Source View. In the Source view, you enter the model source code.

Working in the Design Area

The Design Area is where you create, edit, and view the
implementations of a model, set the implementation parameters, and
edit the model symbol. You can think of the Design Area as your
main working area.

When you first start System Studio, the Design Area is empty, as
shown in Figure 2-25. After you load or create a workspace, the
Design Area shows the implementation for the currently selected
object.
2-30

Exploring System Studio: Using the System Studio Design Center Windows

Figure 2-25 The Basic Design Area

A context-sensitive convenience menu provides access to some of
the more commonly used menu items from the Edit, Zoom, Model,
and Show menus.

Open a model, position your mouse pointer in the design area (you
must have a model open), and press the right mouse button to view
the convenience menu. Choose a menu item or a submenu item to
execute the corresponding command. The convenience menu that
will be displayed depends on whether you have selected anything or
not and, if you have selected an object, what that object is.

Design area
2-31

Exploring System Studio: Using the System Studio Design Center Windows

Message Window

The message window, shown in Figure 2-26, displays messages
returned by the action that is being performed by System Studio.
These messages (errors, warnings, progress reports, and so on) are
grouped into separate pages according to the activity.

Figure 2-26 The Message Window

Status Bar

The status bar, shown in Figure 2-27, displays information about the
current state of the tool.

Figure 2-27 The Status Bar

Selected Current
CoordinatesObject
2-32

Exploring System Studio: Using the System Studio Design Center Windows

Selecting Design Objects

You can select objects after you have instantiated them. A
combination of keyboard and mouse actions allows easy selection of
objects. You can select the following objects:

• An individual object - Move the cursor over an object, then click.

• Multiple objects - Select the first object; Shift-click or Control-click
the left mouse button and select the next object.

• A group of objects - Press and hold the left mouse button and
drag the cursor until the target objects are surrounded by a
selection box, then release the left mouse button.

• Nets - Click once to select a net segment; click twice to select the
complete net.

Selected objects appear highlighted. The appearance of selected
items is user-configurable. For information about the editable display
attributes, see the CoCentric System Studio User Guide.

Editing Design Objects

You can perform the following kinds of edits on design objects:

• Move

• Copy

• Cut

• Delete

• Paste
2-33

Exploring System Studio: Selecting Design Objects

Moving

Use the following procedure to move one or more objects from one
location to another.

• Select the object or objects to move.

The editor highlights the object.

• Move the cursor over the selected object. If you have selected
multiple objects, move the cursor over any of the selected
objects.

The cursor turns into a cross hair.

• Click and hold the left mouse button, then move the cursor to the
location where you want to place the objects.

An outline of the selected objects attaches to the cursor.

• Release the left mouse button.

The selected objects appear in the new location. If autorouting is
active, the connections are rerouted as necessary.

Copying

The copy function puts a copy of the objects you have selected on
the clipboard.

When a copied instance is pasted back into a design, the copy
retains its properties such as parameter and port values.

To copy design objects,

• Select the object or objects to copy.
2-34

Exploring System Studio: Editing Design Objects

The objects are highlighted.

• Click the Copy toolbar button, or press Control-C.

A copy of the selected objects is placed on the clipboard.

Note:

The models contained within the libraries supplied with System
Studio are write protected. There are special methods for
copying protected models; these methods are dealt with in the
relevant sections of the tutorial chapters.

Cutting

The cut function deletes selected objects and puts a copy of them on
the clipboard. If you cut an instance or a pin and the autorouting
feature is active, System Studio reroutes any nets attached to that
block or pin. Typically, rerouted nets get shortened to small
segments on other connections.

Note that when a cut instance is pasted back into the design, the
copy retains its parameter and data-set values.

To cut design objects,

• Select the object or objects to cut.

The objects are highlighted.

• Click the Cut toolbar button, or press Control-X.

The selected objects are removed from the schematic and a copy
is placed on the clipboard.
2-35

Exploring System Studio: Editing Design Objects

Deleting

The delete function cuts selected objects but does not put a copy of
them on the clipboard.

To delete design objects,

• Select the object to delete.

The objects are highlighted.

• Choose Edit › Delete or press the Delete key on your keyboard.

The selected objects are removed from the design.

Pasting

The paste function copies the contents of the clipboard to the cursor,
which you can position anywhere in the design before placing the
pasted objects. You can paste the same object repeatedly until you
put another object on the clipboard. Because deleted objects are
never put on the clipboard, you cannot paste them back into a
design.

When a cut or copied instance is pasted back into a design, the copy
retains its parameter values.

To paste design objects,

• Click the Paste toolbar button and move the cursor to the design.

The cursor turns into a cross-hair, with the outline of the object on
the clipboard attached.
2-36

Exploring System Studio: Editing Design Objects

• Move the cursor to the location where you want to put the pasted
object.

• Click the left mouse button or press Control-v to place the object.

The object is placed and the cursor changes to the select symbol.

Setting the Properties

Select a graphic object (rectangle, line, polyline, circle or arc) and
press the right mouse button. This displays a menu. Choose
Configure Object and the Graphics Properties dialog box opens as
shown in Figure 2-28.

Figure 2-28 Setting the Graphic Object Properties
2-37

Exploring System Studio: Editing Design Objects

You can change the alignment of the graphics object, its orientation,
the color used to draw its outline (line) and the color and pattern (if
any) used to make the object solid (Fill). By default, graphic objects
have no fill color or pattern so that they are transparent.

Select a text object (a text caption) and press the right mouse button.
This displays the text object properties dialog box shown in
Figure 2-29.

Figure 2-29 Setting the Text Object Properties
2-38

Exploring System Studio: Editing Design Objects

You can change the alignment of the text caption, its orientation, and
the color used to draw it (line). You can edit the text itself, you can
change the size in pixels of the text, and you can specify which part
of the caption (anchor) is to be used as the alignment point when the
text snaps to a grid position.
2-39

Exploring System Studio: Editing Design Objects

2-40

Exploring System Studio: Editing Design Objects

Data Flow Model Tutorial 3

This tutorial describes the steps required to create a data flow model.
It contains the following sections:

• Data Flow Graph Models

• Creating the Model Structure

• Defining the Model Behavior

• Creating the Model Schematic

• Simulating the Model

• Displaying System Studio Data

• Creating and Viewing Model Documentation
3-1

Data Flow Graph Models

In System Studio, you can create and configure block diagram
schematics. You also create and edit block diagrams that combine
both primitive models and hierarchical models to create hierarchical
models. The hierarchical models that you create can then be placed
as instances along with other primitive or hierarchical models in a
data flow graph (DFG) model.

You can assign fixed or variable values to parameters that define the
characteristics of individual model instances and of the model as a
whole.

System Studio provides a wide selection of standard models that you
can instantiate in your design. You can also add instances of
user-written models. Each model, whether provided by System
Studio or user-written, has one symbol associated with it.

For information on creating your own model and its symbol file or
files, refer to the CoCentric System Studio User Guide.

Configuring model instances includes setting parameters and
assigning I/O data sets. System Studio supports a wide range of
parameter data types; these are detailed in the CoCentric System
Studio User Guide. Model parameters can be

• Structural, which cannot be changed after code generation

• Read-on-reset, which can be changed whenever a model is reset

• Dynamic, which can be changed at any time

• Const, which cannot be changed after code generation and are
not visible from outside the model
3-2

Data Flow Model Tutorial: Data Flow Graph Models

In addition to model parameters, you can declare type parameters.
Type parameters give you the functionality of generic data types, but
they can greatly enhance the reusability of a model because they
allow a single model to be used for integer, fixed-point,
single-precision, or double-precision floating-point variants.

In general, a model has input ports, output ports, or inout (input/
output) ports. A data flow model cannot have inout ports.

The following connection rules apply to a complete system
configuration:

• A net has exactly one source. A source can be either an outside
source (an input port symbol) or an output port of a model
instance.

• A net has one or more destinations. A destination can be either
a port outside the schematic (an output port symbol) or an input
port of a model instance.

In the following sections of this chapter you will learn how to create
a very basic System Studio data flow model, simulate it, and display
the data using the CoCentric DAVIS data visualization tool.

Creating the Model Structure

Before you can start a model design, you must create

• A workspace

• A library within the workspace

• A model within the library
3-3

Data Flow Model Tutorial: Creating the Model Structure

Starting System Studio

To start System Studio, enter the following command:

% ccss &

Creating a Workspace

Select File › New from the System Studio main menu bar. A dialog
box appears. The Create Workspace dialog box, shown in
Figure 3-1, is displayed first.

Figure 3-1 Creating a Workspace

The Name field contains the workspace name “work.” Change the
name if you want. The file that defines your workspace is stored in
the path indicated in the Location field.

Click Apply to create the workspace (the Create Workspace dialog
box will remain active until you click OK or close).
3-4

Data Flow Model Tutorial: Creating the Model Structure

Creating a Library

In the Create Workspace dialog box, with a workspace selected,
click the Library tab. The dialog box changes to the Create Library
dialog box, as shown in Figure 3-2.

Create a user library under the workspace that you just created.
Enter a name in the Name field or use the default name. You can
specify a different location for the library directory in the Location
field.

After you enter a library name (or accept the default name), click
Apply.

Figure 3-2 Creating a Library
3-5

Data Flow Model Tutorial: Creating the Model Structure

Creating a Model

In the Create Library dialog box, select a library and click the Model
tab. The dialog box changes to the Create Model dialog box, as
shown in Figure 3-3. If you do not select a library, the Model tab will
not be visible.

Figure 3-3 Creating a Model

Enter a name and location for your model or use the defaults.

Choose the Algorithmic domain.

If you want to define the implementation, choose the relevant
implementation by selecting the appropriate Type radio button,
otherwise select None. When you are ready, click Apply.
3-6

Data Flow Model Tutorial: Creating the Model Structure

If you select an implementation, the Implementation view opens with
the appropriate type of implementation loaded (for example, for a
primitive model a skeleton source code file is opened).

If you select None as the model type, the Interface view is displayed
(the Interface tab is raised) and there is no Implementation view, as
shown in Figure 3-4.

Figure 3-4 Viewing the Model Interface

Notice that the workspace window displays the complete hierarchy
of the model. When the model has an implementation, the model
branch is composed of three components: an Interface view, an
Implementation view, and a Symbol view. If you left the Type as none
in the create model dialog box, there will be no Implementation view
yet.
3-7

Data Flow Model Tutorial: Creating the Model Structure

Defining the Model Behavior

You define the model behavior by using the Define Implementation
dialog box.

• Choose Model › Redefine Implementation from the main menu.
This method allows you to redefine a previously set
implementation.

In the Define Model Implementation dialog box, select DFG, as
shown in Figure 3-5, and then click OK.

Figure 3-5 Defining the Model Implementation
3-8

Data Flow Model Tutorial: Defining the Model Behavior

The schematic editor is opened in the design window (the
Implementation tab is raised). Note that the Schematic toolbar is now
active, from which you can choose a block, port or net to be added
to the design.

Creating the Model Schematic

The DFG model you are going to enter is a simple model that
consists of two blocks: a sine wave generator and a sink. Both are
existing models contained in the System Studio libraries.

To create the model schematic,

1. If the “cocentric” library is collapsed, expand the library by
clicking the plus sign (+) next to it in the Workspace window;
expand the “algorithm” library and then select the “source” library.
The models in this library are now listed in the Model area.

2. Click the Insert Instance button in the Schematics toolbar.

3. Select the SinGenerator model from the “source” library located
in the algorithm library.

4. Move the cursor into the design area. You will see the outline of
the block displayed as you move the cursor around.

Click the left mouse button when the outline of the block is
positioned where you want to place the block.

5. Now move the cursor back into the Workspace window and
select the WriteSignal block from the System Studio models
“sink” library located in the algorithm library.

6. Position the WriteSignal block to the right of the SinGenerator
block, as shown in Figure 3-6, and click the left mouse button.
3-9

Data Flow Model Tutorial: Creating the Model Schematic

7. Click the middle mouse button to cancel the insert Instance
function.

Figure 3-6 Inserting Blocks

8. The next step is to connect the two blocks together with a net.
Click the Insert Net button in the Schematic toolbar.

9. Position the cursor over the output port of the SinGenerator
block. Press and hold the left mouse button, and create a net by
dragging a line to the input port of the WriteSignal block.

10. Release the mouse button; the two blocks are now connected.
The end result should look similar to the example shown in
Figure 3-7.

Click the middle mouse button to cancel the Insert Net function.
3-10

Data Flow Model Tutorial: Creating the Model Schematic

Figure 3-7 View After Connecting the Blocks

11. To finish the design, the blocks have to be parameterized.
Position the mouse pointer over instance M1 (the SinGenerator
model) and click the right mouse button. Choose Configure
Object from the context-sensitive menu. The Configure Objects
dialog box is displayed as shown in Figure 3-8.
3-11

Data Flow Model Tutorial: Creating the Model Schematic

Figure 3-8 Setting the Model Parameters

For your convenience, some of the parameters have default
values (for example, in this model the WriteSignal instance is
completely configured by the default parameter values).

12. Assign the expression atan(1.0) to the parameter “Increment”
for the SinGenerator instance M1, and click OK.

The schematic design is now complete. In the following sections you
will learn how to simulate the model and display the output data set.
3-12

Data Flow Model Tutorial: Creating the Model Schematic

Simulating the Model

You can create the executable simulation either automatically or
manually.

Automatically Building the Simulation

Instead of entering all the steps manually, you can perform the steps
required to build and start the simulation automatically.

Click the Simulate the Model button or choose Simulation › Simulate
Model from the menu bar. All the steps will be performed
automatically. These steps include creating the optimized
executable code, compiling and linking the model, and starting the
simulation in pause mode.

Manually Building the Simulation

To create the simulation manually,

1. Click the Code Generation tab, make your selections, then click
Create (see Figure 3-9).
3-13

Data Flow Model Tutorial: Simulating the Model

Figure 3-9 Controlling the Code Generation

2. If you want to view some of the simulation execution options,
click the Start button, as shown in Figure 3-9, to display the
menu.

3. Click Options to open the Start Options dialog box as shown in
Figure 3-10.

Start Button
3-14

Data Flow Model Tutorial: Simulating the Model

4. After you have reviewed the options, click OK in the Start Options
dialog box, and then click Create in the Code Generation page to
execute the simulation.

Figure 3-10 Controlling the Simulation Execution

Controlling the Simulation

To control the simulation, choose Simulation › Open Control Panel.
The Select Simulation dialog box is displayed as shown in
Figure 3-11.
3-15

Data Flow Model Tutorial: Simulating the Model

Figure 3-11 Selecting the Simulation

Select the simulation that you created and click OK.

