
Comments?
E-mail your comments about Synopsys
documentation to doc@synopsys.com

CoCentric™ SystemC
Compiler
Behavioral Modeling Guide
Version 2000.11-SCC1, March 2001

ii

Copyright Notice and Proprietary Information
Copyright  2000 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number
__________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks
Synopsys, the Synopsys logo, AMPS, Arcadia, CMOS-CBA, COSSAP, Cyclone, DelayMill, DesignPower, DesignSource,
DesignWare, dont_use, EPIC, ExpressModel, Formality, in-Sync, Logic Automation, Logic Modeling, Memory Architect,
ModelAccess, ModelTools, PathBlazer, PathMill, PowerArc, PowerMill, PrimeTime, RailMill, Silicon Architects,
SmartLicense, SmartModel, SmartModels, SNUG, SOLV-IT!, SolvNET, Stream Driven Simulator, Synopsys Eagle
Design Automation, Synopsys Eaglei, Synthetic Designs, TestBench Manager, and TimeMill are registered trademarks
of Synopsys, Inc.

Trademarks
ACE, BCView, Behavioral Compiler, BOA, BRT, CBA, CBAII, CBA Design System, CBA-Frame, Cedar, CoCentric,
DAVIS, DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design
Compiler, DesignTime, Direct RTL, Direct Silicon Access, dont_touch, dont_touch_network, DW8051, DWPCI, ECL
Compiler, ECO Compiler, Floorplan Manager, FoundryModel, FPGA Compiler, FPGA Compiler II, FPGA Express, Frame
Compiler, General Purpose Post-Processor, GPP, HDL Advisor, HDL Compiler, Integrator, Interactive Waveform Viewer,
Liberty, Library Compiler, Logic Model, MAX, ModelSource, Module Compiler, MS-3200, MS-3400, Nanometer Design
Experts, Nanometer IC Design, Nanometer Ready, Odyssey, PowerCODE, PowerGate, Power Compiler, ProFPGA,
ProMA, Protocol Compiler, RMM, RoadRunner, RTL Analyzer, Schematic Compiler, Scirocco, Shadow Debugger,
SmartModel Library, Source-Level Design, SWIFT, Synopsys EagleV, Test Compiler, Test Compiler Plus, Test Manager,
TestGen, TestSim, TetraMAX, TimeTracker, Timing Annotator, Trace-On-Demand, VCS, VCS Express, VCSi, VERA,
VHDL Compiler, VHDL System Simulator, Visualyze, VMC, and VSS are trademarks of Synopsys, Inc.

Service Marks
TAP-in is a service mark of Synopsys, Inc.

All other product or company names may be trademarks of their respective owners.

Printed in the U.S.A.

Document Order Number: 37581-000 JB
CoCentric™ SystemC Compiler Behavioral Modeling Guide, v2000.11-SCC1

iii

Contents

Preface

What’s New in This Release . xxiv

About This Guide. xxvi

Customer Support . xxx

1. Introduction

Defining Levels of Abstraction in System Design 1-3

Architectural Level . 1-4
Untimed Functional Model . 1-5
Timed Functional Model . 1-5
Functional Coding Style . 1-5

Behavioral Model . 1-9
Behavioral Coding Style . 1-10
Refining From Functional to Behavioral Model 1-10

Register Transfer Level Model. 1-14
RTL Coding Style . 1-15
Refining into RTL . 1-15

Choosing the Right Abstraction for Synthesis 1-19

iv

Identifying Attributes Suitable for Behavioral Synthesis. 1-19

Identifying Attributes Suitable for RTL Synthesis. 1-21

Comparison of Behavioral and RTL Synthesis 1-22

2. Refining for Behavioral Synthesis

Refinement Overview . 2-3

Creating and Refining the Structure From a C/C++ Model 2-6

Define I/O Ports . 2-6

Specify Internal Structure . 2-6

Specify the Internal Communication . 2-7

Specify the Detailed Architecture. 2-8

Atomic and Hierarchical Blocks . 2-9

Modules . 2-12
Module Header File . 2-13
Module Ports . 2-14
Internal Signals. 2-16
Reading and Writing Ports . 2-17
Internal Data Variables . 2-18

Processes . 2-20
Types of Processes . 2-21
Creating a Process in a Module . 2-22

Member Functions . 2-23

Module Constructor . 2-24

Module Implementation File. 2-26
Using an Infinite Loop. 2-26

Refining the Structure From a High-Level SystemC Model. 2-28

v

Creating and Refining Processes . 2-28

Converting to a Synthesizable Subset . 2-30

Excluding Simulation-Specific Code . 2-31

SystemC and C++ Synthesizable Subset 2-32
Nonsynthesizable Subset of SystemC 2-33
Nonsynthesizable C/C++ Constructs 2-34

Refining Data. 2-37

Synthesizable Data Types . 2-37
Nonsynthesizable Data Types . 2-38
Recommended Types for Synthesis. 2-39

Using SystemC Types . 2-41
Bit and Bit Vector Data Type Operators 2-41
Fixed and Arbitrary Precision Data Type Operators. 2-42

Using Enumerated Types . 2-43
Using Aggregate Data Types . 2-43
Using C++ Types . 2-43

Recommendations About Data Types . 2-46

Refining Control. 2-47

Advanced Refinement Techniques . 2-48

Refinement Recommendations . 2-49

3. Behavioral Coding Guidelines

Using Clocked Thread Processes . 3-2

Characteristics of the Clocked Thread Process. 3-2
Using the wait Statement . 3-3
Using the wait_until Statement. 3-3

vi

Controlling a Clocked Thread Process 3-4

Simple Clocked Thread Example. 3-4

Using Inputs and Outputs . 3-6

Registered Outputs . 3-6

Inputs and Outputs Within Cycles . 3-6

Specifying I/O Read and Write. 3-7

Specifying I/O Cycles. 3-7

I/O Scheduling Modes . 3-8
Cycle-Fixed Scheduling Mode . 3-8
Superstate-Fixed Schedule Mode . 3-8
Comparing I/O Scheduling Modes . 3-9

Behavioral Coding Style Rules . 3-10

Definition of Coding Rule Terms . 3-10

General Coding Rules . 3-11

Cycle-Fixed Mode Coding Rules . 3-12

Superstate-Fixed Mode Coding Rules. 3-12

General Coding Rules Examples. 3-13
General Coding Rule 1. 3-13
General Coding Rule 2. 3-14
General Coding Rule 3. 3-15
General Coding Rule 4. 3-16
General Coding Rule 5. 3-20

Cycle-Fixed Mode Coding Rules Examples. 3-23
Cycle-Fixed Coding Rule 1. 3-23
Cycle-Fixed Coding Rule 2. 3-26
Cycle-Fixed Coding Rule 3. 3-28

Superstate-Fixed Mode Coding Rules Examples 3-29

vii

Superstate-Fixed Coding Rule 1 . 3-29
Superstate-Fixed Coding Rule 2 . 3-30

Finding the Cause of Timing-Dependent Coding Errors 3-31

Using Conditional Statements . 3-32

Using Loops . 3-33

Understanding How Loops Are Scheduled 3-33

Labeling a Loop . 3-34

Using while Loops . 3-35
Using an Infinite while Loop . 3-35
Using do...while Loops . 3-36

Using for Loops . 3-36
Rolled Versus Unrolled Loops . 3-36
Rolled for Loops . 3-37
Unrolling for Loops . 3-37
Comparing Rolled and Unrolled Loops 3-39
Selectively Unrolling Loop Iterations 3-40
Ensuring a Statically Determinable Exit Condition 3-41
Consecutive Loops. 3-42