The simulation control panel is opened as shown in Figure 3-12.
3-16

Data Flow Model Tutorial: Simulating the Model

Figure 3-12 The Simulation Control Panel

The Simulation control panel not only gives you full control over the
simulation, it allows you to set breakpoints and watch points in the
code execution, just as you would expect from any debugging tool.

You can display and modify the values of most objects, such as nets,
at any level of the model. Values that you cannot modify are shown
dimmed in the list. The fields that you can modify have a white
background.
3-17

Data Flow Model Tutorial: Simulating the Model

You can examine nets, ports, parameters, and variables anywhere in
the hierarchy of the active instance.

You can also, through a command-line interface, enter text
commands to directly control the simulation without using any part of
the graphical user interface. For more information on the different
methods of controlling a simulation, see the CoCentric System
Studio User Guide.

Click the Start Model Simulation button in the simulation toolbar, or
the green start simulation button in the simulation control panel to
start the simulation now.

A message will tell you when the simulation is successfully
completed.

Displaying System Studio Data

The CoCentric data visualization tool (DAVIS) enables you to
visually analyze and graphically display and postprocess data. It also
includes a calculator to interact with graphs and data, and gives you
the ability to interact with a System Studio simulation.

The data can originate from simulation results, data set information,
or other data that you specify. You can add text and labels, and print
and save graphs.

You can also use DAVIS to display data generated by other tools as
well as for displaying data from System Studio simulations.

Alternatively, you can use the VirSim tool, which allows you to
display the data from System Studio and also allows you to control
the System Studio simulation.
3-18

Data Flow Model Tutorial: Displaying System Studio Data

Graphical Display

You can use any one DAVIS sheet to display multiple, overlaid
graphs, where each graph is a single representation of data. For
example, you can portray the results of several simulations in one
sheet and compare it with a theoretical result that you specified in a
function equation. You can choose how to visually portray the data
or graph so that it is most intuitive and helpful for analysis. You can
choose a line plot, scatter diagram, eye diagram, histogram, or logic
signal display.

You can modify many cosmetic aspects of the graph appearance,
such as whether and how a histogram is filled, and the type of
symbols DAVIS uses as markers.

DAVIS can automatically generate text and labels, or you can create
them yourself. You can also specify the color, font, height, and
orientation of the text (at an angle, vertical, or horizontal).

You can delete a graph and merge separate line or scatter graphs
into a single graph.

Acquiring and Interpreting Data

To retrieve visual results from a simulation, specify the simulation
name, the desired data set, and the simulation iteration, if applicable.
The System Studio Design Center associates a default plot format
with a schematic when you create it; therefore, you do not need to
specify a plot type to display an intuitive graph when you use DAVIS.
For example, you do not have to specify the file name for the data
set, the scaling, the type of diagram, the dimension type (time versus
sample), or the axis labels.
3-19

Data Flow Model Tutorial: Displaying System Studio Data

The ease of displaying results, however, does not restrict you from
plotting the same data in other ways, or from specifying attributes;
flexibility is never sacrificed. You can also portray a subset of
data-set elements. For example, you can use only every fourth
element (instead of every one) to construct a graph.

Displaying the Output Data Set

As well as being able to connect to a running simulation and display
the data dynamically, DAVIS supports various binary and ASCII file
formats. You can plot your own data, and DAVIS can interpret files to
contain x, y, or x-y data, because it can also automatically generate
values along either the x-axis or y-axis.

In the dataflow model described in this chapter, the WriteSignal
model is used to write the data to a simulation data-set file. In this
section, you will learn how to use DAVIS to open that file and display
the simulation data contained in it.

To display the simulation data set,

1. Choose Tools › Davis from the Design Center menu bar. The
DAVIS tool opens with the default workbook as shown in
Figure 3-13.
3-20

Data Flow Model Tutorial: Displaying System Studio Data

Figure 3-13 The Default DAVIS Workbook Display

2. In DAVIS, choose File › Open System Studio Simulation from the
menu bar. The Open System Studio dialog box, shown in
Figure 3-14, is displayed.
3-21

Data Flow Model Tutorial: Displaying System Studio Data

Figure 3-14 Opening a System Studio Simulation in DAVIS

3. Navigate through the directories until you find the simulation data
file you want, as shown in Figure 3-14.

Note:

If no output dataset (outdset) is available, then it is possible
that you did not run your simulation to completion. Return to
the simulation control panel and click the Pause/Continue
button to complete the simulation. You will get a message to
tell you that the simulation has finished. To learn how to
connect to a running simulation, see the CoCentric DAVIS
User Guide.
3-22

Data Flow Model Tutorial: Displaying System Studio Data

4. After you select the correct file, click OK and the simulation data
will be displayed in a DAVIS workbook, as shown in Figure 3-15.

Figure 3-15 The Data File Displayed in DAVIS

Note:
System Studio stores its files in the directory specified by the
variable $CCSS_SIM_DIR. The data file for a specific simulation
can then be found in

$CCSS_SIM_DIR/simulation_name/activ_m/iter_n/*.*

where simulation_name is the name of the simulation, m is the
number of the activation (this is incremented by 1 each time you
run a simulation), and n is the number of the simulation iteration.
3-23

Data Flow Model Tutorial: Displaying System Studio Data

You can now manipulate and modify the data-file display in DAVIS,
performing sophisticated calculations with the data or simply
zooming in to display more detail, as shown in Figure 3-16.

Figure 3-16 Zooming the Simulation Data Graph Display

Creating and Viewing Model Documentation

Creating the documentation for a model can be a tedious and
time-consuming task. System Studio enables you to create the
documentation for a model with the click of a single button. Using
3-24

Data Flow Model Tutorial: Creating and Viewing Model Documentation

System Studio documentation tools, you can also display complete
documentation for an existing System Studio model or a complete
library.

Creating Model Documentation

To generate documentation for your model, choose Options › Model
Documentation from the System Studio menu bar. The Model
Documentation Options dialog box is displayed, as shown in
Figure 3-17. This dialog box gives you full control over the contents
of the documentation that will be generated.

Select a few options and click OK.

Figure 3-17 Creating the Model Documentation

The model documentation is created in HTML, which you can display
and print using an HTML browser such as Netscape Navigator.
3-25

Data Flow Model Tutorial: Creating and Viewing Model Documentation

Viewing Model Documentation

Choose Model › Show Documentation to display the documentation
for the model after you have created it (see Figure 3-18).

Figure 3-18 Viewing the Model Documentation

Click Close to close the HTML browser.

This completes this tutorial. You can now save your workspace and
exit System Studio at this point if you want.
3-26

Data Flow Model Tutorial: Creating and Viewing Model Documentation

OR Model Tutorial 4

This tutorial describes the steps required to create the design for an
OR model. It contains the following sections:

• The OR Model

• Creating the Model Structure

• Creating the Model Schematic

• Defining the Interface

• Defining the Model Parameters

• Defining the Local Variables

• Creating the Testbench

• Checking the Model

• Building and Running the Model Simulation
4-1

The OR Model

An OR model represents a finite state machine (FSM). Atomic states
are the leaf-level objects within an FSM. Actions can be associated
with both states and transitions.

In System Studio, the start and exit states of an FSM are implied; no
special atomic states are required to identify them, and there are no
specific start or exit transitions. Instead, a transition from a state that
has no other state as its destination is assumed to be the exit
transition, and a transition that has no starting state is assumed to be
the start transition.

The states of OR models can be either hierarchical or atomic.
Hierarchical states can contain other OR models, or any other type
of System Studio model. Atomic states can have inlined actions and
can manipulate the values of local variables, local signals, or output
ports.

A transition can have a condition, an action, and a priority associated
with it. Conditions must evaluate to true (nonzero) or false (zero).
Actions can modify the values of local variables, local signals, or
output ports. The priority of a transition determines its precedence
with respect to other transitions (1 is the highest priority, 5 is the
lowest priority).

Transitions can be either strong, weak, or exit-handling. The nature
of a transition also determines the priority in which the transitions will
be evaluated, but it is primarily concerned with how lower-level
models in the hierarchy will be evaluated.
4-2

OR Model Tutorial: The OR Model

• Weak transitions allow the underlying lower-level models to be
evaluated before the transition itself is executed. A weak
transition can be thought of as a soft interrupt. Use weak
transitions for defaults.

• Strong transitions forcibly terminate the underlying lower-level
models without allowing any kind of cleanup actions to be
performed (hierarchical states do not terminate in a controlled
manner). A strong transition can be thought of as a hard interrupt.

• Exit-handling transitions catch exits from underlying hierarchical
models (as long as any condition on the transition is satisfied) if
they are not passed to the model instance above. The behavior
of an exit-handling transition is analogous to exceptions being
thrown and caught in languages such as C++ and Java.

In addition, a transition can also be specified as immediate.
Immediate transitions allow multiple transitions to be followed within
a single execution step. States that are passed through during an
immediate transition are reset (this is not relevant for an atomic
state) and perform no other actions.

To resolve possible conflicts between transitions, a transition can
also have a numeric priority value, explicitly specified for it, ranging
from 1, highest priority, to 5, lowest priority.

Creating the Model Structure

Before you can start a model design, you must create

• A workspace

• A library within the workspace

• A model within the library
4-3

OR Model Tutorial: Creating the Model Structure

Starting System Studio

To start System Studio, enter the following command:

% ccss &

Creating a Workspace

In the Design Center, choose File › New from the menu bar. Type the
name of your new workspace in the dialog box and click OK

Creating a Library

Choose File › New to access the Create Library dialog box, as shown
in Figure 4-1.

Create a user library under the workspace that you just created.
Enter a name in the Name field or use the default name. You specify
the location of the library directory in the Location field.

After you enter a library name (or accept the default name), click
Apply.
4-4

OR Model Tutorial: Creating the Model Structure

Figure 4-1 Creating a Library

Creating a Model

Select the library in which you want to create the model (the Model
tab will not be displayed if a library is not selected). Click the Model
tab to display the Create Model page, as shown in Figure 4-2.
4-5

OR Model Tutorial: Creating the Model Structure

Figure 4-2 Creating the Model

Enter a name for your model or use the default name. Select OR as
the model type (you can leave the definition of the model
implementation until later, which allows you to approach your design
in either a top-down or a bottom-up manner), and then click OK. The
Implementation view will be displayed in the design area (the
Implementation tab will be highlighted), as shown in Figure 4-3.
4-6

OR Model Tutorial: Creating the Model Structure

Figure 4-3 Viewing the Model Implementation

Notice that the workspace window displays the complete hierarchy
of the model, and the model contains three components: the
Interface view, the Implementation view, and the Symbol view.

Creating the Model Schematic

The OR model you are going to enter is a simple OR model that
imitates a street light. It consists of three atomic states, one for the
red lamp, one for the yellow lamp, and one for the green lamp.
4-7

OR Model Tutorial: Creating the Model Schematic

One of the states will be specified as being the start state by virtue
of being the destination of a start transition. You do not have to
specify start and exit transitions explicitly; any transition without a
source is automatically interpreted as being a start transition, and
any transition without a destination is interpreted as being an exit
transition. The model does not have an explicit exit state.

Creating and Configuring the States

The first stage of creating the model is to create the states:

1. Click the Add atomic state button in the System Studio FSM
objects toolbar and add three atomic states, s1, s2 and s3, to the
FSM design. Click the middle mouse button to cancel the Insert
function.

The end result should look something like Figure 4-4. (Note that
atomic state S3 is selected in the figure so it is highlighted.)
4-8

OR Model Tutorial: Creating the Model Schematic

Figure 4-4 Inserting the Atomic States

2. Now you need to define the Inlined actions for atomic states.
Select the atomic state S1 in the design.

3. Make sure that the state is highlighted, double-click the atomic
state, or click the right mouse button when the cursor is
positioned over the S1 state and choose Configure Object from
the pop-up menu. Alternatively, select the object and choose
Configure Object from the System Studio main menu.

The Configure Objects dialog box is displayed, as shown in
Figure 4-5.
4-9

OR Model Tutorial: Creating the Model Schematic

Figure 4-5 Configuring the Atomic States

4. Define the following for atomic state S1:

- Name: RedState

- Inlined action: Red=true;

- Inlined action: Yellow=false;

- Inlined action: Green=false;

- Inlined action: if(Timer) counter++;

Click Apply.
4-10

OR Model Tutorial: Creating the Model Schematic

Note:

Notice that the name of the atomic state in the design area
changes from S1 to RedState, and the actions are displayed
next to the symbol for the state.

5. Define the following for atomic state S2:

- Name: YellowState

- Inlined action: Red=false;

- Inlined action: Yellow=true;

- Inlined action: Green=false;

- Inlined action: if(Timer) counter++;

Click Apply.

6. Define the following for atomic state S3:

- Name: GreenState

- Inlined action: Red=false;

- Inlined action: Yellow=false;

- Inlined action: Green=true;

- Inlined action: if(Timer) counter++;

Click Apply.

Entering and Configuring the Transitions

The next steps are to enter the transitions between the states and
then configure them.
4-11

OR Model Tutorial: Creating the Model Schematic

1. Click the Insert Transition button on the FSM toolbar and draw
the following transitions as in Figure 4-6:

- Tr1: (start) to RedState (S1)

- Tr2: RedState (S1) to GreenState (S3); the street light goes
from red to green

- Tr3: GreenState (S3) to YellowState (S2); the street light goes
from green to yellow

- Tr4: YellowState (S2) to RedState (S1); the street light goes
from yellow to red

Transitions that do not have a source are automatically
interpreted as start transitions, and transitions that do not have a
sink are automatically interpreted as exit transitions. Your
schematic should look like Figure 4-6.
4-12

OR Model Tutorial: Creating the Model Schematic

Figure 4-6 Drawing the Transitions

Note that a transition will not always take the path that you might
want it to. If you want a transition to curve in a particular direction,
it helps to initially draw the transition to some intermediate point
along the curve that you want it to follow first. Then select the end
of the transition and drag it to its final destination, as shown in
Figure 4-7.
4-13

OR Model Tutorial: Creating the Model Schematic

Figure 4-7 Drawing Transitions

2. Now configure the transitions. Double-click a transition to display
the Configure Objects dialog box for that transition. Enter the
detail required and then click OK.