Pipelining Loop Rules . 3-45

Using Resets . 3-46

Describing a Global Reset . 3-46

Specifying the Reset Behavior. 3-46

Specifying a Reset Implementation . 3-48

Using Variables and Signals . 3-49

Initializing Variables . 3-49

Using Signals and Wait Statements. 3-50

viii

Using Variables and Wait Statements . 3-52

Using Variables for Register Allocation Efficiency 3-53

Determining the Lifetime of Variables . 3-54

4. Using Functions and DesignWare Components

Using Member Functions . 4-2

Using Nonmember Functions . 4-4

Using Preserved Functions . 4-4

When to Preserve Functions . 4-5

Preserved Function Restrictions . 4-5

Creating Preserved Functions . 4-6

Nonmember Preserved Functions . 4-9

Using Reference Parameters in Preserved Functions. 4-10

Using DesignWare Components . 4-11

Using map_to_operator . 4-11

Guidelines for Using map_to_operator 4-12

5. Using Arrays, Register Files, and Memories

Using Arrays . 5-2

Declaring Arrays . 5-2

Reading From and Writing to Variable Arrays 5-3

Reading From and Writing to Signal Arrays. 5-4

Accessing Slices of an Array Location. 5-5

Array Implementations . 5-7

Mapping Arrays to Register Files . 5-8

ix

Mapping All Arrays to Register Files . 5-9

Mapping Specific Arrays to Register Files 5-9

Mapping Arrays to Memories . 5-11

Local Memory . 5-11

Multiple Arrays Accessing One Memory 5-13

Exploring Alternative Memory Types . 5-14

Accessing Register Files and Memories Efficiently 5-15

Accessing Memory. 5-16

Allowing for Vendor Memory Timing . 5-17

Eliminating Redundant Memory Accesses 5-18

Accessing Bit Slices of Memory Data . 5-19

6. Using Handshaking in the Circuit and Testbench

Using Handshake Protocols . 6-3

Using One-Way Handshake Protocols . 6-4

One-Way Handshake Initiated From Behavioral Block 6-4

One-Way Handshake Initiated From Testbench 6-12

Constraining the Width of Handshake Strobes 6-19

Using Two-Way Handshake Protocols . 6-21

Two-Way Handshake Initiated From Behavioral Block 6-21

Two-Way Handshake Initiated From Testbench 6-29

Fast Handshaking . 6-36

Using if…else. 6-37

Using wait_until . 6-39

Using a Pipeline Handshake Protocol . 6-40

x

Appendix A. Compiler Directives

Synthesis Compiler Directives. A-2

line_label . A-3

map_to_operator . A-3

return_port_name . A-4

preserve_function . A-4

inout_param. A-5

resource. A-6

synthesis_off and synthesis_on . A-7

translate_off and translate_on . A-7

unroll . A-8

C/C++ Compiler Directives . A-9

C Line Label. A-9

C Conditional Compilation . A-9

Appendix B. First-In-First-Out Example

FIFO Description . B-2

Architectural Model . B-2

Behavioral Model. B-6

Ports and Signals. B-6

Behavioral Description . B-8

Behavioral Testbench . B-11

RTL Model . B-15

RTL Description . B-16

RTL Testbench. B-20

xi

Appendix C. Memory Controller Example

Memory Controller Description . C-2

Commands . C-2

Ports . C-3

Communication Protocol . C-4

Functional Simulation Model . C-5

Refined Behavioral Model . C-9

Data Types. C-9

Communication Protocol . C-9

Clock Placement . C-10

Behavioral Model . C-10

Appendix D. Fast Fourier Transform Example

FFT Description . D-2

FFT Computation . D-2

Refining From Functional to Behavioral. D-3

Data Read Two-Way Handshake. D-3

Data Write Two-Way Handshake. D-3

FFT Functional Model . D-4

FFT Behavioral Model . D-9

FFT Testbench. D-17

Appendix E. Inverse Quantization Example

IQ Description . E-2

IQ Data Flow . E-3

xii

IQ Block Diagram. E-4

IQ Behavioral Model . E-4

Appendix F. Expressions and Operations

Using Expressions. F-2

Operator Precedence . F-3

Index

xiii

Figures

Figure 1-1 System Design Levels of Abstraction 1-3

Figure 1-2 Architectural Model . 1-4

Figure 1-3 Behavioral Model . 1-9

Figure 1-4 RTL Model . 1-14

Figure 2-1 Refinement Stages and Activities 2-4

Figure 2-2 MPEG Decoder Functional Structure 2-7

Figure 2-3 MPEG Decoder Top-Level Architecture 2-8

Figure 2-4 MPEG Decoder Detailed Architecture 2-9

Figure 2-5 Module . 2-12

Figure 2-6 Module Ports. 2-14

Figure 2-7 Processes and Signals . 2-16

Figure 3-1 Simple Multiplier I/O Protocol . 3-7

Figure 3-2 Rolled and Unrolled for Loops . 3-39

Figure 3-3 Loop Latency and Initiation Interval 3-45

Figure 3-4 Loop Exit. 3-45

Figure 3-5 Comparing Signal Use and Data Flow 3-51

xiv

Figure 3-6 Variable Use and Data Flow . 3-52

Figure 5-1 Register File Architecture . 5-8

Figure 5-2 Multiple Array Address Space Mapping 5-13

Figure 5-3 Memory Access Time Specification 5-17

Figure 5-4 Bit Slice Accesses . 5-20

Figure 6-1 One-Way Handshake Protocol . 6-5

Figure 6-2 Testbench-Initiated One-Way Handshake 6-12

Figure 6-3 Constraining Input Handshake Signals. 6-19

Figure 6-4 Constraining Output Handshake Signals 6-20

Figure 6-5 Two-Way Handshake Protocol . 6-22

Figure 6-6 Two-Way Handshake Protocol . 6-29

Figure 6-7 Timing Diagram of while Loop . 6-37

Figure 6-8 Timing Diagram Using if…else . 6-38

Figure 6-9 Timing Diagram Using wait_until 6-39

Figure 6-10 Incorrect Loop Pipeline With Handshake 6-41

Figure 6-11 Correct Loop Pipeline With Extended Initiation

Interval . 6-42

Figure 6-12 Correct Loop Pipeline Without Handshake Signal

De-assertion . 6-44

Figure C-1 Behavioral Input Data Flow. C-10

Figure D-1 FFT Ports and Data Types . D-2

Figure E-1 IQ Blocks . E-2

Figure E-2 IQ Data Flow. E-3

Figure E-3 IQ Block Diagram . E-4

xv

Tables

Table 2-1 Nonsynthesizable SystemC Classes 2-33

Table 2-2 Nonsynthesizable C/C++ Constructs 2-34

Table 2-3 Synthesizable Data Types . 2-39

Table 2-4 SystemC Bit and Bit Vector Data Type Operators 2-41

Table 2-5 SystemC Integer Data Type Operators. 2-42

Table A-1 SystemC Compiler Compiler Directives A-2

Table F-1 Operator Precedence . F-4

xvi

xvii

Examples

Example 1-1 FIFO Functional Model . 1-6

Example 1-2 FIFO Behavioral Coding . 1-12

Example 1-3 RTL Coding . 1-16

Example 2-1 Using read() and write() Methods 2-18

Example 2-2 Creating a Clocked Thread Process in a Module 2-22

Example 2-3 Module Constructor. 2-25

Example 2-4 Module Behavior . 2-27

Example 2-5 Basic Reset Action and Main Loop 2-29

Example 2-6 Excluding Simulation-Only Code. 2-31

Example 2-7 Aggregate Data Type . 2-43

Example 2-8 Implicit Bit Size Restriction . 2-44

Example 2-9 Unknown Variable Bit Size . 2-44

Example 2-10 Incorrectly Using a Data Member as a Variable 2-45

Example 2-11 Correct Use of Local Variables 2-45

Example 3-1 Infinite Loops. 3-4

Example 3-2 Simple Clocked Thread Multiplier 3-5

xviii

Example 3-3 Error in Use of General Coding Rule 1 3-13

Example 3-4 Correct General Coding Rule 1. 3-13

Example 3-5 Error in Use of General Coding Rule 2 3-14

Example 3-6 Correct General Coding Rule 2. 3-14

Example 3-7 Error in Use of General Coding Rule 3 3-15

Example 3-8 Correct General Coding Rule 3. 3-15

Example 3-9 Error in Use of General Coding Rule 4, If

Conditional . 3-17

Example 3-10 Correct General Coding Rule 4, If Conditional 3-17

Example 3-11 Error in Use of General Coding Rule 4, If

Conditional With Implied Else 3-18

Example 3-12 Correct General Coding Rule 4, If Conditional 3-18

Example 3-13 Error in Use of General Coding Rule 4, Switch

Conditional . 3-19

Example 3-14 Correct General Coding Rule 4, Switch Conditional . . 3-19

Example 3-15 Error in Use of General Coding Rule 5 3-21

Example 3-16 Correct General Coding Rule 5. 3-22

Example 3-17 Error in Use of Cycle-Fixed Mode Coding Rule 1,
for Loop. 3-23

Example 3-18 Correct Cycle-Fixed Mode Coding Rule 1, for Loop . . 3-23

Example 3-19 Error in Use of Cycle-Fixed Mode Coding Rule 1,
while Loop. 3-24

Example 3-20 Correct Cycle-Fixed Mode Coding Rule 1, while

loop . 3-24

xix

Example 3-21 Error in Use of Cycle-Fixed Mode Coding Rule 1,
do-while Loop . 3-25

Example 3-22 Correct Cycle-Fixed Mode Coding Rule 1,

do-while loop. 3-25

Example 3-23 Error in Use of Cycle-Fixed Mode Coding Rule 2 3-26

Example 3-24 Correct Cycle-Fixed Mode Coding Rule 2. 3-27

Example 3-25 Error in Use of Cycle-Fixed Mode Coding Rule 2,

Write . 3-27

Example 3-26 Correct Cycle-Fixed Mode Coding Rule 2, Write 3-28

Example 3-27 Error in Use of Cycle-Fixed Mode Coding Rule 3 3-29

Example 3-28 Correct Cycle-Fixed Mode Coding Rule 3. 3-29

Example 3-29 Error in Use of Superstate-Fixed Mode Coding

Rule 1 . 3-30

Example 3-30 Correct Superstate-Fixed Mode Coding Rule 1 3-30

Example 3-31 Error in Use of Superstate-Fixed Mode Coding

Rule 2 . 3-31

Example 3-32 Correct Superstate-Fixed Mode Coding Rule 2 3-31

Example 3-33 Operations That Are Not Mutually Exclusive. 3-32

Example 3-34 Mutually Exclusive Operations 3-32

Example 3-35 Labeling a Loop . 3-34

Example 3-36 Structure of a while Loop . 3-35

Example 3-37 Infinite while Loop . 3-35

Example 3-38 Structure of do...while Loop . 3-36

Example 3-39 for Loop. 3-36

xx

Example 3-40 Unrolled for Loop Compiler Directive 3-37

Example 3-41 Unrolled for Loop and Its Execution 3-38

Example 3-42 When to Use unroll . 3-40

Example 3-43 Selective Unrolling of a for Loop 3-41

Example 3-44 for Loop Without Static Exit Condition 3-42

Example 3-45 Consecutive Loops With Overhead 3-43

Example 3-46 Collapsed Consecutive Loops 3-44

Example 3-47 Global Reset Watching . 3-47

Example 4-1 Member Function . 4-3

Example 4-2 Creating Preserved Functions 4-7

Example 4-3 Nonmember Preserved Function Declaration 4-9

Example 4-4 Preserved Function With Reference Parameter 4-10

Example 4-5 Using DesignWare Parts. 4-11

Example 5-1 Data Member Array. 5-2

Example 5-2 Array Local to a Process. 5-2

Example 5-3 Reading From a Variable Array. 5-3

Example 5-4 Writing to a Variable Array . 5-3

Example 5-5 Reading From a Signal Array 5-4

Example 5-6 Writing to a Signal Array . 5-4

Example 5-7 Multiple Accesses to Slices in the Same Array 5-5

Example 5-8 Multiple Array Accesses Using a Variable. 5-6

Example 5-9 Accessing Slices of a Signal Array Location 5-6

Example 5-10 Mapping Specific Arrays to Register Files 5-10

Example 5-11 Declaring Local Memory Resources 5-12

xxi

Example 5-12 Multiple Arrays Accessing One Memory 5-13

Example 5-13 Changing Memory Types . 5-14

Example 5-14 Incorrect Memory Read Timing for Cycle-Fixed 5-16

Example 5-15 Correct Memory Read Timing for Cycle-Fixed 5-16

Example 5-16 Redundant Memory Read. 5-18

Example 5-17 Array Location Assigned to Temporary Variable 5-18

Example 6-1 One-Way Handshake Protocol Behavioral Block 6-6

Example 6-2 Behavioral Block Responding to One-Way
Handshake . 6-13

Example 6-3 Two-Way Handshake Protocol From GCD Block 6-23

Example 6-4 Two-Way Handshake Protocol From Testbench 6-30

Example 6-5 Two-Way Handshake Using a while Loop. 6-36

Example 6-6 Fast Two-Way Handshake Using while Loop 6-37

Example 6-7 Fast Two-Way Handshake Using wait_until 6-39

Example 6-8 Incorrect Loop Pipeline With Handshake 6-40

Example 6-9 Correct Handshake in a Pipelined Loop 6-43

Example B-1 Architectural Simulation Model B-3

Example B-2 Behavioral Header File . B-8

Example B-3 Behavioral Implementation File. B-9

Example B-4 Behavioral Synthesis to Gates Script B-10

Example B-5 Behavioral Testbench Header File B-11

Example B-6 Behavioral Testbench Implementation File B-11

Example B-7 Behavioral Top-Level Simulation File B-14

Example B-8 RTL Header File . B-16

xxii

Example B-9 RTL Implementation File . B-17

Example B-10 RTL Top-Level Simulation File B-20

Example C-1 Memory Controller Header File C-6

Example C-2 Memory Controller Implementation File C-7

Example C-3 Token Header File . C-8

Example C-4 Memory Controller Command Types C-8

Example C-5 Behavioral Header File . C-11

Example C-6 Behavioral Implementation File. C-12

Example C-7 Behavioral Synthesis to Gates Script C-13

Example D-1 FFT Functional Header File. D-4

Example D-2 FFT Functional Description File D-5

Example D-3 FFT Header File . D-9

Example D-4 FFT Implementation File . D-10

Example D-5 Behavioral Synthesis to Gates Script D-16

Example D-6 FFT Testbench Source . D-18

Example D-7 FFT Testbench Sink . D-20

Example D-8 FFT Testbench Top-Level Model D-21

Example E-1 IQ Header File. E-5

Example E-2 IQ Implementation File . E-7

Example E-3 Behavioral Synthesis to Gates Script E-16

xxiii

Preface FIX ME!

This preface includes the following sections:

• What’s New in This Release

• About This Guide

• Customer Support

xxiv

What’s New in This Release

This section describes the new features, enhancements, and
changes included in SystemC Compiler version 2000.11-SCC1.
Unless otherwise noted, you can find additional information about
these changes later in this book.

New Features

SystemC Compiler version 2000.11-SCC1 includes the following new
features:

• The write_rtl command generates either a synthesizable RTL
model or an RTL model optimized for simulation. This command
provides a single interface to generate RTL models that replaces
setting several dc_shell variables and using the write command.

• Using either the write_rtl or write command, you can write
an RTL SystemC model optimized for simulation.

For information about these commands, see the CoCentric™
SystemC Compiler Behavioral User Guide.

Enhancements

SystemC Compiler version 2000.11-SCC1 includes the following
enhancements:

• Synthesizable RTL models now contain operators such as +,
which are used instead of instantiations of Synopsys DesignWare
components like DW01_add. Substitutions are made when

xxv

possible. This eliminates the dependency on Synopsys-specific
components for synthesizable RTL models, unless the behavioral
description specifies them.

• The memory wrapper generation tool now allows you to specify
a memory write latency in addition to a read latency.

You can now customize the address and data bus waveforms. In
previous versions of the memory wrapper generation tool,
address and data bus waveforms were fixed to the first cycle.

For information about this enhancement, see the CoCentric™
SystemC Compiler Behavioral User Guide.

Known Limitations and Resolved STARs

Information about known problems and limitations, as well as about
resolved Synopsys Technical Action Requests (STARs), is available
in the CoCentric SystemC Compiler Release Note in SolvNET.

To see the CoCentric SystemC Compiler Release Note,

1. Go to the Synopsys Web page at http://www.synopsys.com and
click SolvNET.

2. If prompted, enter your name and password. If you do not have
a SOLV-IT! user name and password, you can obtain them at
http://www.synopsys.com/registration.

3. Click Release Notes, then open the CoCentric SystemC Compiler
Release Note.

xxvi

About This Guide

The CoCentric™ SystemC Compiler Behavioral Modeling Guide
describes system-level design terminology and explains how to
develop or refine a SystemC model for behavioral synthesis with
SystemC Compiler.

For information about SystemC, see the Open SystemC Community
web site at http://www.systemc.org.

Audience

The CoCentric™ SystemC Compiler Behavioral Modeling Guide is
for system and hardware designers and electronic engineers who are
familiar with the SystemC Class Library and the C or C++ language
and development environment.

Familiarity with one or more of the following Synopsys tools is
advantageous but not required:

• Synopsys Behavioral Compiler

• Synopsys Design Compiler

• Synopsys Scirocco VHDL Simulator

• Synopsys Verilog Compiled Simulator (VCS)

xxvii

Related Publications

In addition to the CoCentric™ SystemC Compiler Behavioral
Modeling Guide, see the following manuals:

• The CoCentric™ SystemC Compiler Behavioral User Guide,
which provides information about synthesize a refined SystemC
behavioral module into an RTL or a gate-level netlist.

• The CoCentric™ SystemC Compiler RTL User and Modeling
Guide, which provides information about how to synthesize a
SystemC RTL module. It also describes the coding guidelines and
how to develop a SystemC RTL module for synthesis.

• The SystemC HDL Cosimulation User Guide, which provides
information about cosimulating a system with mixed SystemC and
HDL modules

• The CoCentric SystemC Compiler Quick Reference, which
provides a list of commands with their options and a list of
variables.

• The SystemC User’s Manual available from the Open SystemC
Community web site at http://www.systemc.org.

For additional information about SystemC Compiler and other
Synopsys products, see

• Synopsys Online Documentation (SOLD), which is included with
the software

• Documentation on the Web, which is available through SolvNET
on the Synopsys Web page at http://www.synopsys.com

• The Synopsys Print Shop, from which you can order printed
copies of Synopsys documents, at http://docs.synopsys.com

xxviii

You can also refer to the documentation for the following related
Synopsys products:

• Design Compiler

• Scirocco VHDL Simulator

• Verilog Compiled Simulator

xxix

Conventions

The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates command syntax.

Courier italic Indicates a user-defined value in Synopsys
syntax, such as object_name. (A user-defined
value that is not Synopsys syntax, such as a
user-defined value in a Verilog or VHDL
statement, is indicated by regular text font
italic.)

Courier bold Indicates user input—text you type verbatim—
in Synopsys syntax and examples. (User input
that is not Synopsys syntax, such as a user
name or password you enter in a GUI, is
indicated by regular text font bold.)

[] Denotes optional parameters, such as
pin1 [pin2 ... pinN]

| Indicates a choice among alternatives, such as
low | medium | high
(This example indicates that you can enter one
of three possible values for an option:
low, medium, or high.)

_ Connects terms that are read as a single term
by the system, such as
set_annotated_delay

Control-c Indicates a keyboard combination, such as
holding down the Control key and pressing c.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.

xxx

Customer Support

Customer support is available through SOLV-IT! and through
contacting the Synopsys Technical Support Center.

Accessing SOLV-IT!

SOLV-IT! is the Synopsys electronic knowledge base, which contains
information about Synopsys and its tools and is updated daily.

To access SOLV-IT!,

1. Go to the SolvNET Web page at http://solvnet.synopsys.com.

2. If prompted, enter your user name and password.

If you do not have a SOLV-IT! user name and password, you can
obtain them at http://www.synopsys.com/registration.

If you need help using SOLV-IT!, click SolvNET Help in the column
on the left side of the SolvNET Web page.

xxxi

Contacting the Synopsys Technical Support Center

If you have problems, questions, or suggestions, you can contact the
Synopsys Technical Support Center in the following ways:

• Open a call to your local support center from the Web by going to
http://solvnet.synopsys.com (SOLV-IT! user name and password
required), then clicking “Enter a Call.”

• Send an e-mail message to support_center@synopsys.com.

• Telephone your local support center.

- Call (800) 245-8005 from within the continental United States.

- Call (650) 584-4200 from Canada.

- Find other local support center telephone numbers at
http://www.synopsys.com/support/support_ctr.

Training

For SystemC and SystemC Compiler training and private workshops,
contact the Synopsys Customer Education Center in one of the
following ways:

• Go to the Synopsys Web page at http://www.synopsys.com/
services/education.

• Telephone (800) 793-3448.

xxxii

1-1

Introduction

1
Introduction 1

CoCentric SystemC Compiler synthesizes a SystemC behavioral
hardware module into an RTL description or a gate-level netlist.
(A future release of SystemC Compiler will provide synthesis of RTL
descriptions.)

After synthesis, you can use other Synopsys tools for verification, test
insertion, power optimization, and physical design.

This modeling guide defines system design terminology and explains
how to develop and refine SystemC behavioral models for synthesis
with SystemC Compiler. Before reading this modeling guide, read the
CoCentric SystemC Compiler User Guide to learn about behavioral
synthesis concepts and how to run the tool. This modeling guide
assumes you are knowledgeable about the SystemC Class Library,
available from the Open SystemC Community at
http://www.systemc.org.

1-2

Introduction

Synthesizable behavioral design examples are available in Appendix
B, “First-In-First-Out Example,” Appendix C, “Memory Controller
Example,” Appendix D, “Fast Fourier Transform Example,” and
Appendix E, “Inverse Quantization Example” for an MPEG-2 decoder.
These examples show you various coding styles and design
techniques used with SystemC Compiler.

This chapter contains the following sections:

• Defining Levels of Abstraction in System Design

• Choosing the Right Abstraction for Synthesis

1-3

Introduction

Defining Levels of Abstraction in System Design

Figure 1-1 shows the traditional levels of abstraction in system design:
system architectural level, behavioral level, and RTL. This section
describes the traditional levels of abstraction, their purpose,
characteristics, and coding style.

Figure 1-1 System Design Levels of Abstraction

Untimed
functional

Refine

Partition

Generic
code

Target
code

Behavioral

RTL

Refine

Refine

Software Hardware

Refine

Refine

Timed
functional

Architectural
level

Register
transfer
level

 code

code

N
on

sy
nt

he
si

za
bl

e
ab

st
ra

ct
io

ns
S

yn
th

es
iz

ab
le

 a
bs

tr
ac

tio
ns

Behavioral
level

Define
and
simulate
system

Partition
system

Synthesize
hardware
modules

System

1-4

Introduction

Architectural Level

In a typical top-down design flow, you start with a purely functional
model of your system. This functional model is a software program
that describes the system functionality so that it can be validated.
This functional model is then mapped into a system architectural
model. In addition to the system functionality, the system architectural
model describes its architecture (buses, memory, processors,
peripherals, and so forth).

A system architectural model, illustrated in Figure 1-2, is algorithmic
in nature. It may be an untimed or timed model. The model is an
accurate description of the system behavior, although the description
is abstract. The interfaces between modules are transaction oriented
and event driven, rather than cycle accurate.

Figure 1-2 Architectural Model

CPU

Memory

Bus

arbiter

I/O Storage

1-5

Introduction

Untimed Functional Model

An untimed functional model is an executable specification of the
system. The system is described as a set of processes,
communicating through abstract communication links. The system
may be described in a sequential form, concurrent form, or a
combination of both. Time is expressed as causality.