Configure the transitions as follows:

• Transition Tr1: (start) to RedState (S1) (see Figure 4-8)

- Condition: true (defaults to true)

- Action: counter=0;

- Type: weak

- Priority: 1

S1 S2

S2S1

a) Draw the transition to an intermediate point

b) Then drag the end point to the final destination
4-14

OR Model Tutorial: Creating the Model Schematic

Figure 4-8 Defining Transition Tr1

• Transition Tr2: RedState (S1) to GreenState (S3) (see
Figure 4-9)

- Condition: counter >= RedDuration

- Action: counter=0;

- Type: weak

- Priority: 1
4-15

OR Model Tutorial: Creating the Model Schematic

Figure 4-9 Defining Transition Tr2

• Transition Tr3: GreenState (S3) to YellowState (S2) (see
Figure 4-10)

- Condition: counter >= GreenDuration

- Action: counter=0;

- Type: weak

- Priority: 1
4-16

OR Model Tutorial: Creating the Model Schematic

Figure 4-10 Defining Transition Tr3

• Transition Tr4: YellowState (S2) to RedState (S1) (see
Figure 4-11)

- Condition: counter >= YellowDuration

- Action: counter=0;

- Type: weak

- Priority: 1
4-17

OR Model Tutorial: Creating the Model Schematic

Figure 4-11 Defining Transition Tr4

The design entry phase is complete; it should now look like
Figure 4-12.
4-18

OR Model Tutorial: Creating the Model Schematic

Figure 4-12 The Complete OR Model

This completes the model schematic. You can now define the
model’s interface.

Defining the Interface

The next step in defining the model is to define the ports. This OR
model will have one input port (a timer) and three output ports (the
red, yellow and green light signals).
4-19

OR Model Tutorial: Defining the Interface

In the design area, click the Interface tab to display the Interface
view, shown in Figure 4-13. If the Ports page is not displayed, click
the Ports tab.

To add a port, click the Create New Port button. The Port page
appears, in which you enter port characteristics.

The data type and direction fields provide selection menus from
which you select values for the fields. Pressing the Tab key moves
the cursor to the next field, except when the cursor is in the last field.

Create four ports with the following characteristics:

• Input port 1

- Name: Timer

- Data Type: bool

- Direction: in

• Output port 1

- Name: Green

- Data Type: bool

- Direction: out

• Output port 2

- Name: Yellow

- Data Type: bool

- Direction: out

• Output port 3
4-20

OR Model Tutorial: Defining the Interface

- Name: Red

- Data Type: bool

- Direction: out

The end result should look like Figure 4-13.

Figure 4-13 Defining the Ports

After you enter the ports, click the Symbol tab in the design area and
look at the symbol that has been created for the model.

You will see a symbol with one input port and three output ports
defined, as shown in Figure 4-14.
4-21

OR Model Tutorial: Defining the Interface

Figure 4-14 The Model Symbol

The interface to the model and the symbol for the model are now
complete.
4-22

OR Model Tutorial: Defining the Interface

Defining the Model Parameters

While you were specifying the transitions, you set the conditions in
terms of RedDuration, YellowDuration and GreenDuration. These
are model parameters and you must specify types and values for
these parameters.

• In the Interface view, click the Parameters tab

• Specify the parameters as follows:

- RedDuration:
Data Type: int
Access: read_on_reset
Default Value: 5

- YellowDuration:
Data Type: int
Access: read_on_reset
Default Value: 1

- GreenDuration:
Data Type: int
Access: read_on_reset
Default Value: 5

The completed parameters definition page should look like
Figure 4-15.
4-23

OR Model Tutorial: Defining the Model Parameters

Figure 4-15 Specifying the Model Parameters

Defining the Local Variables

Now you define the local variables for the model. Use one of the
following two methods to open the Declare Locals dialog box:

• Choose Model › Declare Locals from the System Studio main
menu.

• From the Interface page, position the cursor in the design, press
the right mouse button, and choose Model › Declare Locals from
the pop-up menu.

The Declare Locals dialog box is displayed, as shown in Figure 4-16.

Enter the following variable, then click OK.
4-24

OR Model Tutorial: Defining the Local Variables

• Variable 1:

- Name: counter

- Type: int

- Default Value: 0

• Now check your design for errors by clicking the Check Design
button on the System Studio toolbar (or press Shift-F5).

Figure 4-16 Declaring the Local Variables

The output of the design check is displayed in the output window
under the Check Report tab. If there are any errors, correct the errors
and run Check again.
4-25

OR Model Tutorial: Defining the Local Variables

Even after the model is complete and you ensure that there are no
errors, the model still cannot be used because it does not have any
source for input data. The next step is, therefore, to include this
model inside a verification environment.

Creating the Testbench

The next steps are to connect the completed OR model to a
testbench and run the model in a simulation.

1. Choose File › New from the System Studio main menu to create
a new model. This new model will instantiate the completed OR
model.

2. Create the new model (in our example Test_Light) in the same
library as the OR model. (For instructions, see “Creating a Model”
on page 4-5.)

3. Select DFG as the model type and click OK.

The schematic editor window appears. Note that the Dataflow
Objects toolbar is now active.

4. Click the insert Instance button in the Dataflow Objects toolbar.
In the Workspace window, select the name of the OR model you
created and position it in the schematic design.

Alternatively, you can select the OR model you created, drag it
(keeping the left mouse button pressed) into the workspace and
drop it (release the left mouse button) where you want it to be.

5. Verify that the names of the ports are the same as the ones you
created (see Figure 4-17).
4-26

OR Model Tutorial: Creating the Testbench

Figure 4-17 The OR Model Implementation
4-27

OR Model Tutorial: Creating the Testbench

6. In the workspace window, navigate to the cocentric/algorithm/
source library. Select the model Constant, and position it in the
design to the left of (before) the OR model, as shown in
Figure 4-18.

Figure 4-18 Adding the Constant Model

7. Select the model named Multiplex3 from the cocentric/algorithm/
flowcontrol library and position it in the design to the right of your
OR model, as shown in Figure 4-19.
4-28

OR Model Tutorial: Creating the Testbench

Figure 4-19 Adding the Multiplexer Model

8. Select the model named BitsToSymbol from the cocentric/
algorithm/conversion library and position it in the design to the
right of the Multiplex3 model, as shown in Figure 4-20.

Figure 4-20 Adding the BitstoSymbol Model
4-29

OR Model Tutorial: Creating the Testbench

9. Select the model named WriteSignal from the cocentric/
algorithm/sink library and position it in the design to the right of
the BitsToSymbol model, as shown in Figure 4-21.

Figure 4-21 Adding the WriteSignal Model

10. After you have positioned all the blocks, click the Net button and
connect the components as follows:

- Connect the output of the Constant block to the input of the OR
model.

- Connect the outputs of the OR model to the inputs of the
Multiplex3 block.

- Connect the output of the Multiplex3 block to the input of the
BitsToSymbol block.

- Connect the output of the BitsToSymbol block to the input of
the WriteSignal block.

The end result should look like the display shown in Figure 4-22.
4-30

OR Model Tutorial: Creating the Testbench

Figure 4-22 The Completed Test Harness Schematic

Configuring the Model Instances

The data-flow models used in this design were developed for use in
a wide range of schematics. To make this possible, the data type is
defined by means of a type parameter. Within this schematic, it is not
possible to determine the type of parameter, so you must explicitly
set the type.

• Select the Constant block (M2). Click the right mouse button and
choose Configure Object from the context-sensitive menu. In the
Configure Objects dialog box, set the value of parameter T to
bool and the value of ConstantValue to 1, as shown in
Figure 4-23. Click OK.
4-31

OR Model Tutorial: Creating the Testbench

Figure 4-23 Defining the Constant Model Data Type Parameter

• Select the Multiplex3 block (M3). Click the right mouse button
and choose Configure Object from the context-sensitive menu. In
the Configure Objects dialog box, set the value of parameter T to
bool and check that the ItemsFromInput values are set to 1, as
shown in Figure 4-24. Click OK.
4-32

OR Model Tutorial: Creating the Testbench

Figure 4-24 Defining the Multiplex3 Model Parameters

• Select the BitsToSymbol block (M4). Click the right mouse button
and choose Configure Object from the context-sensitive menu. In
the Configure Objects dialog box, set the value of parameter T1
to bool, parameter T2 to bit_vector(3,0) and change the value of
NumberOfBits to 3, as shown in Figure 4-25. Click OK.
4-33

OR Model Tutorial: Creating the Testbench

Figure 4-25 Defining the BitsToSymbol Model Parameters

• Finally, select the WriteSignal block (M5). Click the right mouse
button and choose Configure Object from the context-sensitive
menu. In the Configure Objects dialog box, set the type of
parameter T to bit_vector(3,0), as shown in Figure 4-26.
Click OK.
4-34

OR Model Tutorial: Creating the Testbench

Figure 4-26 Defining the WriteSignal Model Parameters

Checking the Model

Click the Check Model button in the System Studio Hierarchy
Navigation toolbar to check the model for errors.

If you have made any errors in creating the model, an error message
will be displayed in the Check Errors message window. Double-click
on an error message to go to the likely source of the error. Once the
model is free of errors, you are ready to create and run the
simulation.
4-35

OR Model Tutorial: Checking the Model

Building and Running the Model Simulation

You can create the model simulation either automatically or
manually, this section will take you through both methods.

Automatically Building and Running the Simulation

The steps to build and run the simulation include generating the
source code, compiling and linking the model, and starting the
simulation. Instead of entering all the steps manually, you can
perform the steps required to build and start the simulation
automatically with one button click.

• To simulate the model automatically, click the Simulate Model
button, or choose Simulation › Simulate Model from the menu
bar, and all the steps will be performed automatically. Do this
now, and then click the Code generation tab to observe the
messages in the Message window as the code is generated and
the simulation started (see Figure 4-27).

Note:

You may notice that the OR model has no exit state and will run
continually; however, the testbench simulation will
automatically terminate after a predetermined number of
cycles.
4-36

OR Model Tutorial: Building and Running the Model Simulation

Figure 4-27 Message Window

• When the simulation is finished, you will see the message shown
in Figure 4-28; click OK.
4-37

OR Model Tutorial: Building and Running the Model Simulation

Figure 4-28 Simulation Message

Manually Building the Simulation

As an alternative to creating the simulation automatically, you can
start code generation and control the execution of the simulation
manually, using various simulation options.

1. Click the Code Generation tab and make sure that the Compile,
Start, and Control panel check boxes are checked as shown in
Figure 4-29.

2. Click the Start button and select Paused so that when the
simulation is started, it will be in the paused mode and under the
control of the simulation control panel. Notice that the light on the
Start button is now at yellow to indicate the paused mode. For
more information about the code generation options, refer to the
CoCentric System Studio User Guide.
4-38

OR Model Tutorial: Building and Running the Model Simulation

Figure 4-29 Controlling the Code Generation

3. Click Create in the code generation window to generate the code
and to start the simulation.

4. A warning dialog box may appear to warn you that the simulation
directory already exists. Click OK to overwrite the existing
simulation data.
4-39

OR Model Tutorial: Building and Running the Model Simulation

The code will be generated again and the simulation will start, but
this time it will not complete. After a short while, the simulation
control panel will be opened as shown in Figure 4-30.

Notice that the traffic light symbol in the simulation control panel
is at yellow to indicate a paused simulation. The traffic lights
indicate green when the simulation is running, yellow when the
simulation is paused, and red when the simulation is interrupted.
The traffic lights show no color when the simulation is finished.

Figure 4-30 Simulation Started in Paused Mode
4-40

OR Model Tutorial: Building and Running the Model Simulation

Controlling the Simulation

This section will take you through the basics of using the simulation
control panel. First, it may be interesting to see how many different
simulations are running. To do this:

• Click Select in the simulation control panel to display the Select
Simulation dialog box as shown in Figure 4-31.

Figure 4-31 Selecting the Simulation

• Click the Running Simulations tab if it is not already highlighted.

• In this case, there is only one simulation running and it is
highlighted, so click OK.

The Simulation control panel not only gives you full control over the
simulation, it allows you to set breakpoints and watch points in the
code execution, just as you would expect from any debugging tool.

Through a command-line interface you can also enter text
commands to directly control the simulation without using any part of
the System Studio graphical user interface.
4-41

OR Model Tutorial: Building and Running the Model Simulation

The text commands can also be read in from an external simulation
control file (.scf). The System Studio simulation control language
includes flow control constructions such as loops (for, while, break,
continue) and conditional expressions (if, switch, else), which give
you almost complete batch control over the simulation. The System
Studio simulation control language consists of the Tcl programming
language with the addition of a few specific System Studio
commands.

You can display and modify the values of most objects, such as nets,
at any level of the model. Values that you cannot modify are shown
dimmed in the list. The fields that you can modify have a white
background.

You can examine nets, ports, parameters, and variables anywhere in
the hierarchy of the active instance. For example, you can monitor
the status of the street light model by setting data watch points on the
nets leading into and out of it:

• First, click the Level Watch tab.

• Right click on the following nets and select “Add to Data Watch”
from the pop-up convenience menu:

- /Test_Light_1/Net1 (the input signal to the OR model)

- /Test_Light_1/Net2 (one of the OR model output signals)

- /Test_Light_1/Net3 (another of the OR model output signals)

- /Test_Light_1/Net4 (the third OR model output signal)

• Click the Data Watch tab to see the selected data watch points
as shown in Figure 4-32.
4-42

OR Model Tutorial: Building and Running the Model Simulation

Figure 4-32 Setting Data Watch Points

If you now repeatedly click the Instance Entry button in the
simulation control panel, you will be able to observe the values of the
RedState, YellowState, and GreenState signal outputs cycle through
their values, as shown in Figure 4-33.
4-43

OR Model Tutorial: Building and Running the Model Simulation

Figure 4-33 Watching Data Points

Notice that each time you step through the simulation, the traffic light
symbol changes from yellow to green and then back to yellow again,
to indicate that the simulation runs and then pauses.

Checking the Output

While you were configuring the WriteSignal instance, you may have
noticed that the output is written to a data-set file. In addition to using
DAVIS to visualize the output from the model, the contents of a
data-set file can be a very useful tool in checking and debugging a
model.
4-44

OR Model Tutorial: Building and Running the Model Simulation

Go to the directory ${CCSS_SIM_DIR}/TestLight_1/activ_1/iter_1. In
this directory you will find a file called outdset.am; this is the output
data-set file written by the WriteSignal instance for iteration 1 of
simulation activation 1 (for later activations and iterations, this
number will increase accordingly). A short extract of this file is shown
in Example 4-1.

Example 4-1 Extract from the Output Data-Set File
 100
 100
 100
 100
 100
 001
 001
 001
 001
 001
 010
 100
 100
 100
 100
 100
 001
 001
 001
 001
 001
 010
 100
 100
 100
 100
 100
 001

The contents of the output data-set confirm that the model is
behaving as you intended: five red states (100) followed by five
green states (001), followed by one yellow state (010), and then the
cycle starts to repeat again with another five red states and so on
until the maximum number of values (1024) is reached.
4-45

OR Model Tutorial: Building and Running the Model Simulation

If you want to check the details of the model you have created, you
can now create and view the documentation for this model. System
Studio will generate a documentation page from the contents of the
model, just as it does for the models contained in the model libraries.
For details, see “Creating and Viewing Model Documentation” on
page 3-24.

This completes this tutorial. You can now save your workspace and
exit System Studio at this point if you want.
4-46

OR Model Tutorial: Building and Running the Model Simulation

GATED Model Tutorial 5

This tutorial describes the steps required to create the design for a
GATED model. It contains the following sections:

• The Gated Model

• Creating the Model

• Defining the Model Behavior

• Defining the Interface

• Creating the Model Schematic

• Defining the Gating Condition

• Finishing Up
5-1

The Gated Model

A GATED model is a hierarchical model that consists of

• One or two implementations

• A gating condition

A GATED model is particularly suitable for creating models in which
dynamic switching is needed (such as from acquisition to tracking),
or whenever a data flow must be switched, but the internal state
(such as a loop filter) must be maintained. (In an OR model, the state
is lost when it is reset.)

The following characteristics describe a GATED model:

• If there is only one implementation, the implementation is active
only when the gating condition is true.

• When there are two implementations, only one implementation is
active at a time, depending on the gating condition. The other
implementation is suspended. (The internal state of the
suspended implementation is preserved.)

• Output ports that are not driven by the active implementation are
latched to their last value.

• Input ports that are not read by the active implementation read
and discard samples.

Creating the Model

Use the following procedure to create the model.
5-2

GATED Model Tutorial: The Gated Model

1. Start System Studio with the following command:

% ccss &

2. Open a workspace and select the library in which you want to
create the new model.

3. Choose File > New from the Design Center menu bar. The
Create Model dialog box is displayed.

4. Click the Model tab and enter a new name for your model, or use
the default name. Click OK.

Defining the Model Behavior

Use the following procedure to define the behavior of the model.

1. Choose Model › Redefine Implementation from the main menu.

2. In the Define Model Implementation dialog box, select GATED.

3. The model will be created as a multipage design, so click the
Create New Page button to add a second design page to this
model design.

4. Set the Page Type of both pages to Block Diagram (indicating a
data flow page), as shown in Figure 5-1, then click OK.
5-3

GATED Model Tutorial: Defining the Model Behavior

Figure 5-1 Defining the Design Page Types

The schematic editor appears in the design window, with one page
for the gating_condition_true state, and one for the
gating_condition_false state, as shown in Figure 5-2.

The model in a page whose gating condition becomes false is
suspended, and will resume when the gating condition becomes true
again.

The Dataflow Objects toolbar is now active.
5-4

GATED Model Tutorial: Defining the Model Behavior

Figure 5-2 Schematic Editor

Defining the Interface

Now you need to define the ports. This gated model will have four
ports.

• Click the Interface tab.

• Click the Ports tab.
5-5

GATED Model Tutorial: Defining the Interface

On the Ports page, the data type and direction fields display a list of
valid options for the field. Use the keyboard Tab key to move
between fields.

• Create four ports with the following characteristics:

- Input port 1

- Name: In1

- Data Type: int

- Direction: in

- Input port 2

- Name: In2

- Data Type: int

- Direction: in

- Output port 1

- Name: Out1

- Data Type: int

- Direction: out

- Control port

- Name: Cntrl

- Data Type: int

- Direction: in

The end result should look like Figure 5-3.
5-6

GATED Model Tutorial: Defining the Interface

Figure 5-3 Gated Model Interface Definition

After you have defined the ports, look at the symbol that was
generated for the model by clicking the Symbol tab in the design
area.

You will see a symbol with three input ports and one output port,
as shown in Figure 5-4.
5-7

GATED Model Tutorial: Defining the Interface

Figure 5-4 The Model Symbol

The model interface and symbol are now complete.

Creating the Model Schematic

The behavior of this GATED model is as follows:

• If the gating condition is true, the two input ports will be added
and the sum placed on the output port.

• If the gating condition is false, the two input ports will be
multiplied and the product put on the output port.

Each condition is represented by a design page that is displayed in
a separate part of the design area.
5-8

GATED Model Tutorial: Creating the Model Schematic

Creating the First Model Page

Select the Implementation tab. The first model page is the
GATING_CONDITION_TRUE (cond_true) page. In the window
marked cond_true, enter the model schematic as follows:

1. Click the Instance button and add the model Add2 from the
System Studio model library “arithmetic,” as shown in Figure 5-5.

Figure 5-5 Inserting a Block

2. Select the Add2 block, click the right mouse button and choose
Configure Object. Change the value of type parameter T to int.
Click OK.
5-9

GATED Model Tutorial: Creating the Model Schematic

3. Click the insert Port button and select port In1 from the pop-up
selection window, as shown in Figure 5-6.

Figure 5-6 Selecting a Port to Insert

Move the mouse pointer to the design area and position the
selected input port in the design, as shown in Figure 5-7.

Repeat these steps for the second input port.

4. Click the insert Port button and position the output port in the
design.

5. Make sure that autorouting is enabled.

6. Click the insert Net button and connect the input ports to the input
ports of the add model. Then connect the output port of the add
model to the output port.

The completed design should look like Figure 5-7.
5-10

GATED Model Tutorial: Creating the Model Schematic

Figure 5-7 The First Page Completed

Creating the Second Model Page

The second design page is the GATING_CONDITION_FALSE
(cond_false) page. This design contains a Mul2 model from the
cocentric/arithmetic library, two input ports, and one output port.

• First click in the cond_false section of design area, then select
and position the components in the design, as you did for the first
page.

• Change the value of the type parameter T for the Mul2 instance
from float to int.

• Connect the input ports to the input ports of the Mul2 model and
output of the Mul2 model to the output port.

The completed design should look like Figure 5-8.
5-11

GATED Model Tutorial: Creating the Model Schematic

Figure 5-8 The Second Page Completed

The model design is now complete.
5-12

GATED Model Tutorial: Creating the Model Schematic

Defining the Gating Condition

The next step is to define the gating condition for the model. You
need to enter only the gating_condition_true expression.
System Studio will determine the gating_condition_false
condition itself.

• Choose Model › Configure Implementation from the Design
Center main menu. The Configure Implementation dialog box is
displayed

• Click the Gating Condition tab. In the input area, enter the
following expression:

Cntrl == 1

• Click OK.

Finishing Up

Click the Check Model button to check the model for errors.

To simulate the model, you need to connect the model’s input ports
to a testbench. For example, create a new model and instantiate this
model in that new model. You could then choose a simple 1.0 pulse
generator for the control input, set some constants for the values of
a and b, and then monitor the output with DAVIS.

This completes this tutorial. You can now save your workspace and
exit System Studio if you want.
5-13

GATED Model Tutorial: Defining the Gating Condition

5-14

GATED Model Tutorial: Finishing Up

AND Model Tutorial 6

This tutorial describes the steps to follow to create a simple AND
model. It contains the following sections:

• The AND Model

• Creating the AND Model

• Creating the FSM Model

• Creating The DFG Model

• Simulating the Design
6-1

AND Model Tutorial

The AND Model

An AND model is a hierarchical model used for modeling
concurrency.

AND models define multiple implementations (each implementation
is called a page). The implementations can be FSM (Finite State
Machine) models, DFG (data flow graph) models, or a mixture of
both. An AND model contains at least 2 pages, but may have up to
16 pages.

The pages (implementations) of an AND model execute
concurrently. The pages communicate internally by using signals.
For example, one FSM page can use a signal to control the state
transitions of another page. Each FSM page can have local
variables.

Note:
Each FSM must exit before the AND model itself exits.

In this tutorial you will create a simple two-page AND model to
modulate the output of a sine wave generator. This example
demonstrates the features of an AND model that uses a global signal
to transfer information between two pages.

The AND model’s pages are an OR page and a DFG page:

• The OR page of the AND model consists of a two-state FSM. On
entry, the model increments the value of a local variable value by
0.5 until a maximum value (20.0) is reached. The OR model then
switches to the second state and decrements the local variable
value by 0.5. When the value of the local variable is zero, the
FSM switches back to the first state. This state switching is
repeated endlessly.
6-2

AND Model Tutorial: The AND Model

• The value of the local variable is copied to the signal sig1, which
is accessible in the DFG page.

• The DFG page contains a SineGenerator block, Mul2, and a
WriteSignal block. The output of the SineGenerator is multiplied
by the value of signal sig1.

Creating the AND Model

Use the following procedure to create the AND model.

1. Start System Studio by entering the following command:

% ccss &

2. If you have not already created a library, follow the instructions in
“Creating a Library” on page 3-5.

3. Open the workspace and select the library in which you want to
create the new model.

4. Choose File › New from the System Studio main menu. The
Create Model dialog box opens.

5. Enter a new name for your model or use the default name, and
select AND as the model type. For basic information on creating
a model see “Creating the Model Structure” on page 3-3.

6. The model to be created has two pages. By default the page type
of both pages is set to State Diagram (indicating a control flow
page). Click Model › Redefine Model Implementation and set the
Page Type of page_2 to Block Diagram (indicating a data flow
page), as shown in Figure 6-1.
6-3

AND Model Tutorial: Creating the AND Model

Figure 6-1 Creating the AND Model

7. Click OK.

The model is then opened with a window displayed for each of
the two pages of the model, as shown in Figure 6-2.
6-4

AND Model Tutorial: Creating the AND Model

Figure 6-2 The Empty AND Model

Note that the FSM objects toolbar is now active.
6-5

AND Model Tutorial: Creating the AND Model

Defining the Model Parameters

The next step is to define the parameters of the model.

• In the design area, click the Interface tab and then click the
Parameter tab.

• To add a parameter, click the “Create new parameter” button, or
enter the name of the new parameter in the next empty
parameter name field. You can then complete the fields for the
new parameter.

• If you wish, you can add a description of the parameter in the
comments field; this description will help to document your
design and will appear in the model’s documentation (choose
Model › Show Documentation).

You can show or hide the descriptions by clicking the “show
descriptions ...” button on or off.

• Create three parameters with the following characteristics (see
Figure 6-3):

- Name: fs
Data Type: int
Default Value: 48000
Comments (optional): The sampling frequency.

- Name: f
Data Type: int
Default Type: 6500
Comments (optional): The frequency of the sine wave.
6-6

AND Model Tutorial: Creating the AND Model

- Name: maxval
Data Type: float
Default Type: 20.0
Comments (optional): The maximum value, which triggers a
state transition in the FSM.

Figure 6-3 Defining the Model Parameters
6-7

AND Model Tutorial: Creating the AND Model

Declaring the Local Variables

The next step is to define the local variables for the FSM page of the
model.

Note:
The scope of a local variable is limited to the current page. If
there was more than one FSM page, you would have to declare
the variables separately for each FSM page.

• In the Implementation view, select the first page (page_1) of the
model by clicking anywhere in the page.

• Choose Model › Declare Locals from the System Studio menu
bar. The Declare Locals dialog box opens.

• In the Declare Locals dialog box, click the Variables tab and
define a variable with the following characteristics (see
Figure 6-4):

- Name: val

- Data Type: float

- Default Value: 0

- Description (optional): The local value used to increase and
decrease the value of the signal.

• Click Apply.
6-8

AND Model Tutorial: Creating the AND Model

Figure 6-4 Defining the Variables

• Click the Signals tab and define a signal with the following
characteristics (see Figure 6-5):

- Name: sig1

- Data Type: float

- Default Value: 0

- Description (optional): The signal used to pass a value from
the FSM page to the DFG page.

• Click OK.
6-9

AND Model Tutorial: Creating the AND Model

Figure 6-5 Defining the Signals

Unlike local variables, whose scope is limited to the current page, the
scope of a signal is the whole of the current model. Therefore, you
can use signals to communicate between the pages of a model.

After the signal has been declared, you will notice that it is visible in
the Signals page of the Declare Locals dialog box for both pages of
the model.

The model definition phase is now complete.
6-10

AND Model Tutorial: Creating the AND Model

Creating the FSM Model

The FSM in page_1 of the AND model consists of two atomic states
(S1 and S2) and three transitions (Tr1, Tr2 and Tr3). You will now
add these to page_1 of the AND model.

• Select the required object from the FSM objects toolbar, move
the cursor to the location in the design where you want to position
it, and then click the left mouse button.

• To enter a transition, click the Transition button in the FSM
objects toolbar. Draw the transition from one state to another. For
more detailed description of these steps, see “Creating the Model
Schematic” on page 4-7.

At this point, the FSM should look similar to the display shown in
Figure 6-6.
6-11

AND Model Tutorial: Creating the FSM Model

Figure 6-6 The FSM Page

Defining the Transitions

• Select the transition that you want to define.

• Open the Configure Object dialog box by using one of the
following two methods:
6-12

AND Model Tutorial: Creating the FSM Model

- Choose Model › Configure Object from the System Studio
main menu.

- Click the right mouse button while the cursor is in the design
and choose Configure Object from the pop-up menu.

The Configure Objects dialog box opens, as shown in Figure 6-7.

Figure 6-7 Defining a Transition

• Define the following transitions and set the following conditions
and actions:

Transition Tr1: start to S1

- Condition: true (defaults to true)
6-13

AND Model Tutorial: Creating the FSM Model

- Action:

- Type: weak

- Priority: 1

Transition Tr2: S1 to S2

- Condition: val > maxval

- Action:

- Type: weak

- Priority: 1

Transition Tr3: S2 to S1

- Condition: val <=0

- Action:

- Type: weak

- Priority: 1

Defining the Inline Actions

• To define the inline actions for an atomic state, select the state in
the design and check that the state is highlighted.

• Then open the Configure Object dialog box by either:

- Choosing Model › Configure Object from the System Studio
main menu.

- Clicking the right mouse button while the cursor is in the design
and choosing Configure Object from the pop-up menu.
6-14

AND Model Tutorial: Creating the FSM Model

The Configure Objects dialog box opens, as shown in Figure 6-8.

Figure 6-8 Defining an Inline Action

• Enter the definitions for the atomic state in the Inlined Action field
and then click OK.

Note: It is through the definition of the inlined actions that the
value of the signal, sig1, is bound to the value of the local
variable, val.