Timed Functional Model

A timed functional model is a performance model at a high level of
abstraction. The processes and communication links in the untimed
functional model are assigned execution times, specified in clock
cycles or actual time.

Functional Coding Style

A functional model uses a coding style that is abstract, concise, easy
to write, and functionally accurate. You can use the SystemC classes
and data types, or you can code the functionality by using only the
C/C++ language.

Example 1-1 shows a functional model of a simple first-in-first-out
(FIFO) circular buffer. (The complete description and set of files for
the available in Appendix B, “First-In-First-Out Example.”)

1-6

Introduction

Example 1-1 FIFO Functional Model
/*
 fifo.cc executable specification.

 This model works for a FIFO
 with a size that is a power of 2.
 */

#include "systemc.h"

#define BUFSIZE 4
#define LOGBUFSIZE 2

struct circ_buf {
 int buffer[BUFSIZE]; // The FIFO buffer
 sc_uint<LOGBUFSIZE> headp; // Pointer to head of FIFO
 sc_uint<LOGBUFSIZE> tailp; // Pointer to tail of FIFO
 int num_in_buf; // Number of buffer elements

 // Routine to initialize the FIFO
 void init() {
 num_in_buf = 0;
 headp = 0;
 tailp = 0;
 }

 // Constructor
 circ_buf() {
 init();
 }

 void status(); // Status of the FIFO
 int read(); // To read from the FIFO
 void write(int data); // To write to the FIFO
 bool is_full(); // To determine if FIFO is full
 bool is_empty(); // To determine if FIFO is empty
};

int
circ_buf::read() {
 if (num_in_buf) {
 num_in_buf--;
 return (buffer[headp++]);
 }
 // Otherwise ignore read request
}

1-7

Introduction

void
circ_buf::write(int data) {
 if (num_in_buf < BUFSIZE) {
 buffer[tailp++] = data;

num_in_buf++;
 }
 // Otherwise ignore write request
}

bool
circ_buf::is_full() {
 return (num_in_buf == BUFSIZE);
}

bool
circ_buf::is_empty() {
 return (num_in_buf == 0);
}

void
circ_buf::status() {
 cout << "FIFO is ";
 if(is_empty()) cout << "empty\n" ;
 else if (is_full()) cout << "full\n" ;
 else cout << "neither full nor empty\n";
}

int
main()
{
 circ_buf fifo; // instantiate buffer

 // This is the testbench for the FIFO

 fifo.status();

 cout << "FIFO write 1\n"; fifo.write(1);
 cout << "FIFO write 2\n"; fifo.write(2);
 cout << "FIFO write 3\n"; fifo.write(3);
 fifo.status();
 cout << "FIFO write 4\n"; fifo.write(4);
 fifo.status();

 cout << "FIFO read " << fifo.read() << endl;
 fifo.status();
 cout << "FIFO read " << fifo.read() << endl;
 cout << "FIFO read " << fifo.read() << endl;
 cout << "FIFO read " << fifo.read() << endl;

1-8

Introduction

 fifo.status();

 cout << "FIFO write 1\n"; fifo.write(1);
 cout << "FIFO write 2\n"; fifo.write(2);
 cout << "FIFO write 3\n"; fifo.write(3);
 fifo.status();
 cout << "FIFO read " << fifo.read() << endl;
 cout << "FIFO read " << fifo.read() << endl;
 fifo.status();

 cout << "FIFO write 4\n"; fifo.write(4);
 cout << "FIFO write 5\n"; fifo.write(5);
 fifo.status();
 cout << "FIFO write 6\n"; fifo.write(6);
 fifo.status();

 cout << "FIFO read " << fifo.read() << endl;
 fifo.status();
 cout << "FIFO read " << fifo.read() << endl;
 cout << "FIFO read " << fifo.read() << endl;
 fifo.status();
 cout << "FIFO read " << fifo.read() << endl;
 fifo.status();

 return 0;
}

1-9

Introduction

Behavioral Model

A behavioral model of a block in a system is an algorithmic description
of the block’s behavior. Unlike a pure software program, however, the
I/O behavior of the block is described in a cycle-accurate fashion.
Therefore, wait statements are inserted into the algorithmic
description to clearly delineate clock-cycle boundaries and when I/O
happens. Unlike register-transfer-level (RTL) descriptions, the
behavior of the block is still described algorithmically rather than in
terms of a finite state machine (FSM) and a data path. Therefore,
behavioral descriptions are more compact, and easier to understand,
and because of the higher level of abstraction, they simulate faster
than RTL.

Figure 1-3 shows a block diagram for a behavioral model.

Figure 1-3 Behavioral Model

CPU

Memory

Bus
arbiter

I/O Storage

Clock
Driver
Bus I/F

Clock
Driver
Bus I/F

Clock
Driver
Bus I/F

Clock
Driver
Bus I/F

I / F

1-10

Introduction

Behavioral Coding Style

The general characteristics of the behavioral coding style for
synthesis are the following:

• The behavior is described like an algorithm (a software program),
and functions can be used to manage complexity.

• Although the initial model may have float or integer data types,
you need to refine these types to synthesizable types, described
in “Recommended Types for Synthesis” on page 2-39.

• You specify the I/O protocol of the design by defining in which
clock cycle the I/O happens. Note that only the I/O, not the
operations described in the algorithm, is bound to clock cycles.

• It uses the synthesizable subset of the SystemC language,
described in “SystemC and C++ Synthesizable Subset” on page
2-32

Refining From Functional to Behavioral Model

To refine a functional model into a behavioral model,

• Restrict constructs to the synthesizable subset of C++. See the
“Nonsynthesizable Subset of SystemC” on page 2-33.

• Refine ports from abstract data types to synthesizable data types,
and refine all other data types to synthesizable data types, which
are described in “Synthesizable Data Types” on page 2-37.

• Define a clock port for the module.

• Specify the I/O interface by adding wait statements to your
description and put signal and port read and write operations with
the correct wait statements, described in Chapter 3, “Behavioral
Coding Guidelines."

1-11

Introduction

• If required, manage complexity by using functions.

Chapter 2, “Refining for Behavioral Synthesis” describes the
refinement activities in more detail.

Example 1-2 shows a behavioral description of the FIFO that was
refined from the algorithmic description in Example 1-1 on page 1-6.
The design description and complete set of files for the FIFO are
available in Appendix B, “First-In-First-Out Example."

1-12

Introduction

Example 1-2 FIFO Behavioral Coding
/* fifo_bhv.h header file */

#define BUFSIZE 4
#define LOGBUFSIZE 2
#define LOGBUFSIZEPLUSONE 3

SC_MODULE(circ_buf) {
 sc_in_clk clk; // The clock
 sc_in<bool> read_fifo; // Indicate read from FIFO
 sc_in<bool> write_fifo; // Indicate write to FIFO
 sc_in<int> data_in; // Data written to FIFO
 sc_in<bool> reset; // Reset the FIFO

 sc_out<int> data_out; // Data read from the FIFO
 sc_out<bool> full; // Indicate FIFO is full
 sc_out<bool> empty; // Indicate FIFO is empty

 int buffer[BUFSIZE]; // FIFO buffer
 sc_uint<LOGBUFSIZE> headp; // Pointer to FIFO head
 sc_uint<LOGBUFSIZE> tailp; // Pointer to FIFO tail
 // Counter for number of elements
 sc_uint<LOGBUFSIZEPLUSONE> num_in_buf;

 void read_write(); // FIFO process

 SC_CTOR(circ_buf) {
 SC_CTHREAD(read_write, clk.pos());
 watching(reset.delayed() == true);
 }
};

 /***********************************/
 /* fifo_bhv.cc implementation file */

#include “systemc.h”
#include “fifo_bhv.h”

void
circ_buf::read_write() {
 // Reset operations
 headp = 0;
 tailp = 0;
 num_in_buf = 0;
 full = false;
 empty = true;
 data_out = 0;

1-13

Introduction

 wait();

 // Main loop
 while (true) {
 if (read_fifo.read()) {

 // Check if FIFO is not empty
 if (num_in_buf != 0) {
 num_in_buf--;
 data_out = buffer[headp++];
 full = false;
 if (num_in_buf == 0) empty = true;
 }
 // Ignore read request otherwise
 wait();
 }
 else if (write_fifo.read()) {

 // Check if FIFO is not full
 if (num_in_buf != BUFSIZE) {
 buffer[tailp++] = data_in;
 num_in_buf++;
 empty = false;
 if (num_in_buf == BUFSIZE) full = true;
 }
 // Ignore write request otherwise
 wait();
 }
 else {
 wait();
 }
 }
}

1-14

Introduction

Register Transfer Level Model

An RTL model describes registers in your design and the
combinational logic between the registers. As such, the functionality
of your system is specified as an FSM and a data path. Because
register updates are tied to a clock, the model is cycle accurate, both
at the interfaces and also internally. Internal cycle accuracy means
the clock cycle in which each operation is performed is specified. This
is different from a behavioral model that is cycle accurate at the
interface, and the operation execution is not cycle accurate

Figure 1-4 shows a block diagram for a cycle-accurate model.

Figure 1-4 RTL Model

CPU

Memory

Bus arbiter

I/O Storage

1-15

Introduction

RTL Coding Style

The general characteristics of the RTL coding style for synthesis are
the following:

• Implements the design as combinational logic between registers.
The finite state machine and the data path are explicitly specified.

• Uses only the synthesizable data types, described in
“Synthesizable Data Types” on page 2-37.

• Uses the synthesizable subset of the C++ language, described in
“SystemC and C++ Synthesizable Subset” on page 2-32.

Refining into RTL

 To refine a behavioral model into a RTL model

• Separate the control logic and data path.

• Determine the data-path architecture.

• Define an explicit FSM for the control logic.

Example 1-3 shows the RTL version of the FIFO behavioral model in
Example 1-2. The RTL coding style has separate processes for the
FSM control and data path. Notice that the RTL version of the FIFO
is much longer and more detailed than the equivalent behavioral
version, and it is harder to follow than the behavioral description. For
details about refining a functional or behavioral model into an RTL
model, see the SystemC Compiler RTL Modeling Guide.