• Define the following atomic state inline actions:

For atomic state S1, define the inline action as follows:

- val = val +0.5;

- sig1 = val;

For the atomic state S2, define the inline action as follows:
6-15

AND Model Tutorial: Creating the FSM Model

- val = val - 0.5;

- sig1 = val;

The FSM model is now complete. It should now look something like
the model shown in Figure 6-9.

Figure 6-9 The Completed FSM Model in Page 1
6-16

AND Model Tutorial: Creating the FSM Model

Creating The DFG Model

The DFG model consists of three blocks: a sine wave generator, a
two-input multiplier, and a sink. All three blocks are existing models
taken from the System Studio libraries.

Make page_2 the active page by clicking the cursor in page_2. You
are now ready to create the DFG model.

Inserting the Blocks

If the cocentric/algorithm library is collapsed, expand the library by
clicking the plus sign (+) next to it in the Workspace window; then
select the “source” library. The models in this library are shown in the
Model area.

• Click the Instance button in the dataflow objects toolbar.

• Select the SinGenerator model from the source library.

• Move the cursor into the design area. You will see the outline of
the block displayed as you move the cursor around.

• Click the left mouse button when the outline of the block is
positioned where you want to insert the block.

• Now move the cursor back into the Workspace window and
select the Mul2 block from the algorithm/arithmetic library.

• Position the Mul2 block below the SinGenerator block, as shown
in Figure 6-10, and click the left mouse button.

• Now select the WriteSignal block from the algorithm/sink library.

• Position the WriteSignal block below the Mul2 block, as shown in
Figure 6-10, and click the left mouse button.
6-17

AND Model Tutorial: Creating The DFG Model

Note:

 As an alternative, you can simply “drag and drop” the block
you want by selecting it in the model list, dragging it into the
design, and dropping it where you want it to be located.

Figure 6-10 Creating the DFG
6-18

AND Model Tutorial: Creating The DFG Model

• Click the insert Port button. A dialog box showing a list of
available ports, is displayed, as shown in Figure 6-11.

Figure 6-11 Selecting the Port sig1

• Select port “sig1 in” and position it in the design as shown in
Figure 6-12.

• Click the middle mouse button to cancel the insert Port mode.

Note:
In algorithmic models, signals are treated as ports. No ports have
been defined for this model, but sig1 has been declared as a local
variable and is therefore available under this menu option. The
signal can be instantiated as either and input or an output. In this
case it is an input.
6-19

AND Model Tutorial: Creating The DFG Model

Figure 6-12 Inserting the Port sig1

Inserting the Nets

The next step is to connect the blocks of the DFG together with nets:

• Click the insert Net button in the dataflow objects toolbar.

• Position the cursor over the output port of the SinGenerator
block.

• Press and hold the left mouse button, and create a net by
dragging a line from the SinGenerator output port to the first input
port of the Mul2 block.

• Release the mouse button; the two blocks are now connected.

• Now position the cursor over port sig1.
6-20

AND Model Tutorial: Creating The DFG Model

• Press and hold the left mouse button, and create a net by
dragging a line from port sig1 to the second input port of the Mul2
block.

• Release the mouse button; the two blocks are now connected.

• Now position the cursor over the output port of the Mul2 block.

• Press and hold the left mouse button, and create a net by
dragging a line from the Mul2 output port to the input port of the
WriteSignal block.

• Release the mouse button; the two blocks are now connected.

• Click the middle mouse button to cancel the Insert Net mode. The
end result should look similar to the example shown in
Figure 6-13.

Figure 6-13 The Completed DFG
6-21

AND Model Tutorial: Creating The DFG Model

Setting the Parameter Values

To finish the design, the blocks of the DFG have to be parameterized.

• Position the mouse over the instance of the SinGenerator and
click the right mouse button.

• Choose Configure Object from the context-sensitive menu. The
Configure Objects dialog box opens as shown in Figure 6-14.

Figure 6-14 Configuring a DFG Block

For your convenience, some of the parameters have default
values. You can ignore these values.
6-22

AND Model Tutorial: Creating The DFG Model

• Assign the following value to the parameter Increment of the
SinGenerator block (as shown in Figure 6-14):

Block: SinGenerator

- Parameter: Increment

- Value: 8*atan(1.0)*f/fs

• Click OK.

• Repeat these steps for the WriteSignal block to assign the
following value to the parameter SamplingTime (as shown in
Figure 6-15):

Block: WriteSignal

Figure 6-15 Configuring the WriteSignal Block
6-23

AND Model Tutorial: Creating The DFG Model

- Parameter: SamplingTime

- Value: 1.0/fs

• Click OK.

The AND model is now complete; it should look like the design
shown in Figure 6-16.

Figure 6-16 The Completed AND Model
6-24

AND Model Tutorial: Creating The DFG Model

Simulating the Design

• Check that the design has no errors by clicking the Check Design
button in the System Studio toolbar and observing any messages
that appear in the Check Report message window.

• Click the Code Generation tab in the Workspace window.

• Check the Max Cycles checkbox and enter 500 in the field next
to it.

• Make sure that the Compile and Start check boxes are selected,
as shown in Figure 6-17.

Figure 6-17 Preparing for Code Generation
6-25

AND Model Tutorial: Simulating the Design

• Click the Create button. The model source code will be
generated and compiled, and the simulation will be executed and
run to completion. The code generation messages will be
displayed in the message window, followed by the simulation
messages. An Infobox message will appear when the simulation
completes successfully.

After the simulation execution has completed, you can open the
System Studio simulation and check the output data file using
DAVIS. The output waveform of the modulated sine wave should
look like the waveform shown in Figure 6-18. For information about
using DAVIS, refer to the CoCentric DAVIS User Guide.

Figure 6-18 The Output Waveform
6-26

AND Model Tutorial: Simulating the Design

Architectural Modeling 7

Architectural (SystemC) models capture the architecture of a system
at various levels of granularity and abstraction. These models allow
you to describe the overall platform architecture in terms of its buses,
memories, processors, and ASIC content, as well as making it
possible for you to describe the internal architecture of the individual
components.

This chapter takes you step-by-step through the stages of creating a
very simple design that consists of two SystemC primitive models
and a hierarchical model. The information in this chapter is
presented in the following sections:

• Creating an Architectural Primitive Model

• Creating a Hierarchical Model

• Simulating the Model

• Visualizing the Simulation With DAVIS
7-1

Architectural Modeling

• Port Cloning and MultiPort Adapters

• Using CoCentric System Studio VirSim

• Simple Bus Example

Creating an Architectural Primitive Model

This example illustrates the essentials of creating a simple counter
model.

1. The first step is to create the library that will contain the model
(you can, of course, just choose an existing library, in which case
you can skip this step). Choose File New from the menu and in
the Create Library dialog box, as shown in Figure 7-1, enter the
name of the library.

Figure 7-1 Creating the Library
7-2

Architectural Modeling: Creating an Architectural Primitive Model

2. Click Apply.

3. Click the new library in the workspace window to highlight it and
then choose File › New.

4. With the Create Library dialog box open, click the Model tab to
open the Create Model page as shown in Figure 7-2.

5. Enter the name of the model (for example, counter), choose the
Architectural (SystemC) Models domain, and choose Primitive as
the model type. Leave the other option boxes at their default
settings.

Figure 7-2 Creating the Model

6. Click OK. The dialog box closes and the model Source View
opens.
7-3

Architectural Modeling: Creating an Architectural Primitive Model

7. Click the Interface tab to open the Interface View. The port page
is displayed.

8. Create two ports:

- Name: clk - Port Type: sc_in<bool>

This is the clock signal. As an alternative, you could select
sc_in_clk as the Port Type for the clock signal.

- Name: output - Port Type: sc_out<int>

You can include your own comments for model documentation;
see Figure 7-3.

Figure 7-3 Creating the Ports
7-4

Architectural Modeling: Creating an Architectural Primitive Model

9. Now click the Parameter tab to open the Parameter page.

10. Create one parameter:

- Name: count_upwards

Data Type: bool

Type: CCSS_PARAMETER.

Add your own comments; see Figure 7-4.

Figure 7-4 Creating the Parameter

Click the Header tab to see the model code taking shape, as
shown in Figure 7-5.
7-5

Architectural Modeling: Creating an Architectural Primitive Model

Figure 7-5 The Header View

11. Now you need to add a member process. In the Header View,
click the Add Member button. The Add Member dialog box
opens.

12. Click the Process tab to open the Add Member Process page.

13. Create a member process my_process and define it as being
sensitive to the positive edge of the clk port (see Figure 7-6) and
click OK.
7-6

Architectural Modeling: Creating an Architectural Primitive Model

Figure 7-6 Adding a Member Process

Note:

Using the “Insert Process” options, you can specify whether
the initialization and declaration should be pasted into the code
(and, if so, where), or copied to clipboard. If you copy to the
clipboard, you can paste into the code by placing the cursor
where you want to make the insertion, and pressing Control-v.

14. Open the Header View. Position the cursor in the line after “//
process declarations” and paste the process declaration into the
file (either use the Paste button or press Control-v). You will see
that the model code now contains the process declaration as
shown in Figure 7-7.
7-7

Architectural Modeling: Creating an Architectural Primitive Model

Figure 7-7 The Header View

15. From the Header View, click the Add Member button once again
to open the Add Member dialog box. This time you will add
member data.

16. Click the Data tab to open the Add Member Data page as shown
in Figure 7-8.

17. Create a member data

- Name: count

Data type: int
7-8

Architectural Modeling: Creating an Architectural Primitive Model

18. Click OK.

Figure 7-8 Creating the Member Data

Note:

Leave the “Insert Data Member” option set to “at the end”; any
other selection may result in unexpected behavior.

The declaration is now added to the header and is visible in the
Header View. You will see that some explanatory comments have
been added to the header in the version shown in Figure 7-9.
7-9

Architectural Modeling: Creating an Architectural Primitive Model

Figure 7-9 The Header View

You can now add the parameter initialization to the source code.

19. To add the parameter initialization, click Parameter in the
interface view and set the Default value to true.
7-10

Architectural Modeling: Creating an Architectural Primitive Model

If you now look at the header view, you will see that the
parameter count_upwards has been initialized, see Figure 7-10.

Figure 7-10 The Header View (Parameter Initialization)

20. You now need to add the process implementation code. Click the
Source tab.

21. In the source view, type the code to implement the process as
shown in Figure 7-11 and Example 7-1.
7-11

Architectural Modeling: Creating an Architectural Primitive Model

Figure 7-11 Implementing the Process

22. Do not forget to remove the “#error” preprocessor directive used
to remind you to implement any processes you declared earlier.

23. At this point in the design you can check your code. Click the
Check Design button and look at the message in the Check
Report view.
7-12

Architectural Modeling: Creating an Architectural Primitive Model

Note:

If you make a mistake, such as a syntax error or a typing error
when entering the code, it will be discovered when the design
is checked and will be reported in the Check Report message
window.

If you double-click the error message, the Source View opens
with the cursor located as close to the source of the error as
possible so that you can quickly correct the error and then
recheck the design.

This completes the first model instance. Save the model. The
completed source code for this model is shown in Example 7-1,
and the header file is shown in Example 7-2.

Example 7-1 The Model Source Code
// counter.cpp: source file

#include "counter.h"

void counter::my_process()
{

// This process is sensitive to the clock. Depending on the
// count_upwards parameter we either increment or decrement
// the count. After that, we write the new value to the
// output port.

if (count_upwards) {
count = count + 1;

}
else {

count = count - 1;
}

output = count;

}

7-13

Architectural Modeling: Creating an Architectural Primitive Model

Example 7-2 The Model Header File
// counter.h: header file

#ifndef __counter_h
#define __counter_h

#include <systemc.h>

#ifndef SYNTHESIS
#include <ccss_systemc.h>
#endif

class counter
: public sc_module
{

public:
 // parameters

 // If set to true, then we count upwards from 0, else we decrement
 CCSS_PARAMETER(bool, count_upwards);

 // ports

 // The clock port
 sc_in<bool> clk;

 // Output port
 sc_out<int> output;

 // initialize parameters
 void InitParameters() {
 bool _tmp_count_upwards = true;

count_upwards.conditional_init(_tmp_count_upwards);
 }
 // default constructor
 SC_CTOR(counter)
 {
 InitParameters();

 // process declarations
 SC_METHOD(my_process);
 sensitive_pos << clk;

 }
 // This is the one and only process that our simple model will have
 // It is a method process that is sensitive to the clock.
 // (see above in the constructor)

 void my_process();
7-14

Architectural Modeling: Creating an Architectural Primitive Model

 // Here we store the actual count.
 int count;

}; // end module counter

#endif

Creating the Printer Model

The next step is to create a second architectural (SystemC) primitive
model in the same library as the first model. This is a simple printer
that takes an integer value as its input. The steps to create this model
are the same as for the first model, so some of the explicit detail will
be left out.

• Create this model in the same way as the first model and in the
same library. If necessary, refer to “Creating an Architectural
Primitive Model” on page 7-2.

• For this second model, create one port:

- Name: input

Port Type: sc_in<int> (see Figure 7-12)
7-15

Architectural Modeling: Creating an Architectural Primitive Model

Figure 7-12 Creating the Port

• Now create a member process for this second model and make
it sensitive to the input signal (see Figure 7-13).
7-16

Architectural Modeling: Creating an Architectural Primitive Model

Figure 7-13 Creating the Member Process

In the Header View, you will now see the code for this second
model taking shape (see Figure 7-14).
7-17

Architectural Modeling: Creating an Architectural Primitive Model

Figure 7-14 The Header File of the Second Instance
7-18

Architectural Modeling: Creating an Architectural Primitive Model

• As with the first model, the next step is to add the process
implementation, see Figure 7-15 and Example 7-3.

Figure 7-15 Creating the Process Implementation

You have now completed the creation of the second primitive
architectural (SystemC) model. The source code for the printer
model is shown in Example 7-3, and the header file is shown in
Example 7-4.

• Check the design to make sure that there are no errors and save
the model.
7-19

Architectural Modeling: Creating an Architectural Primitive Model

Example 7-3 The Printer Model Source Code
// printer.cpp: source file

include "printer.h"

void printer::my_process()
{

// This process is sensitive to the input port.
// Hence it is triggered whenever the value of the
// input signal changes.