1-16

Introduction

Example 1-3 RTL Coding
/* fifo_rtl.h header file */

#define BUFSIZE 4
#define LOGBUFSIZE 2
#define LOGBUFSIZEPLUSONE 3

SC_MODULE(circ_buf) {
 // Same I/O as behavioral
 sc_in<bool> clk;
 sc_in<bool> read_fifo;
 sc_in<bool> write_fifo;
 sc_in<int> data_in;
 sc_in<bool> reset;
 sc_out<int> data_out;
 sc_out<bool> full;
 sc_out<bool> empty;

 // Internal signals
 sc_signal<int> buf0, buf0_next;
 sc_signal<int> buf1, buf1_next;
 sc_signal<int> buf2, buf2_next;
 sc_signal<int> buf3, buf3_next;
 sc_signal<sc_uint<LOGBUFSIZEPLUSONE> >
 num_in_buf, num_in_buf_next;
 sc_signal<bool> full_next, empty_next;
 sc_signal<int> data_out_next;

 // Declare processes
 void ns_logic(); // Next-state logic
 void update_regs();// Update all registers
 void gen_full(); // Generate a full signal
 void gen_empty(); // Generate an empty signal

 // Constructor
 SC_CTOR(circ_buf) {

SC_METHOD(ns_logic);
sensitive << read_fifo << write_fifo

 << data_in << num_in_buf;

SC_METHOD(update_regs);
sensitive_pos << clk;

SC_METHOD(gen_full);
sensitive << num_in_buf_next;

1-17

Introduction

SC_METHOD(gen_empty);
sensitive << num_in_buf_next;

 }
};
/***********************************/
/* fifo_rtl.cc implementation file */

#include "systemc.h"
#include "fifo_rtl.h"

void circ_buf::gen_full(){
 if (num_in_buf_next.read() == BUFSIZE)
 full_next = 1;
 else
 full_next = 0;
}

void circ_buf::gen_empty(){
 if (num_in_buf_next.read() == 0)
 empty_next = 1;
 else
 empty_next = 0;
}

void circ_buf::update_regs(){
 if (reset.read() == 1) {
 full = 0;
 empty = 1;
 num_in_buf = 0;
 buf0 = 0;
 buf1 = 0;
 buf2 = 0;
 buf3 = 0;
 data_out = 0;
 }
 else {
 full = full_next;
 empty = empty_next;
 num_in_buf = num_in_buf_next;
 buf0 = buf0_next;
 buf1 = buf1_next;
 buf2 = buf2_next;
 buf3 = buf3_next;
 data_out = data_out_next;
 }
}

void circ_buf::ns_logic(){

1-18

Introduction

 // Default assignments
 buf0_next = buf0;
 buf1_next = buf1;
 buf2_next = buf2;
 buf3_next = buf3;
 num_in_buf_next = num_in_buf;
 data_out_next = 0;

 if (read_fifo.read() == 1) {
 if (num_in_buf.read() != 0) {
 data_out_next = buf0;
 buf0_next = buf1;
 buf1_next = buf2;
 buf2_next = buf3;
 num_in_buf_next = num_in_buf.read() - 1;
 }
 }
 else if (write_fifo.read() == 1) {
 switch(int(num_in_buf.read())) {
 case 0:
 buf0_next = data_in.read();
 num_in_buf_next = num_in_buf.read() + 1;
 break;
 case 1:
 buf1_next = data_in.read();
 num_in_buf_next = num_in_buf.read() + 1;
 break;
 case 2:
 buf2_next = data_in.read();
 num_in_buf_next = num_in_buf.read() + 1;
 break;
 case 3:
 buf3_next = data_in.read();
 num_in_buf_next = num_in_buf.read() + 1;
 default:
 // ignore the write command
 break;
 }
 }
}

1-19

Introduction

Choosing the Right Abstraction for Synthesis

You can implement a hardware module by using behavioral-level
synthesis or RTL synthesis. Behavioral descriptions are smaller,
make it easier to capture complex algorithms, are faster to simulate,
accommodate late specification changes, and are more intuitive to
write and understand (and therefore maintain) than RTL descriptions.

At this level of abstraction, the model’s architecture refers to its
hardware implementation, which is not yet specified.

Behavioral synthesis, however, is not suitable for all modules of a
design. Evaluate each design module by module, and consider each
module’s attributes, described in the following sections, to determine
whether behavioral or RTL synthesis is applicable.

Identifying Attributes Suitable for Behavioral Synthesis

Look for the following design attributes when identifying a hardware
module that is suitable for behavioral synthesis with SystemC
Compiler:

• It is easier to conceive the design as an algorithm than as an FSM
and a data path – for example, an FFT, filter, IQ, or DSP.

• The design has a complex control flow – for example, a network
processor.

• The design has memory accesses, and you need to synthesize
access to synchronous memory.

1-20

Introduction

Applications that are suitable for behavioral modeling and synthesis
are

• Digital communication applications such as cable modems,
cellular phones, cordless phones, two-way pagers, wireless
LANs, satellite DSPs, and XDSL modems

• Image and video processing applications such as digital cameras,
printers, set-top boxes, 3-D graphic devices, and video capture
devices

• Networking applications such as ATM switches, fast networking
switches, and packet routers

• Digital signal processing applications such as filters, codecs, IQ,
IDCT, and channel equalizers

• Computers applications such as cache controllers, hardware
accelerators, and fixed-point arithmetic units

1-21

Introduction

Identifying Attributes Suitable for RTL Synthesis

Some designs are more appropriate for RTL synthesis than for
behavioral synthesis. The following design attributes indicate that the
design is suitable for RTL synthesis:

• The design is asynchronous.

• It is easier to conceive the design as an FSM and a data path than
as an algorithm – for example, a microprocessor.

• The design is very high performance, and the designer, therefore,
needs complete control over the architecture.

• The design contains complex memory such as SDRAM or
RAMBUS.

1-22

Introduction

Comparison of Behavioral and RTL Synthesis

The following are benefits of behavioral synthesis compared to RTL
synthesis.

A behavioral description

• Promotes communication of design intent

• Is usually smaller than RTL code

• Promotes greater design reuse, because the design is technology
and architecture independent

• Accommodates late design specification changes, because the
code is architecture independent

• Cuts implementation time significantly, increasing designer
productivity

• Increases verification speed and decreases verification time

• Promotes exploration of alternative architectures

• Automatically creates the control FSM and data path

• Pipelines critical parts of the design such as loops

• Shares operators and registers

• Automatically synthesizes memory accesses

This modeling guide tells you how to develop descriptions for
behavioral synthesis with SystemC Compiler.

2-1

Refining for Behavioral Synthesis

2
Refining for Behavioral Synthesis 2

This chapter explains how to refine a high-level SystemC model or a
purely C/C++ model into a behavioral model that can be synthesized
with SystemC Compiler. The SystemC and C/C++ language
elements that are important for synthesis are also described.

This chapter contains the following sections:

• Refinement Overview

• Creating and Refining the Structure From a C/C++ Model

• Refining the Structure From a High-Level SystemC Model

• Creating and Refining Processes

• Converting to a Synthesizable Subset

• Refining Data

• Refining Control

2-2

Refining for Behavioral Synthesis

• Advanced Refinement Techniques

• Refinement Recommendations

2-3

Refining for Behavioral Synthesis

Refinement Overview

Assuming that you have decided on the architecture for your system
and have identified the functionality you want to synthesize with
SystemC Compiler, you need to refine the functional model for
synthesis. For information about deciding on an system architecture
and other design methodology tradeoffs, refer to books and other
information sources about design methodology.

Starting with either a purely C/C++ model or a high-level SystemC
model, the stages for refining the high-level model into a behavioral
model for synthesis with SystemC Compiler are

• Structure refinement

• Data refinement

• Control refinement

Figure 2-1 shows the three major stages for refining the model and
the activities in each stage.

2-4

Refining for Behavioral Synthesis

Figure 2-1 Refinement Stages and Activities

For structure refinement, you create the architecture of your design,
which is the hierarchical structure, and the communication your
design uses.

Structure
refinement

Data
refinement

Control
refinement

synthesizable
model

Behavioral

C/C++
model

Pure

Create and refine
architecture

Create and refine
processes

Apply advanced
refinement

techniques to
improve QoR

Convert to
synthesizable

subset of
C++

Refine
data types and

bit widths

Specify
design latency,
throughput, and

cycles for I/O

SystemC
model

High-level

2-5

Refining for Behavioral Synthesis

For data refinement, you restrict the model to use only the
synthesizable subset of C++ and you choose appropriate data types
and bit-widths.

For control refinement, you specify the latency of the design and the
cycles in which I/O happens. You also need to ensure that your model
adheres to the coding rules required for synthesis.

After synthesis, you can use advanced refinement techniques such
as preserved functions (“Using Preserved Functions” on page 4-4)
and loop recoding (“Using Loops” on page 3-33) to further refine your
design and achieve a higher quality of results (QoR).

You typically perform the refinement activities in the order shown in
Figure 2-1. You do not need to complete each stage before going on
to the next stage. You may want to partially complete stages and
iterate over the entire set of stages several times to develop a
synthesizable model.

2-6

Refining for Behavioral Synthesis

Creating and Refining the Structure From a C/C++ Model

A pure C/C++ model of your hardware describes only what the
hardware is intended to do. When you start with a C/C++ model, the
goal of the first refinement stage is to create the hardware structure.
To synthesize the hardware, you need to

• Define I/O ports for the hardware module

• Specify the internal structure as blocks

• Specify the internal communication between the blocks

• Define the clock and reset signals, described in Chapter 3,
“Behavioral Coding Guidelines”

Define I/O Ports

To define I/O ports for the hardware, you need to determine input
ports for reading data into the module and output ports for writing
data out from the module. Ports are communication resources, and
they can be shared. You can define any number of ports, dedicate a
port for each I/O, or share ports for I/O based on the requirements of
your design.

Specify Internal Structure

Next, you need to specify the internal structure of your design as
blocks. Structuring the hardware depends on the way you
conceptualize your design and how you intend to synthesize the
design with SystemC Compiler. For example, consider an MPEG
decoder. You can conceptualize an MPEG decoder to consist of an
input port that accepts an MPEG stream, an output port that produces

2-7

Refining for Behavioral Synthesis

a decoded MPEG stream, an inverse quantizer (IQ) block, an inverse
discrete cosine transformer (IDCT) block, an MPEG stream parser
(SP) block, a motion compensation (MC) unit block, input and output
buffers (IBs and OBs), and a controller (CT) that controls all the other
blocks. Figure 2-2 shows an initial structure of an MPEG design with
these blocks.