// Print the new value and the current time.
cout << "new value = " << input.read() << endl;
sc_time_stamp().print(cout);

}

Example 7-4 The Printer Model Header File
// printer.h: header file

#ifndef __printer_h
#define __printer_h

#include <systemc.h>

#ifndef SYNTHESIS
#include <ccss_systemc.h>
#endif

class printer
: public sc_module
{

public:
 // ports

 // Input port.Upon each value change we print the new value
 //and the current time.
 sc_in<int> input;

 // initialize parameters
 void InitParameters() {
 }

 // default constructor
 SC_CTOR(printer)
 {
 InitParameters();
7-20

Architectural Modeling: Creating an Architectural Primitive Model

 // process declarations
 SC_METHOD(my_process);
 sensitive << input;

 }
 void my_process();

}; // end module printer

#endif

Creating a Hierarchical Model

Now you will create a third architectural model. In this case, the
model is a hierarchical model. You will then instantiate the other two
models in this model.

• Create a new hierarchical architectural model in the same library
as your primitive models.

• Instantiate your two new primitive models in the new schematic,
as shown in Figure 7-16. You can do this by simply dragging and
dropping the model instances you want from the workspace
window into the design area.
7-21

Architectural Modeling: Creating a Hierarchical Model

Figure 7-16 Instantiating the Models

• Click the Channel button on the schematic toolbar. On the
drop-down menu, choose sc_clock as the channel type.

• Draw a clock channel (sc_clock) from some point in the design
area to the input (clk) of the counter block as shown in
Figure 7-17.
7-22

Architectural Modeling: Creating a Hierarchical Model

Figure 7-17 Connecting a Clock Channel

• Change the channel type to sc_signal<int>, and then draw a
channel between the output of the counter block and the input of
the printer block as shown in Figure 7-18.
7-23

Architectural Modeling: Creating a Hierarchical Model

Figure 7-18 Connecting the Instances

• To check your design, click the Check Design button in the
toolbar.

• In the source view, click the Check Report tab. If there are no
errors, as shown in Figure 7-19, you can save the hierarchical
model.
7-24

Architectural Modeling: Creating a Hierarchical Model

Figure 7-19 Checking the Design

The design is now complete and ready for simulation.

• Select the library containing all three instances. Click the right
mouse button, choose Build Object Code, and then choose
Debug, as shown in Figure 7-20.
7-25

Architectural Modeling: Creating a Hierarchical Model

Figure 7-20 Creating the Library Object Code
7-26

Architectural Modeling: Creating a Hierarchical Model

Simulating the Model

If there are no error messages displayed in the message window, the
object code generation has succeeded. You can now generate the
code and run the simulation.

• Click the Code Generation tab.

• In the code generation window (see Figure 7-21), select the
Compile, Start, and Control panel check boxes.

• Click the Start button and select Paused to start the simulation in
paused mode.

• Enter a simulation time, for example 1000, and then click Create.

In the messages window you should see a log window containing the
code generation progress.
7-27

Architectural Modeling: Simulating the Model

Figure 7-21 Creating the Simulation

The simulation will now be compiled and started in paused mode.
After a short time, the simulation control panel will open, as shown in
Figure 7-22, allowing you to interact with the simulation.
7-28

Architectural Modeling: Simulating the Model

Figure 7-22 Controlling the Simulation

Visualizing the Simulation With DAVIS

With the simulation running under the control of the simulation
control panel, you can start DAVIS, connect to the simulation, and
look at the output of the counter M1.

• First open a DAVIS tool and then from the DAVIS drop-down
menu, choose File › Connect to Simulation.
7-29

Architectural Modeling: Visualizing the Simulation With DAVIS

Note:

For details of using DAVIS, see the CoCentric DAVIS User
Guide.

• Connect to your running simulation, as shown in Figure 7-23,
 and click OK.

Figure 7-23 The Select Simulation Dialog Box

• To connect to the output of the counter (port_1), navigate down
through the model hierarchy and select M1/port_1.

• To make this simulation easier to view, type 10 in the Samples to
display box, as shown in Figure 7-24, and click OK.
7-30

Architectural Modeling: Visualizing the Simulation With DAVIS

Figure 7-24 The Connect To Simulation Dialog Box

 A DAVIS window appears showing the port_1 output data,
although at this point, no data has yet been generated.

• Using the Step button on the simulation control panel, step
through the simulation a few times and observe the DAVIS
display.

• If necessary, use the zoom controls and the scroll bars to resize
the DAVIS display to view a waveform similar to the one shown
in Figure 7-25.
7-31

Architectural Modeling: Visualizing the Simulation With DAVIS

Figure 7-25 DAVIS Display Counter Output

Changing the Simulation Data

In addition to using the simulation control panel to start, stop, or step
through the simulation execution, you can also use it to change
simulation data.
7-32

Architectural Modeling: Visualizing the Simulation With DAVIS

In this example, you can use the simulation control panel to change
the value of the count_upwards parameter from 1 to 0 so that the
counter starts to count down instead of up.

• In the simulation control panel, click the Level Watch tab and then
step through the simulation until the Level Watch details for the
M1 counter are available. You will see a display similar to that
shown in Figure 7-26.

Figure 7-26 Changing Simulation Parameters

• To change the value of the count_upwards parameter from true
to false, type 0 in the Value field.
7-33

Architectural Modeling: Visualizing the Simulation With DAVIS

• Step through a few more cycles using the simulation control
panel and observe the DAVIS display as the counter decrements
the count instead of incrementing it, as shown in Figure 7-27.

Figure 7-27 Results of Changing the Parameter.

This concludes this part of the tutorial on using the simulation control
panel. You can save and exit the tutorial, or you can experiment with
the other features of the simulation control panel, such as setting
breakpoints, and using data watch to monitor the execution of the
simulation.
7-34

Architectural Modeling: Visualizing the Simulation With DAVIS

Port Cloning and MultiPort Adapters

In SystemC, a port can address multiple channels. In System Studio,
there are two ways to implement multiple port-to-channel
connections. The preferred way is to use a system of copying and
pasting ports known as “cloning.” The second way is to use a
multiport adapter. Both methods are described in this section.

In general, a port in SystemC is derived from the port base class
sc_port<IF,N>, where IF is an interface, and N is the maximum
number of interfaces that can be connected to the port. The port
classes you have encountered so far in this tutorial (sc_in<type> and
sc_out<type>) are a shortcut for the fuller and more accurate
definitions of sc_port<sc_port_in_if<type>,1> and
sc_port<sc_port_out_if<type>,1> respectively.

Based on the knowledge you have gained in the first part of this
chapter, you are now familiar with the basics of creating a SystemC
model. Therefore, the next part of this tutorial deals only with the
unique aspects of creating multiple port-to-channel connections. The
example will, as usual, use a very simple design to clarify the
process.

Port Cloning

The first step in this design will be to create a source model. This will
be a very simple, primitive, clock-driven source; the most important
aspect of this source model is that, in the port declaration, you will
define the number of channels that it can output. The output port is
declared as having type sc_port<sc_signal_out_if<int>, 10>, thus
supporting up to 10 outputs.
7-35

Architectural Modeling: Port Cloning and MultiPort Adapters

Note:
A special case would be to declare N=0 (sc_port<IF, 0>). In this
case you can connect an arbitrary number of interfaces to the
port.

• Create an architectural primitive model as your multiport source,
with the port declarations shown in Figure 7-28.

Figure 7-28 Creating a Multiport Source Model

• Next, create a member process sensitive to the clock as shown
in Figure 7-29.
7-36

Architectural Modeling: Port Cloning and MultiPort Adapters

Figure 7-29 The Member Process

• Create a data member named count of type int, as you did for the
counter model in the previous section (see Figure 7-30).
7-37

Architectural Modeling: Port Cloning and MultiPort Adapters

Figure 7-30 The Data Member

• In the Header View, initialize count to 0 in the model constructor,
as shown in Figure 7-31.
7-38

Architectural Modeling: Port Cloning and MultiPort Adapters

Figure 7-31 Initializing the Count Parameter

• In the source view, implement the code as shown in Figure 7-32.
7-39

Architectural Modeling: Port Cloning and MultiPort Adapters

Figure 7-32 The Model Source View

Next, create the sink model that will be connected to the source
model.

• Create a model with one input port of type sc_<int>, with a
process sensitive to the input. This model uses a simple sink that
writes the value that it receives. The header view is shown in
Figure 7-33.
7-40

Architectural Modeling: Port Cloning and MultiPort Adapters

Figure 7-33 The Sink Model Header View

• Implement the code shown in the source view in Figure 7-34.
7-41

Architectural Modeling: Port Cloning and MultiPort Adapters

Figure 7-34 The Sink Model Source View

Now that the models have been created, the next step is to create a
test bench model to hold them.

• Create an architectural hierarchical model named
multiport_clone.

• Open multiport_clone and instantiate one instance of the source
model and two instances of the sink model into the test bench
design.
7-42

Architectural Modeling: Port Cloning and MultiPort Adapters

• Navigate to the library architectural/systemc, and drag-and-drop
an instance of the model sc_clock into your test bench. The
model should now look like Figure 7-35.

Figure 7-35 Instantiate the Models

• Connect a channel between the sc_clock and the input of the
source model.

• Select the output port of your source model to highlight it.

• From the main menu choose Edit › Copy › Edit › Paste and then
move the mouse pointer over the position on the source module
where you require the cloned port. When you have the correct
position, left-click to instantiate the cloned port. Your source
model should look like the model in Figure 7-36.
7-43

Architectural Modeling: Port Cloning and MultiPort Adapters

Figure 7-36 Multiport Clone Test Bench

• Connect channels from the two output ports to the inputs of the
two sink models. Use type sc_signal<int> for these channels.

• Finally, check the design and, if there are no errors, simulate the
design using the simulation control panel.

By single-stepping through the simulation, you will see that each
instance of the sink model is activated in turn.

This method of cloning ports or interfaces works very well when there
is sufficient space on the module to copy and paste the required
number of ports or interfaces. However, in designs where space is
limited, you can use a multiport adapter to fanout the ports.
7-44

Architectural Modeling: Port Cloning and MultiPort Adapters

Using Multiport Adapters

The next design uses the same source and sink models as in the last
design, and the output is the same. You will create a new test bench
for this design.

• Create an architectural hierarchical model named
multiport_adapter.

• Instantiate the clock, the multiport_source module, and the sink
modules as you did in the last design, but this time you can add
tree or four sink models if you want.

• Lay out your test bench as shown in Figure 7-37.

Figure 7-37 Multiport Adapter Test Bench
7-45

Architectural Modeling: Port Cloning and MultiPort Adapters

• From the main menu, choose Insert › Adapter.

• Move the mouse pointer to the source output port, and draw a
channel from the output port to a position in line with the input
port of one of the sink modules.

• Repeat the previous step for the other sink modules until your
design looks like Figure 7-38.

Figure 7-38 Creating the Multiport Channels - Step1

• From the toolbar, select the channel button and draw a channel
from one of the adapter symbols to the corresponding sink input
port.
7-46

Architectural Modeling: Port Cloning and MultiPort Adapters

• Repeat the previous step for the other channels until your test
bench looks like Figure 7-39.

Figure 7-39 Creating the Multiport Channels - Step 2

You can now check and run the model. The results should be the
same as for the previous model.

Using CoCentric System Studio VirSim

In addition to using DAVIS to visualize the simulation output, you can
use CoCentric System Studio VirSim to control, monitor, and debug
an architectural simulation. This section gives you a simple
introduction to the use of VirSim, and shows you how to connect to
7-47

Architectural Modeling: Using CoCentric System Studio VirSim

a running simulation. For more in-depth information on the extensive
features of VirSim, see the CoCentric System Studio VirSim Guide,
and the VirSim online Help.

• First, if you terminated your simulation at the end of the last
section, you must regenerate the code and start the simulation
again in paused mode.

• From the System Studio main menu, choose Simulation › Open
VirSim. The Select Simulation dialog box appears.

• Select the running simulation and click OK. VirSim automatically
connects to the running simulation. The VirSim Interactive
window and the VirSim main menu bar appear, as shown in
Figure 7-40.
7-48

Architectural Modeling: Using CoCentric System Studio VirSim

Figure 7-40 VirSim Main Menu and Interactive Window
7-49

Architectural Modeling: Using CoCentric System Studio VirSim

• From the VirSim main menu bar, choose Hierarchy. The
Hierarchy window appears.

• From the VirSim main menu bar, choose Waveform, The
Waveform window appears; see Figure 7-41.

Figure 7-41 Waveform Window

• In the Hierarchy window, select the down arrow next to the model
name, then select the M1 instance.

• In the Hierarchy window Signal Select pane, click the + symbol
next to the port_1[31:0] signal to expand the signal (see
Figure 7-42).

Waveform paneTimescale area
7-50

Architectural Modeling: Using CoCentric System Studio VirSim

Figure 7-42 VirSim Hierarchy Window

• Select the bits that you are interested in (use Shift + the left
mouse button to highlight multiple bits).
7-51

Architectural Modeling: Using CoCentric System Studio VirSim

• In the Hierarchy window, click the Add button to view
the selected bits in the Waveform window.

Alternatively, use the middle mouse button to drag
and drop the highlighted bits into the Waveform pane of the
Waveform window below the Timescale area.

• In the Waveform window, click the Zoom Percent button and
select 100%.

• In the VirSim Interactive window, use the Step button to step
through the simulation a few times.

• The resulting display will look similar to Figure 7-43. If necessary,
resize the Waveform window and use the scroll bar to view the
desired signals.
7-52

Architectural Modeling: Using CoCentric System Studio VirSim

Figure 7-43 VirSim Waveform Window

You can continue to step through the simulation using the simple
preconfigured commands provided in the Virsim Interactive window,
or you can enter Tcl commands at the command line.

You can use VirSim concurrently with DAVIS to visualize the signal
in different ways.

You can use either the VirSim Interactive window or the System
Studio simulation control panel to control the simulation.
7-53

Architectural Modeling: Using CoCentric System Studio VirSim

Simple Bus Example

You have now covered the basic steps in creating a simple SystemC
architectural model. You will find more detailed information in the
System Studio User Guide however, at this stage, it will be useful to
examine the source code and header files of a more complex
architectural model.

Figure 7-44 shows the schematic of a simple bus test model. You
can find this example in the cocentric/architectural/simple_bus/
simple_bus_examples library. The building-block modules for this
example can be found at the next level up in the simple_bus library.

Figure 7-44 Simple Bus Test Example

Open this test example and examine the information in the Interface,
Source, and Header views.
7-54

Architectural Modeling: Simple Bus Example

Exploring the Float-to-Fixed Capabilities 8

This information in this chapter is presented in the following sections:

• About the Demo

• Preparing the Demo

• Statistic Functions

One of the first steps in moving from a software algorithm to a
hardware implementation is to convert the design from a
floating-point representation to a fixed-point representation. This will
inevitably introduce quantization and other errors.