Figure 2-2 MPEG Decoder Functional Structure

Specify the Internal Communication

After you determine the blocks of your design, you need to decide
how these blocks communicate with one another. You can use
dedicated communication resources between blocks, or you can use
a shared communication resource such as a bus. For the blocks in
your design, you need to decide what ports they use and what
communication resources are used to connect them. For the MPEG
example, assume that a bus was chosen. The blocks and the
communication between them determines the top-level architecture
of your design, as shown in Figure 2-3.

Input
buffer

Frame
buffer

Stream
parser

Inverse
quantizer

Inverse

Motion
compensation

MPEG Video Decoder

Input
port

Output
port

Motion
vectors

discrete
cosine

transformer

Video picture

1010...1010

2-8

Refining for Behavioral Synthesis

Figure 2-3 MPEG Decoder Top-Level Architecture

Specify the Detailed Architecture

After the top-level architecture is complete, you can take a closer look
at each block of the design to decide if you want to apply the same
principles of structure refinement to all the blocks. For example, you
might want to decompose the MPEG stream parser block into a slice
decoding (SD) block and a header decoding (HD) block. You might
also want to insert buffers (B) between the IQ and IDCT and between
the IDCT and MC. This further refines your architecture and creates
hierarchy in your design, as shown in Figure 2-4.

Input
buffer

Inverse
quantizer

Inverse

Motion
compensation

Input
port

Output
port

discrete
cosine

transformer

Video picture

1010...1010

Controller

Stream
parser

MPEG Video Decoder

2-9

Refining for Behavioral Synthesis

Figure 2-4 MPEG Decoder Detailed Architecture

Continue this type of structure refinement until you are satisfied with
the final architecture. In your final architecture, all blocks, their ports,
and all communication resources are defined. Though it is not
required to have the communication protocols defined at this stage,
it is highly recommend that you define the bus protocols and protocols
used on dedicated links. You will use the protocol later, during the
control refinement stage, to specify when I/O happens.

Atomic and Hierarchical Blocks

In your final architecture, blocks can be atomic, which means they do
not contain other blocks. You can also have blocks that are
hierarchical, which means they contain other blocks. In the MPEG
example, the MPEG decoder and the SP blocks are hierarchical and
the other blocks are atomic.

Input
buffer

Slice
decoding Inverse

quantizer

Inverse

Motion
compensation

Input
port

Output
port

discrete
cosine

transformer

Video picture

1010...1010

Header
decoding

Controller

RAM

R
A
M

MPEG Video Decoder

2-10

Refining for Behavioral Synthesis

You need to create a SystemC module for each atomic block and a
SystemC signal for each communication resource, which is described
in “Modules” on page 2-12. A SystemC module can contain only
SystemC behavioral or RTL processes. (This document describes
only behavioral processes. For information about RTL processes, see
the CoCentric™ SystemC Compiler RTL User and Modeling Guide.)

For each atomic block, you

• Create a SystemC module

• Define input and output ports

• Define the clock and reset ports (the clock port is mandatory, and
the reset port is highly recommended)

• Create a behavioral clocked thread process

• Declare reset watching

For each hierarchical block, you create a SystemC module in which
you can define processes as well as instantiations of other modules.

SystemC Compiler synthesizes processes in a module, and their
interconnection is inferred from the module instantiation. To
synthesize hierarchical modules, RTL synthesis is required. How to
create hierarchical modules and integrated behavioral and RTL
modules is described in the CoCentric™ SystemC Compiler RTL
User and Modeling Guide.

2-11

Refining for Behavioral Synthesis

When creating the hardware structure, adhere to the following
guidelines:

• A hierarchical module contains instances of other modules and
the interconnections between the instances. The hierarchical
module can contain RTL processes, but it cannot contain
behavioral processes.

• Each atomic module for behavioral synthesis can contain only
clocked thread processes.

• For behavioral synthesis, if SystemC Compiler runtime is
excessive, you can break your module into smaller modules.

2-12

Refining for Behavioral Synthesis

Modules

The basic building block in SystemC is a module. A SystemC module
is a container in which processes and other modules are instantiated.
Figure 2-5 shows a typical module with several processes. The
processes within a module are concurrent.

Figure 2-5 Module

Note:
For synthesis with SystemC Compiler version 2000.05-SCC1.0,
a module cannot contain instances of other modules.

As a recommended coding practice, describe a module by using two
separate files, a separate header file (module_name.h) and an
implementation file (module_name.cpp or module_name.cc).

Module

ProcessProcess

ProcessProcess

ProcessProcess

2-13

Refining for Behavioral Synthesis

Module Header File

Each module header file contains the module declaration, which
includes

• Port declarations

• Internal signal variable declarations

• Internal data variable declarations

• Process declarations

• Member function declarations

• Constructor of the module

Module Syntax

Declare a module by using the syntax shown in bold in the following
example:

SC_MODULE (module_name) {
//Module port declarations
//Signal variable declarations
//Data variable declarations
//Clocked thread process declarations
//Member function declarations

//Module constructor
SC_CTOR (module_name) {

//Register processes
//Declare sensitivity list
//Define global watching

}
};

Note:
SC_MODULE and SC_CTOR are C++ macros defined in the
System Class library.

2-14

Refining for Behavioral Synthesis

Module Ports

Each module has any number of input and output ports (Figure 2-6),
which determine the direction of data into or out of the module.

Figure 2-6 Module Ports

A port is a data member of SC_MODULE. You can declare any
number of sc_in or sc_out ports. For a module with a behavioral
(SC_THREAD) process, you must declare one sc_in_clk port.

Note:
SystemC sc_inout ports are not used for behavioral synthesis.

Module

ProcessProcess

ProcessProcess

ProcessProcess

Portssc_in

sc_in_clk

sc_out
sc_in

sc_in

sc_in

sc_out

sc_out

2-15

Refining for Behavioral Synthesis

Port Syntax

Declare ports by using the syntax shown in bold in the following
example:

SC_MODULE (module_name) {
//Module port declarations
sc_in<port_data_type> port_name;
sc_out<port_data_type> port_name;
sc_in_clk port_name; // Mandatory

 sc_in<bool> reset; // Highly recommended

//Signal variable declarations
//Data variable declarations
//Clocked thread processes
//Member function declarations

//Module constructor
SC_CTOR (module_name) {

//Register processes
//Declare sensitivity list
//Define global watching

}
};

Port Data Types

Ports connect to signals and, like signals, have a data type associated
with them. For synthesis, declare each port as one of the
synthesizable data types, described in “Synthesizable Data Types”
on page 2-37.

An sc_in_clk is a special port that connects to the clock signal to
trigger one or more SC_CTHREAD processes. Each SC_CTHREAD
process requires one sc_in_clk port. You can use the same clock port
for all processes in a module, or you can declare a separate sc_in_clk
port for each SC_CTHREAD process.

2-16

Refining for Behavioral Synthesis

Internal Signals

Modules use ports to communicate with other modules. Internal
signals are used by processes to communicate with other processes
within the same module, as shown in Figure 2-7.

Figure 2-7 Processes and Signals

Signal Syntax

Declare signals by using the syntax shown in bold in the following
example:

Module

ProcessProcess

ProcessProcess

ProcessProcess

Portssc_in

sc_in_clk

sc_out
sc_in

sc_in

sc_in

sc_out

Signals

sc_out

2-17

Refining for Behavioral Synthesis

SC_MODULE (module_name) {
//Module port declarations
sc_in<port_type> port_name;
sc_out<port_type> port_name;
sc_in_clk port_name;

//Internal signal variable declarations
sc_signal<signal_type> signal_name;

//Data variable declarations
//Clocked thread processes
//Member function declarations

//Module constructor
SC_CTOR (module_name) {

//Register processes
//Declare sensitivity list
//Define global watching

}
};

Signal Data Types

A signal’s bit-width is determined by its corresponding data type.
Specify the data type as any of the synthesizable SystemC or C++
data types listed in “Synthesizable Data Types” on page 2-37. Signals
and the ports they connect must have compatible data types.

Reading and Writing Ports

When you read a port, it is recommended to use the read() and write()
methods to distinguish ports from variable assignments. Example 2-1
shows in bold how to use these methods rather than simple
assignments.

2-18

Refining for Behavioral Synthesis

Example 2-1 Using read() and write() Methods
//...
wait();
address = into.read(); // read from into port
wait(); // wait one clock
data_tmp = memory[address]; // get data from memory
outof.write(data_tmp); // write to outof port
wait();
//...

You need to read or write all bits of a port. You cannot read or write
the individual bits, regardless of its type. To select a bit on a port, read
the port data into a temporary variable and select a bit in the temporary
variable.

Reading and Writing Signals

You can read or write a signal using either the read() and write()
methods or by assignment. You cannot read or write the individual
bits, regardless of its type. To select a bit on a signal, read the signal
data into a temporary variable and select a bit in the temporary
variable.

Internal Data Variables

Inside a module, you can define data variables of any synthesizable
SystemC or C++ type. These variables are typically used for internal
storage in the module. Do not use them for interprocess
communication, because it can lead to nondeterminism (order
mismatch) during simulation and can cause possible mismatches
between the results of synthesis and simulation.

2-19

Refining for Behavioral Synthesis

Declare internal data variables by using the syntax shown in bold in
the following example:

SC_MODULE (module_name) {
//Module port declarations
sc_in<port_type> port_name;
sc_out<port_type> port_name;
sc_in_clk port_name;

//Internal signal variable declarations
sc_signal<signal_type> signal_name;

//Data variable declarations
int count_val; //Internal counter
sc_int<8> mem[1024]; //Array of sc_int

//Clocked thread processes
//Member function declaration

//Module constructor
SC_CTOR (module_name) {

//Register processes
//Declare sensitivity list
//Define global watching

}
};

2-20

Refining for Behavioral Synthesis

Processes

Electronic systems are inherently parallel, but programming
languages such as C and C++ execute sequentially. SystemC
provides processes for describing the parallel behavior of hardware
systems. This means processes execute concurrently, rather than
sequentially like C++ functions. The code within a process, however,
executes sequentially.

Processes use signals to communicate with each other. One process
can cause another process to execute by assigning a new value to
a signal that interconnects them. Do not use data variables for
communication between processes to avoid causing nondeterminism
(order dependency) during simulation.

Defining a process is similar to defining a C++ function. A process is
declared as a member function of a module and registered as a
process in the module’s constructor. You can declare and instantiate
more than one process in a module, but processes cannot contain
other processes or modules.

A process is registered inside the module’s constructor. Registering
a process makes it recognizable by SystemC Compiler as a process
rather than as an ordinary member function. You can register multiple
different processes, but it is an error to register more than one
instance of the same process.

A process can read from and write to ports and internal signals.

2-21

Refining for Behavioral Synthesis

Types of Processes

SystemC provides three process types – SC_CTHREAD,
SC_METHOD, and SC_THREAD – that execute whenever their
sensitive inputs change. A process has a sensitivity list that identifies
which inputs trigger the code within the process to execute when the
value on one of its sensitive inputs change.

For simulation, you can use any of the process types. For synthesis,
you can use only the SC_CTHREAD and SC_METHOD processes.
The SC_THREAD process is used mainly for testbenches, although
the SC_CTHREAD and SC_METHOD processes can also be used
for testbenches.

Clocked Thread Process

The SC_CTHREAD clocked thread process is sensitive to one edge
of one clock. Use a clocked thread process to describe functionality
for behavioral synthesis with SystemC Compiler.

The SC_CTHREAD process models the behavior of a sequential
logic circuit with nonregistered inputs and registered outputs. A
registered output comes directly from a register (flip-flop) in the
synthesized circuit.

Method Process

The SC_METHOD process is sensitive to a set of signals and
executes when one of its sensitive inputs change. Use a method
process to describe a hierarchical behavioral design or
register-transfer-level hardware. (For information about RTL
modeling, see the CoCentric™ SystemC Compiler RTL User and
Modeling Guide.)

2-22

Refining for Behavioral Synthesis

Note:
Although you can create an RTL model in SystemC, SystemC
Compiler version 2000.05-SCC1.0 does not synthesize RTL
models. RTL synthesis is planned for a future release of SystemC
Compiler.

Creating a Process in a Module

SystemC processes are declared in the module body and registered
as processes inside the constructor of the module, as shown in bold
in Example 2-2.

You must declare a process with a return type of void and no
arguments, which is also shown in bold in Example 2-2.

Example 2-2 Creating a Clocked Thread Process in a Module
// cmult.h header file
SC_MODULE(cmult) {

// Declare ports
sc_in<sc_int<8> > data_in;
sc_in_clk clk;
sc_out<sc_int<16> > real_out;
sc_out<sc_int<16> > imaginary_out;

// Declare internal variables and signals

// Declare processes in the module
void entry();

// Constructor
SC_CTOR (cmult) {

// Register processes and define
// the active clock edge
SC_CTHREAD(entry, clk.pos());

}
};

2-23

Refining for Behavioral Synthesis

To register a function as a process, use the SC_CTHREAD macro
that is defined in the SystemC Class library. The SC_CTHREAD
macro takes two arguments:

1. The name of the process

2. The edge of the clock that triggers the process, which is also called
the active edge

Member Functions

In a module, you can declare other member functions that are not
processes. They are not registered as processes in the module’s
constructor. These functions can be called from within a process.
Member functions can contain any synthesizable C++ or SystemC
statement allowed in the SC_CTHREAD process.

Appendix E, “Inverse Quantization Example,” shows an example that
uses numerous member functions.

A member function that is not a process can return any data type, but
a member function that is a process can return only a void type.

See “Using Member Functions” on page 4-2 for further information.

2-24

Refining for Behavioral Synthesis

Module Constructor

For each module, you need to create a constructor, which is used to

• Register processes

• Define a sensitivity list for each SC_METHOD process

• Define an optional global reset

For synthesis, other statements are not allowed in the constructor.

Note:
A single global reset is supported for synthesis, which is explained
in “Describing a Global Reset” on page 3-46. Multiple global resets
are not allowed.

Example 2-3 shows the header file for a complex number multiplier
with a global reset. In this example, the constructor registers an
SC_CTHREAD process and defines a global reset, which is shown
in bold.

2-25

Refining for Behavioral Synthesis

Example 2-3 Module Constructor
// cmult_hs.h header file
SC_MODULE(cmult_hs) {

// Declare ports
sc_in<bool> reset;
sc_in<sc_bv<8> > data_in;
sc_in_clk clk;
sc_out<sc_int<16> > real_out;
sc_out<sc_int<16> > imaginary_out;

// Declare internal variables and signals

// Declare processes in the module
void entry();

// Constructor
SC_CTOR (cmult_hs) {

// Register processes and
// define active clock edge
SC_CTHREAD(entry, clk.pos());

// Watching for global reset
watching(reset.delayed() == true);

}
};

2-26

Refining for Behavioral Synthesis

Module Implementation File

As a recommended coding practice, write the module’s behavior in
a separate implementation file. Name the file with either a .cpp or .cc
file extension, for example my_module.cpp.

Using an Infinite Loop

When using a clocked thread process, enclose the module behavior
within an infinite loop (while (true)) in the module’s implementation
file. This ensures that the process runs continuously, like hardware.
In addition, each clocked thread process must have at least one wait
statement, which is explained further in Chapter 3, “Behavioral
Coding Guidelines.”

Example 2-4 shows the implementation file for the complex number
multiplier header file shown in Example 2-2 on page 2-22. The
required infinite loop is shown in bold.

2-27

Refining for Behavioral Synthesis

Example 2-4 Module Behavior
// cmult.cc implementation file

#include "systemc.h"
#include "cmult.h"

void cmult :: entry() {
 sc_int<8> a, b, c, d;
 while (true) {
 // Read four data values from input port
 a = data_in.read();
 wait();
 b = data_in.read();
 wait();
 c = data_in.read();
 wait();
 d = data_in.read();
 wait();
 //Calculate and write output ports
 real_out.write(a * c - b * d);
 imaginary_out.write(a * d + b * d);
 wait();
 }

}

2-28

Refining for Behavioral Synthesis

Refining the Structure From a High-Level SystemC
Model

When you start from a high-level SystemC model, your model might
or might not already have the structure required for your hardware.
If your model does not have the structure you need, follow the steps
beginning at “Creating and Refining the Structure From a C/C++
Model” on page 2-6 to create the hardware structure.

A high-level SystemC model, unlike a pure C/C++ model, may contain
abstract ports. Abstract ports are types that are not readily translated
to hardware. For each abstract port, you need to define a signal port
to replace each terminal of the abstract port. You also need to replace
all accesses to the abstract ports or terminals with accesses to the
newly defined signal ports. For more information about abstract ports,
see the SystemC User’s Guide.

Creating and Refining Processes

After you create the detailed architecture of your hardware and
decompose the functionality into hierarchical and atomic modules,
you need to create behavioral and RTL processes inside the modules.
(For information about RTL process creation, see the CoCentric™
SystemC Compiler RTL User and Modeling Guide.)

The description of defining a module and declaring a clocked thread
process for behavioral synthesis begins at “Modules” on page 2-12.
To implement the behavior, define the process body. The process
body, which consists of two distinct sections, the reset action and the
main functionality, as shown in Example 2-5.

2-29

Refining for Behavioral Synthesis

Example 2-5 Basic Reset Action and Main Loop

/**** my_module.h header file ****/

#include "systemc.h"

SC_MODULE(SOME_MODULE) {
 // Ports

 // data_t is a struct defined elsewhere
 sc_in<data_t> in_data; // Input port
 sc_out<data_t> out_data; // Output port
 sc_in_clk clk; // Mandatory
 sc_in<bool> reset; // Highly recommended

 // Process
 void work();

 // Constructor
 SC_CTOR(SOME_MODULE) {

 SC_CTHREAD(work, clk.pos()); // Declare process
 watching(reset.delayed() == 1); // Specify reset
 }
};

/**** my_module.cpp implementation file ****/

// Process

void SOME_MODULE::work() {

 // Reset actions
 //...
 wait(); // Required wait

 // Main loop
 while (true) {

 // Main functionality
 //...
 }
}

2-30

Refining for Behavioral Synthesis

In the reset action section, you specify the reset behavior of the circuit.
When the reset signal is asserted, the reset code is executed. Writing
reset functionality is explained in “Using Resets” on page 3-46.

To ensure that a process executes infinitely, enclose its functionality
in an infinite while loop, which is designated as the main loop in
Example 2-5. Put the functionality of your process inside this main
loop.

If you started with a C/C++ model of your hardware or a high-level
SystemC model, the design functionality of your hardware is already
described as a software algorithm. In that case, you need little
additional refinement of the behavioral code to implement the design
in hardware, using behavioral synthesis.

Converting to a Synthesizable Subset

As the next stage in refinement, you need to convert all
nonsynthesizable code into synthesizable code. This is required only
for functionality that is to be synthesized.

Although you can use any SystemC class or C++ construct for
simulation and other stages of the design process, many C and C++
language constructs and SystemC classes are not relevant for
synthesis. Because these constructs cannot be synthesized into
hardware, SystemC Compiler does not support them, and it displays
an error message if it encounters any of these constructs in your code.
You can comment out code that is needed only for simulation, such
as print statements for debugging.

2-31

Refining for Behavioral Synthesis

Excluding Simulation-Specific Code

SystemC Compiler provides compiler directives you can use in your
code

• To include synthesis-specific directives

• To exclude or comment out simulation-specific code so it does not
interfere with synthesis

You can isolate synthesis-specific or simulation-specific code with a
compiler directive, either the C language #ifdef or a comment starting
with the word synopsys or snps and synthesis_off. Example
2-6 shows compiler directives in bold that exclude simulation code
from synthesis.

Example 2-6 Excluding Simulation-Only Code
 //C directive

#ifdef SIM
...//Simulation-only code
#endif

 //SystemC Compiler directive
/* synopsys synthesis_off */
... //Simulation-only code
/* snps synthesis_on */

“Synthesis Compiler Directives” in Appendix A provides a list of the
SystemC Compiler directives.

2-32

Refining for Behavioral Synthesis

SystemC and C++ Synthesizable Subset

The synthesizable subsets of SystemC and C++ are provided in the
sections that follow. Wherever possible, a recommended corrective
action is indicated for converting nonsynthesizable constructs into
synthesizable constructs. For many nonsynthesizable constructs,
there is no obvious recommendation to convert them into
synthesizable constructs or there are numerous ways to convert
them. In such cases, a recommended corrective action is not
indicated. Familiarize yourself with the synthesizable subset and use
the synthesizable subset as much as possible in your pure C/C++ or
high-level SystemC models to minimize the effort of data refinement
for synthesis.

You can use any SystemC or C++ construct for a testbench. You do
not need to restrict your code to the synthesizable subset in the
testbench.

2-33

Refining for Behavioral Synthesis

Nonsynthesizable Subset of SystemC

SystemC Compiler does not support the SystemC constructs listed
in Table 2-1 for behavioral synthesis.

Table 2-1 Nonsynthesizable SystemC Classes

Category Construct Comment Corrective action

Thread process SC_THREAD Used for modeling a
testbench, but not supported
for synthesis.