CoCentric System Studio’s floating-point-to-fixed-point exploration
capabilities allow you to create a properties database for a design in
which you can save the configuration parameter values that you
consider are key factors in the floating-point-to-fixed-point
conversion. By specifying values for the parameters (such as the
word length for ports) or enabling the statistics collection function for
8-1

Exploring the Float-to-Fixed Capabilities

a given symbol, you can run a simulation, merge the results of that
simulation into the current model, and then compare the results with
those of other simulations. This approach allows you to experiment
with the values of the parameters until you find the best fit. At this
point you can then “refine” the design to create a new design that
incorporates the design improvements that you have introduced.

It is always possible in System Studio to use the available type
mechanisms to change a model from a floating point to a fixed point
representation. However, there are important advantages to be
gained from using properties instead of type parameters. For
example, in the simple example demonstrated in this chapter, the
example model (add2) only has one type parameter. To create a
usable add2 model three type parameters would be required, one for
each port. If you were to consider a more complicated model, such
as a filter/Biquad, you would need a type parameter for every port,
every variable, and every temporary variable in the model. Working
with a realistic model would require you to set a bewildering number
of parameters during the exploration, which would be totally
unacceptable. In addition, these models are too complicated for work
without fixed-point types.
8-2

Exploring the Float-to-Fixed Capabilities

About the Demo

This chapter steps through a simple demonstration that illustrates
System Studio’s floating-point-to-fixed-point capabilities.

The design consists of a first order IIR filter. You simulate a double
precision version of an IIR filter design using a testbench that
consists of a White Gaussian Noise source block and a WriteSignal
sink block as shown in Figure 8-1.

Figure 8-1 The IIR Filter Design

The simulation provides the reference output data as well as some
useful statistical information such as the mean, variance, maximum
value, minimum value, proposed fixed type, and so on at the different
locations of the design.

Preparing the Demo

To set up and load the demo, you need to run a script to start System
Studio and make the reference design available.
8-3

Exploring the Float-to-Fixed Capabilities: About the Demo

• Move to the directory from which you want to run the demo. In
this chapter it is the directory referred to as $DEMODIR.

• Make sure that the SYNOPSYS_CCSS environment variable
points to your System Studio installation.

• Execute the following command to start System Studio and open
the reference workspace.

$SYNOPSYS_CCSS/../../ccss/models/demos/properties/run_me.sh

• From System Studio, open the double-type reference design
dfg/iir_1st_order by double-clicking it in the workspace
view as shown in Figure 8-2.
8-4

Exploring the Float-to-Fixed Capabilities: Preparing the Demo

Figure 8-2 The Loaded Design

Statistic Functions

Open the hierarchy browser by choosing View › Workspace Tab ›
Hierarchy from the System Studio main menu bar, or by clicking the
Hierarchy tab of the Workspace window.
8-5

Exploring the Float-to-Fixed Capabilities: Statistic Functions

To activate the statistic collection function, you need to select the
relevant ports of an instance in the model, and set the value of the
collect_stat property to true.

1. In the hierarchy browser, select the Show configuration
Properties check box if it is not already selected. The Properties
Configuration pane is displayed next to the hierarchy browser.

2. In the hierarchy browser, select the input port (InData) of
instance M3 (dfg/iir_1st_order/schematic/
M3:arithmetic/MulConstant/InData)

3. In the Properties Configuration pane, set the value of the
collect_stat property to true, and then press Enter (see
Figure 8-3).
8-6

Exploring the Float-to-Fixed Capabilities: Statistic Functions

Figure 8-3 Enabling Statistics Collection

4. Set the property value to true for the two input ports (Input1 and
Input2), and the output port (Sum) of instance M4. Do not forget
to press Enter after each change.

5. You must now save the property database to a file:

From the System Studio main menu, choose Model ›
Configuration Properties › Save As, to open the Save
Configuration Properties dialog box.
8-7

Exploring the Float-to-Fixed Capabilities: Statistic Functions

6. In the File Name field of the Save Configuration Properties dialog
box, enter result0.ocd as the name of the object configuration
database file, and click save.

Note:
Appropriate values can also be set for the hist_num_classes,
hist_min_bound and hist_max_bound properties if desired;
otherwise a default number of classes (64) will be used and the
minimum and maximum bounds will be computed using the data
collected.

Activating statistic collection for a symbol provides the following
information after simulation:

• The proposed fixed type representation for the symbol
(proposed_fixed_type).

• The mean of the values collected at the symbol
(hist_mean_value).

• The variance of the values collected at the symbol
(hist_variance).

• The name of the data set containing the histogram classes
(hist_dataset).

• The highest value collected at the symbol (max_value) and its
location (max_value_location).

• The lowest value collected at the symbol (min_value) and its
location (min_value_location).
8-8

Exploring the Float-to-Fixed Capabilities: Statistic Functions

Simulating and Back-Annotating the Design

On the System Studio main menu, click the Pop Top button to return
to the top level view of the model, and then simulate the design by
choosing Simulation › Simulate Model from the main menu.

Because this is the first simulation of the design, the simulation name
should be iir_1st_order_1, which will be referred to in this
chapter as $SIMNAME_1. The simulation is only activated once, and
only one iteration is executed, so the statistics information generated
is stored in the file $DEMODIR/$SIMNAME_1/activ_1/iter_1/
design_properties.ocd.

When the simulation execution has completed, you need to
back-annotate the simulation statistics information into the
Properties Configuration dialog box by merging the simulation
results into the current properties database.

1. From the System Studio main menu, choose Model ›
Configuration Properties › Merge, to open the Merge
Configuration Properties dialog box.

2. In the Merge Configuration Properties dialog box, use the file
browser to select the file $DEMODIR/$SIMNAME_1/activ_1/
iter_1/design_properties.ocd, which is the statistic information
file generated by the simulation. Click Open.

3. Choose View › Workspace › Hierarchy to open the hierarchy
browser.

4. From the hierarchy browser, select the input port (InData) for
instance M3 (dfg/iir_1st_order/schematic/
M3:arithmetic/MulConstant/InData).

Note that the properties now have values as shown in Figure 8-4.
8-9

Exploring the Float-to-Fixed Capabilities: Statistic Functions

Figure 8-4 The Configuration Properties after Merging

Take a look at the values of some useful properties such as:

- hist_dataset, which shows the histogram data set
(histogram:properties://dfg/iir_1st_order/
schematic/M3//arithmetic/MulConstant/*/
InData//)

- proposed_fixed_type, which is the proposed fixed type
representation to be used for the input port
8-10

Exploring the Float-to-Fixed Capabilities: Statistic Functions

Using DAVIS to Visualize the Output

You can use DAVIS to visualize the simulation data. For example, to
display the histogram data set, do the following:

• From the System Studio main menu, choose Tools › Davis to
open the CoCentric DAVIS main window.

• From the DAVIS main window, choose File › Open System Studio
Simulation to open the Open Simulation dialog box.

• From the Open Simulation dialog box, use the hierarchy browser
to select “$SIMNAME_1/activ_1/iter_1/histogram:properties://
dfg/iir_1st_order/schematic/M3//arithmetic/MulConstant/*/
InData//”.

• Click OK to display the plot. If you zoom the display and, for
example, select the horizontal range from -2.6 to 4.7, you will see
a histogram similar to the example shown in Figure 8-5.
8-11

Exploring the Float-to-Fixed Capabilities: Statistic Functions

Figure 8-5 The Histogram Dataset Displayed in DAVIS

Use DAVIS to visualize the filter result by performing the following
steps:

• From the main window of the first DAVIS workbook, choose File
› New Workbook to open a second workbook.

• From the main window of the second DAVIS workbook, open the
Open Simulation dialog box and select $SIMNAME_1/activ_1/
iter_1/outdset:WriteSignal:M7.

Click OK to see a display similar to Figure 8-6.
8-12

Exploring the Float-to-Fixed Capabilities: Statistic Functions

Figure 8-6 The Filter Output Displayed in DAVIS
8-13

Exploring the Float-to-Fixed Capabilities: Statistic Functions

8-14

Exploring the Float-to-Fixed Capabilities: Statistic Functions

Importing From COSSAP 9

This chapter describes how to import COSSAP models into
CoCentric System Studio. It contains the following sections:

• Setting Up Your Environment

• Importing COSSAP Models and Schematics

• Importing a COSSAP Assignment File

• Importing a COSSAP Generic C (.gc) File

You can import various COSSAP files, as well as the COSSAP
models themselves, into CoCentric System Studio. You can import
the following models:

• A COSSAP primitive model into a System Studio SDS model

• A COSSAP hierarchical model or a pure COSSAP schematic into
an System Studio dataflow (DFG) model
9-1

Importing From COSSAP

• A COSSAP assignment file into a System Studio simulation
control file (.scf)

• A COSSAP generic C (.gc/.gcc) file into a System Studio SDS
model

Setting Up Your Environment

Before you can import COSSAP files into System Studio, you must
ensure that the following two COSSAP variables have been set
before starting System Studio:

• COSSAP_PROJECT, which specifies the name of your current
COSSAP project

• COSSAP_DIR, which specifies your COSSAP installation
directory

Importing COSSAP Models and Schematics

To import COSSAP models and schematics into System Studio:

1. Choose File > Open to open a workspace that will contain the
converted design.

2. Choose File > Import to open the Import dialog box, as shown in
Figure 9-1.

3. In the Import dialog box, select the symbol file corresponding to
the COSSAP model (hierarchical or primitive model), or select
the schematic file corresponding to the COSSAP model.
9-2

Importing From COSSAP: Setting Up Your Environment

To select the file to be imported, proceed as follows:

1. In the Source directory tree, select the directory containing the
symbol or schematic file.

2. In the File List, select “COSSAP Files” to display all the symbols
or schematics contained in the selected directory.

3. Select the symbol or schematic file from the files displayed in the
File Type list (center part of the import dialog box).

4. In the Destination Library field, select the library in which you
want the converted top-level model to be located.

If you do not want to use the default COSSAP development
directory location, you can change the location by editing the
entry in the COSSAP_USER_D field, shown below the Source
directory tree.

5. To autoroute the nets while importing the COSSAP schematic,
check the selection box.

Due to differences between native COSSAP designs and System
Studio designs, it may not be possible to automatically route the
nets in the COSSAP design during import. If problems occur,
deselect autorouting and try importing the design again. Note,
however, that after you have imported such a design it may still
be difficult to route the nets manually.

6. Click the Import button to import the model.
9-3

Importing From COSSAP: Importing COSSAP Models and Schematics

Figure 9-1 Importing a COSSAP File

Note:
When you import a COSSAP model or schematic, a new
top-level node is always created. However, lower-level models
are not overwritten if they have already been imported. To
overwrite a specific model, you must import it as a top-level node.

Tree
Search Path for

Source Directory

.ltbl Files

Source File
List
9-4

Importing From COSSAP: Importing COSSAP Models and Schematics

Importing a COSSAP Assignment File

To import a COSSAP assignment file:

1. Choose File › Open to open a workspace that will contain the
converted design.

2. Select File › Import to open the Import dialog box.

3. In the Source directory tree (left side of the Import dialog box),
select the directory containing the assignment file.

4. In the File Type part (center of the Import dialog box), select
“COSSAP Files” to display all the assignment files contained in
the selected directory.

5. Select the assignment file from the files displayed in the File Type
list.

6. In the Destination Library field, select the library in which to write
the System Studio simulation control file.

7. Click the Import button.

Importing a COSSAP Generic C (.gc) File

To import a COSSAP generic C (.gc) file:

1. Choose File › Open to open a workspace that will contain the
converted design.

2. Choose File › Import to open the Import dialog box as shown in
Figure 9-2).
9-5

Importing From COSSAP: Importing a COSSAP Assignment File

Figure 9-2 Importing a COSSAP GC File

3. In the Source directory tree (left side of the Import dialog box),
select the directory containing the generic C file.

4. In the File Type list (center of the import dialog box), select
“COSSAP Files” to display all the COSSAP files contained in the
selected directory.

5. Select the generic C file from the files displayed in the File Type
list.

6. Select the Signal Type according to the contents of the GC code:
select “float” for GC code that contains float signal types,
select “int” for GC code that contains long signal types.

7. In the Destination Library field, select the library in which you
want the generated System Studio model to be located.

8. Click the Import button.
9-6

Importing From COSSAP: Importing a COSSAP Generic C (.gc) File

Glossary GL

ancestor
An ancestor is an instance from which the parent instance of the
current instance is descended.

Instance A is an ancestor of another instance F when the path from
the top level of the design down to F goes through A, as shown in
Figure G-1. If this relationship is satisfied, F is a descendant of A.

Figure G-1 Ancestors and Descendants

AND model
An AND model is a hierarchical model in which all the instances
execute in parallel lockstep with synchronous-reactive
communication between them.

D E

TOP

A

B C

F

G-1

atomic state
An atomic state is the most primitive component of a control model.
It can be empty, as a state of an OR model is, or it can have an
action associated with it that is executed on each execution step
that the state is active.

const
A const is a static constant parameter. These parameters are not
visible from the outside and must have a specified value. They are
equivalent to const variables in C++.

In control models, local signals and ports can be used in parameter
binding expressions.

In dataflow models, nets and ports cannot be used in parameter
binding expressions because this makes the parameter a “pseudo
port” and makes scheduling very difficult.

You do not have to specify the class of a parameter. The real class
of a parameter that is left unspecified is inferred by analyzing the
expression bound to it. Optionally you can force a parameter to be
either structural, read_on_reset, dynamic or a const. If a parameter
class is explicitly specified, it will be taken as a constraint and a
check will be made during design elaboration to ensure that the
constraint is satisfied. For example, if a parameter is specified as
structural and if the expression bound to the parameter does not
resolve to a constant, it will be flagged as an error. On the other
hand, it is legal to bind a constant expression to a read_on_reset or
dynamic parameter. The code generator will optimize this to a
structural case. All parameters can be given a default value.

control model
Control model is a term used to describe all hierarchical models
other than dataflow graphs.
G-2

DDK or DSP Developer Kit
A DDK is a mechanism permitting the execution and debugging of
assembly programs for DSP processors or cores in the System
Studio environment. System Studio sees the DDK as a primitive
dataflow block.

DFG model or dataflow model
A dataflow graph (DFG) model or dataflow model is a hierarchical
model in which the constituent instances communicate by means of
FIFO queues of data travelling on nets.

descendant
A descendant is an instance that is directly descended from another
instance.

An instance F is a descendant of another instance A if and only if
the path from the top level of the design down to F goes through A,
as shown in Figure G-2. If this relationship is satisfied, A is an
ancestor of F.

Figure G-2 Descendants

dynamic data flow or DDF
Dynamic data flow is the most general form of data flow, in which
the flow rates into or out of constituent elements is not predictable.
A runtime simulation kernel is needed to implement it.

D E

TOP

A

B C

F

G-3

dynamic parameter
A dynamic parameter is a parameter whose value is refreshed (read
from memory) every time it is used and hence it is possible to poke
its value from the surrounding environment.

If a dynamic parameter is used in an expression that is bound to
another parameter that is not marked dynamic, it will behave like a
read_on_reset parameter and the values will be sampled only when
the corresponding model is reset.

exiting; to exit
A model exits when it voluntarily ends its own execution.

exit condition
An exit condition is a condition in a model that, when true, causes
the model to exit.

exit-handling transition
In an OR state, an exit-handling transition specifies what state to
change to when an instance exits. Like other transitions, there may
be a condition and an action, though calling an exit-handling
transition immediate is meaningless.

hierarchical model
A hierarchical model is a model that contains instances of other
models.

GATED model
A GATED model is a hierarchical model with one or two instances
and a gating condition. When the gating condition is true, the first
instance executes and the second is suspended. When the gating
condition is false, the second instance (if it exists) is executed and
the first is suspended.

immediate, immediate transition
If a transition is marked as immediate, it is enabled and can occur at
the point its source state is entered, as well as at subsequent times.
If a state has no outgoing immediate transitions, it is always the
G-4

active state for at least one execution step; however, multiple
immediate transitions can be taken in no time (thus cycles of
immediate transitions are forbidden).

instance
An instance is an instantiation of a model: a particular occurrence of
a model at some position in a design. The distinction between a
model and an instance is essentially the same as the distinction
between a class and an object of that class.

Mealy machine
In hardware design, a Mealy machine is a finite state machine in
which the outputs depend on both the inputs and the states. An OR
model in which the instances are atomic states and the actions on
transitions only set the outputs is a Mealy machine.

model
A model is a design in the System Studio environment. There may
be many instances of a given model.

Moore machine
In hardware design, a Moore machine is a finite state machine in
which the outputs depend only on the states. An OR model in which
the instances have inline actions and there are no actions on
transitions is a Moore machine.

net
In a dataflow graph model, a net is an interconnection between the
ports of instances. A net must be connected to one output port and
may be connected to any number of input ports.

OR model
An OR model is a control-oriented hierarchical model; it specifies a
state transition diagram in which its contained instances play the
role of states. Only one instance of the model is active at a time
(except for boundary cases where one model is exiting as another
one is starting).
G-5

parameter
A symbolic name associated with a model that may be bound to an
expression composed of symbols defined in the parent model.

Parameters enable the creation of generic models (or templates)
and the values of the parameters can be specified when the model
is instantiated (configured). An System Studio parameter can
belong to one of five classes: structural, read_on_reset, dynamic,
const, or “unspecified” (this is the default).

parent
A parent is an instance from which the current instance is
immediately descended. A model or instance A is the parent of an
instance B if and only if B is directly contained in A.

port
A port is a connection between a model and an external signal or
stream. In addition to a data type, ports have a mode which is one of
(input, output, inout). A dataflow model cannot have inout ports.

All models (except perhaps at the top level) have one or more ports.

PRIM model
A PRIM (or primitive) model is also called a primitive dataflow
model. This model type steps through a fixed circular sequence of
states, reading inputs, computing, updating internal state and
producing outputs. Intended for use in dataflow graph models, it can
also be used in other hierarchical models if it is uniform-rate.

pure signal
A pure signal is a local signal or port of Boolean type. Unlike signals
of other types, which must be assigned exactly once at any time
step, pure signals may have multiple sources (for example, can be
driven from both sides of an AND model at the same time; the
values are combined with an OR operation). Also, pure signals do
not latch; if a value is not set, its value is false.
G-6

read_on_reset parameter
A read_on_reset parameter is a parameter whose value is
refreshed (read from memory) every time the corresponding model
is reset. This type of parameter can be bound to expressions
involving signals at the control - dataflow boundary enabling a
control model to control the parameters of a dataflow model.

shared instance
A shared instance is an instance that is treated as if it belongs to
more than one hierarchical model. The true parent of a shared
instance is always an OR model.

SDS, SDS model
An SDS model is a primitive dataflow model that runs under the
COSSAP Stream Driven Simulator (a dynamic dataflow simulation
kernel). System Studio can produce simulations that combine
COSSAP Stream Driven Simulator models with “native” System
Studio models.

signal
A signal is a local storage element that can be shared among
parallel branches and that can be assigned only one value at a
given execution step.

Signals are the communication medium between concurrent objects
in the control flow domain. Signals can be thought of as <event,
value> tuples. The event1 is the result of an object emitting a value
that is consistent with the data type of the signal. A pure (or
Boolean) signal is either present or absent and has no value
associated with it. Signals are broadcast instantaneously and pure
signals have wired-or semantics when more than one object is
writing to them.

For non-Boolean signals, System Studio does not have an
associated Boolean signal that indicates whether that signal was
emitted in a tick. You will have to explicitly use a Boolean signal if
you want to test for the presence of a non-Boolean signal.
G-7

state
In the context of OR models, member instances are often referred
to as states because the model is essentially a state transition
diagram.

strong termination
When a model is subject to strong termination, it performs no action
in the execution step in which it is terminated (this can be compared
to a UNIX kill -9 command). It is a logical contradiction for a
signal produced by a model to cause a strong termination (the effect
cancels the cause), and this is treated as an error.

structural parameter
A structural parameter is a parameter that resolves to a constant
value at the end of design elaboration; that is, one that is bound to
expressions involving constants or other structural parameters.

suspension, to suspend
When an instance is suspended, its execution is frozen; it holds its
internal state until the suspension ends. This resembles gating the
clock of a piece of hardware or suspending a UNIX process by
pressing Control-z.

synchronous data flow
Synchronous data flow is a form of data flow in which the data flow
rate of the constituent elements (the number of values read by input
ports and written by output ports) is fixed and known by the tool (it
may depend on parameters).

synchronous-reactive
Synchronous-reactive is a model of computation in which entities
compute their reaction to their inputs instantaneously; there is
broadcast communication and a global notion of simultaneity.
Instantaneous cyclic communication is permitted as long as there is
a unique fixed point.
G-8

termination; to terminate
Termination is the ending of a model’s execution by its environment
(an ancestor). A model cannot prevent this. Whenever a model is
terminated, all of its descendants are terminated as well.

transition
A transition is a path between two instances of an OR state,
between the start symbol and an instance, or between an instance
and an exit state. It may be annotated with a condition, an action, a
priority, and/or an “immediate” attribute. Transitions come in three
flavors, indicating strong termination, weak termination, and
exit-handling.

uniform rate
A model or instance is said to be uniform rate if on each execution
step, it reads one value from each input and writes one value to
each output, when used inside a dataflow graph model. All control
models are uniform rate. Dataflow models may or may not be
uniform rate, and the answer may depend on parameter values.

update instance
If you change the interface of a model (for example, if you delete
part of it) that is instantiated in a hierarchical model, the model in
which that model is instantiated will be updated only after you
invoke “Update instance.”

variable
A variable is a local storage element that has sequential assignment
semantics, like a variable in a conventional programming language.
Variables cannot be shared by AND models and are local to OR
models or dataflow models.

VSI or VHDL/Verilog Simulation Interface
VSI is an interface to a HDL simulator that looks like a primitive
dataflow block to System Studio and permits a fairly arbitrary VHDL
or Verilog code to be cosimulated with a system-level simulation.
G-9

G-10

Index

A
algorithmic models 1-2
ancestor G-1
AND model G-1
AND models 1-3
architectural models 1-4, 7-1
atomic state G-2

of an OR model 4-2

B
back annotation 8-9
bookmark 2-11

C
cloning, ports 7-35
code generation dialog 2-22
complex_double 1-9
complex_float 1-9
configuration properties

statistic functions 8-5
const G-2
const parameters 3-2
control model G-2
copying design objects 2-34

COSSAP
assignment file, importing 9-5
generic C file, importing 9-5
importing from 9-1
models, importing 9-2
schematics, importing 9-2

cutting design objects 2-35

D
data types, supported 1-8
dataflow model 1-3, G-3
dataflow model, tutorial 3-1
defining a gating condition 5-13
deleting design objects 2-36
descendant G-3
design objects

copying 2-34
cutting 2-35
editing 2-33
moving 2-34
pasting 2-36
selecting 2-33

DFG models 1-3
docked toolbar 2-8
docking a toolbar 2-8
dynamic parameter G-4
IN-1

dynamic parameters 1-7, 3-2

E
editing design objects 2-33
exit handling transition G-4
exit transition 4-2
exit-handling transitions 4-3
external simulation control file 4-42

F
Find toolbar 2-14
fixed point, floating point conversion 8-1
floating toolbar 2-8
FSM Objects toolbar 2-11

G
GATED model 5-2

characteristics 5-2
tutorial 5-1

gated model G-4
GATED models 1-3
gating condition 5-13
Graphic Shapes toolbar 2-13

H
hidden parameters 1-7
hiding a toolbar 2-8
hierarchical model G-4
hierarchical state

of an OR model 4-2
hierarchy browser 2-20
Hierarchy Navigation toolbar 2-10

I
immediate transition G-4

immediate transitions 4-3
implementation view 2-27
instance G-5

L
library, creating a 7-2

M
member data, create 7-8
member process, adding a 7-6
model documentation 3-25
model header view 1-5
model implementation 2-27
model implementation view 1-5
model interface 2-25
model interface view 1-5
model parameters 1-6
model source view 1-5
model symbol 2-28, 2-29
model symbol view 1-5
model views 1-4
model, creating a 7-3
models page 2-15
moving a toolbar 2-8
moving design objects 2-34

N
net G-5
net connection rules 3-3

O
opening a workspace 2-3
OR model G-5
OR model, tutorial 4-1
OR models 1-3
IN-2

P
parameter, create a 7-5
parameter, definition G-6
parameters 1-6
parent, definition G-6
pasting design objects 2-36
POP OUT toolbar button 2-11
POP TOP toolbar button 2-11
port, creating a 7-4
ports 1-6
PRIM models 1-3
primitive model 1-3
primitive model, specification language 1-9
primitive models, SystemC 7-1
process declaration 7-7
pull-down menus 2-7
PUSH IN toolbar button 2-10

Q
quick-type feature 2-4

R
read_on_reset parameters 1-7
read-on-entry parameters 3-2

S
.scf file 4-42
schematic toolbar 2-12
SDS models 1-4
searching for a model 2-19
selecting design objects 2-33
simulation control file 4-42
simulation control panel 3-17

specification language 1-9
standard toolbar 2-9
start transition 4-2
statistic functions 8-5
strong termination G-8
strong transitions 4-3
structural parameters 1-6, 3-2
sub_range 1-9
supported data types 1-8
symbol view 2-28
System Studio design center 1-5
System Studio models, types of 1-2

T
toolbars 2-8
transition

of an OR model 4-2
priority of 4-2

transition priority 4-2
type parameters 1-7, 3-3

V
views 1-4
VirSim 7-47

W
weak transitions 4-3
workspace 2-14
workspace window 2-14
workspace, opening 2-3

Z
Zooming toolbar 2-13
IN-3

	Getting Started With CoCentric System Studio
	Contents
	Figures
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Z

	Preface
	Introduction
	System Studio Models
	Model Views
	Model Ports
	Model Parameters
	Supported Data Types

	Specification Language
	System-Level Simulation

	Exploring System Studio
	Starting System Studio
	Opening a Workspace
	Using the System Studio Design Center Windows
	Menus
	Toolbars
	Standard Toolbar
	Navigation Toolbar
	Design Toolbar
	Schematic Toolbar
	Graphics Toolbar
	Zooming Toolbar
	Find Toolbar

	Workspace Window
	Models Page
	Hierarchy Browser
	Code Generation Page
	Simulation Control Panel
	Design Area

	Working in the Design Area
	Message Window
	Status Bar

	Selecting Design Objects
	Editing Design Objects
	Moving
	Copying
	Cutting
	Deleting
	Pasting
	Setting the Properties

	Data Flow Model Tutorial
	Data Flow Graph Models
	Creating the Model Structure
	Starting System Studio
	Creating a Workspace
	Creating a Library
	Creating a Model

	Defining the Model Behavior
	Creating the Model Schematic
	Simulating the Model
	Automatically Building the Simulation
	Manually Building the Simulation
	Controlling the Simulation

	Displaying System Studio Data
	Graphical Display
	Acquiring and Interpreting Data
	Displaying the Output Data Set

	Creating and Viewing Model Documentation
	Creating Model Documentation
	Viewing Model Documentation

	OR Model Tutorial
	The OR Model
	Creating the Model Structure
	Starting System Studio
	Creating a Workspace
	Creating a Library
	Creating a Model

	Creating the Model Schematic
	Creating and Configuring the States
	Entering and Configuring the Transitions

	Defining the Interface
	Defining the Model Parameters
	Defining the Local Variables
	Creating the Testbench
	Configuring the Model Instances

	Checking the Model
	Building and Running the Model Simulation
	Automatically Building and Running the Simulation
	Manually Building the Simulation
	Controlling the Simulation
	Checking the Output

	GATED Model Tutorial
	The Gated Model
	Creating the Model
	Defining the Model Behavior
	Defining the Interface
	Creating the Model Schematic
	Creating the First Model Page
	Creating the Second Model Page

	Defining the Gating Condition
	Finishing Up

	AND Model Tutorial
	The AND Model
	Creating the AND Model
	Defining the Model Parameters
	Declaring the Local Variables

	Creating the FSM Model
	Defining the Transitions
	Defining the Inline Actions

	Creating The DFG Model
	Inserting the Blocks
	Inserting the Nets
	Setting the Parameter Values

	Simulating the Design

	Architectural Modeling
	Creating an Architectural Primitive Model
	Creating the Printer Model

	Creating a Hierarchical Model
	Simulating the Model
	Visualizing the Simulation With DAVIS
	Changing the Simulation Data

	Port Cloning and MultiPort Adapters
	Port Cloning
	Using Multiport Adapters

	Using CoCentric System Studio VirSim
	Simple Bus Example

	Exploring the Float-to-Fixed Capabilities
	About the Demo
	Preparing the Demo
	Statistic Functions
	Simulating and Back-Annotating the Design
	Using DAVIS to Visualize the Output

	Importing From COSSAP
	Setting Up Your Environment
	Importing COSSAP Models and Schematics
	Importing a COSSAP Assignment File
	Importing a COSSAP Generic C (.gc) File