Change to
SC_CTHREAD.

Method process SC_METHOD Used for simulation and
modeling at the RT level, but
not supported for synthesis in
SystemC Compiler version
2000.05-SCC1.0. RTL
synthesis is planned for a later
release.

Channels sc_channel Used only in initial stages of
modeling system functionality.

Replace with
sc_signal.

Clock
generators

sc_start() Used for simulation. Comment out.

Bidirectional
port

sc_inout Bidirectional ports are not
allowed.

Change to separate
sc_in and sc_out
ports.

Local watching W_BEGIN,
W_END,
W_DO,
W_ESCAPE

Local watching is not
supported.

Multiple global
resets

Multiple
watching()

One global reset is supported
for synthesis. Multiple resets
are not supported.

Combine multiple
resets into a single
reset, using an AND
operator.

Tracing sc_trace,
sc_create*
trace_file

Creates waveforms of signals,
channels, and variables for
simulation.

Comment out for
synthesis.

2-34

Refining for Behavioral Synthesis

Nonsynthesizable C/C++ Constructs

SystemC Compiler does not support the C and C++ constructs listed
in Table 2-2 for behavioral synthesis.

Table 2-2 Nonsynthesizable C/C++ Constructs

Category Construct Comment Corrective action

Local class
declaration

Not allowed. Replace.

Nested class
declaration

Not allowed. Replace.

Derived class Only SystemC modules and
processes are supported.

Replace.

Dynamic
storage
allocation

malloc(),
free(), new,
new[],
delete[]

malloc(), free(), new, new[],
delete, and delete[] are not
supported.

Use static memory
allocation.

Exception
handling

try, catch,
throw

Not allowed. Comment out.

Recursive
function call

Not allowed. Replace with iteration.

Function
overloading

Not allowed (except the classes
overloaded by SystemC).

Replace with unique
function calls.

C++ built-in
functions

The math library, I/O library, file
I/O, and similar built-in C++
functions are not allowed.

Comment out.

Virtual function Not allowed. Replace with a
nonvirtual function.

Inheritance Not allowed. Replace.

Multiple
inheritance

Not allowed. Replace.

2-35

Refining for Behavioral Synthesis

Member access
control
specifiers

public,
protected,
private,
friend

Allowed in code, but are ignored
for synthesis. All member
access is public.

Change to public
access, or ignore the
compiler warnings.

Accessing struct
members with
the (->) operator

-> operator Not allowed. Replace with access
using the period (.)
operator.

Static member Not allowed. Replace with
nonstatic or member
variable.

Dereference
operator

* and &
operators

Not allowed. Replace
dereferencing with
direct access to the
variable or array.

Operator

overloading

Not allowed (except the classes
overloaded by SystemC).

Replace overloading
with unique function
calls.

Operator, sizeof sizeof Not allowed. Determine size
statically for use in
synthesis.

Pointer * Pointers are allowed only in
hierarchical modules, which are
not supported in SystemC
Compiler version
2000.05-SCC1.0.

A *char is treated as a string, not
as a pointer to memory.

Replace all pointers
with access to array
elements or individual
elements.

Pointer type
conversions

Not allowed. Do not use pointers.
Use explicit variable
reference.

this pointer this Not allowed. Replace.

Table 2-2 Nonsynthesizable C/C++ Constructs (continued)

Category Construct Comment Corrective action

2-36

Refining for Behavioral Synthesis

Reference, C++ & Allowed only for passing
parameters to functions.

Replace in all other
cases.

Reference
conversion

Reference conversion is
supported for implicit conversion
of signals only.

Replace in all other
cases.

User-defined
template class

Only SystemC templates
classes such as sc_int<> are
supported.

Replace.

Type casting at
runtime

Not allowed. Replace.

Type
identification at
runtime

Not allowed. Replace.

Explicit
user-defined
type conversion

The C++ built-in types and
SystemC types are supported
for explicit conversion.

Replace in all other
cases.

Unconditional
branching

goto Not allowed. Write structured code
with breaks and
continues.

Unions Not allowed. Replace with structs.

Global variable Not supported for synthesis. Replace with local
variables.

Member
variable

Member variables accessed by
two or more SC_THREAD
processes are not supported.
However, access to member
variable by only one process is
supported.

Use signals instead of
variables for
communication
between processes.

Volatile variable Not allowed. Use only nonvolatile
variables.

Table 2-2 Nonsynthesizable C/C++ Constructs (continued)

Category Construct Comment Corrective action

2-37

Refining for Behavioral Synthesis

Refining Data

A pure C/C++ model or a high-level SystemC model typically uses
native C++ types or aggregates (structures) of such types. Native
C++ types such as int, char, bool, and long have fixed,
platform-dependent widths, which are often not the correct width for
efficient hardware. For example, you might need only a 6-bit integer
for a particular operation, instead of the native C++ 32-bit integer. In
addition, C++ does not support four-valued logic vectors, operations
such as concatenation, and other features that are needed to
efficiently describe hardware operations.

SystemC provides a set of limited precision and arbitrary precision
data types that allows you to create integers, bit vectors, and logic
vectors of any length. SystemC also supports all common operations
on these data types.

During the data refinement step, you need to evaluate all variable
declarations, formal parameters, and return types of all functions to
determine the appropriate data type as well as the appropriate widths
of each data type. The following sections recommend the appropriate
data type to use and when. Selecting the data widths is a design
decision, and it is typically a tradeoff between the cost of hardware
and the required precision. This decision is, therefore, left to you.

Synthesizable Data Types

C++ is a strongly typed language. Every constant, port, signal,
variable, function return type, and parameter is declared as a data
type, such as bool or sc_bit, and can hold or return a value of that
type. Therefore, it is important that you use the correct data types in
expressions.

2-38

Refining for Behavioral Synthesis

Nonsynthesizable Data Types

All SystemC and C++ data types can be used for behavioral
synthesis, except the following types:

• Floating-point types such as float and double

• Fixed-point types sc_fixed, sc_ufixed, sc_fix, and sc_ufix

• Access types such as pointers

• File types such as FILE

• I/O streams such as stdout and cout, which are ignored by
SystemC Compiler

• SystemC sc_logic and sc_lv are used for RTL synthesis only, not
for behavioral synthesis

2-39

Refining for Behavioral Synthesis

Recommended Types for Synthesis

For the best synthesis, use appropriate data types and bit-widths so
SystemC Compiler does not build unnecessary hardware. Use the
SystemC data types listed in Table 2-3 in place of the equivalent C++
native type to restrict bit size for synthesis – for example, change an
int type to an sc_int<n> type, where n specifies the number of bits.

Table 2-3 Synthesizable Data Types

SystemC and C++ type Description

sc_bit A single-bit true or false value

sc_bv<n> An arbitrary-length bit vector

sc_logic A single-bit 0, 1, X, or Z for RTL synthesis only

sc_lv<n> An arbitrary-length logic vector for RTL synthesis
only

sc_int<n> Fixed-precision integers restricted in size up to 64
bits

sc_uint<n> Fixed-precision integers restricted in size up to 64
bits, unsigned

sc_bigint<n> Arbitrary-precision integers recommended for sizes
over 64 bits

sc_biguint<n> Arbitrary-precision integers recommended for sizes
over 64 bits, unsigned

bool A single-bit true or false value

int A signed integer, typically 32 or 64 bits, depending
on the platform

unsigned int An unsigned integer, typically 32 or 64 bits,
depending on the platform

long A signed integer, typically 32 or 64 bits, or longer,
depending on the platform

2-40

Refining for Behavioral Synthesis

unsigned long An unsigned integer, typically 32 or 64 bits, or longer,
depending on the platform

char A signed integer to represent individual characters
and small integers, typically -128 through 127

unsigned char An unsigned integer to represent individual
characters and small integers, typically 0 through
255

short A signed integer, typically 32 bits, depending on the
platform

unsigned short An unsigned integer, typically 32 bits, depending on
the platform

struct A user-define aggregate of synthesizable data types

enum A user-defined enumerated data type associated
with an integer constant

Table 2-3 Synthesizable Data Types (continued)

SystemC and C++ type Description

2-41

Refining for Behavioral Synthesis

Using SystemC Types

The following sections describe the operations that are supported by
the SystemC data types.

Bit and Bit Vector Data Type Operators

Table 2-4 provides a list of operators available for the SystemC sc_bit
and sc_bv data types. In Table 2-5, Yes indicates that the operator is
available for the specified data type.

Table 2-4 SystemC Bit and Bit Vector Data Type Operators

Operators sc_bit sc_bv

Bitwise & (and), | (or), ^ (xor), and ~ (not) Yes Yes

Bitwise << (shift left) and >> (shift right) No Yes

Assignment =, &=, |=, and ^= Yes Yes

Equality ==, != Yes Yes

Bit selection [x] No Yes

Part selection range (x-y) No Yes

Concatenation (x,y) No Yes

Reduction: and_reduce(), or_reduce(), and
xor_reduce()

No Yes

2-42

Refining for Behavioral Synthesis

Fixed and Arbitrary Precision Data Type Operators

Table 2-5 provides a list of operators available for the SystemC sc_int
and sc_uint fixed precision and sc_bigint and sc_biguint arbitrary
precision integer data types. In Table 2-5, Yes indicates that the
operator is available for the specified data types.

Table 2-5 SystemC Integer Data Type Operators

Operators sc_int, sc_uint,
sc_bigint, sc_biguinit

Bitwise & (and), | (or), ^ (xor), and ~ (not) Yes

Bitwise << (shift left) and >> (shift right) Yes

Assignment =, &=, |=, ^=, +=, -=, *=, /=, and %= Yes

Equality ==, != Yes

Relational <, <=, >, and >= Yes

Autoincrement ++ and autodecrement -- Yes

Bit selection [x] Yes

Part selection range (x-y) Yes

Concatenation (x,y) Yes

Reduction and_reduce(), or_reduce(), and
xor_reduce()

Yes

2-43

Refining for Behavioral Synthesis

Using Enumerated Types

SystemC Compiler interprets an enumerated (enum) data type as a
numerical value, where the first element is equal to zero. Appendix
C, “Memory Controller Example,” shows an example of using an
enumerated data type.

Using Aggregate Data Types

To group data types into a convenient aggregate type, define them
as a struct type similar to Example 2-7. You need to use all
synthesizable data types in a struct in order for the struct to be
synthesizable. SystemC Compiler splits the struct type into individual
elements for synthesis.

Example 2-7 Aggregate Data Type
struct package {
 sc_int<8> command;
 sc_int<8> address;
 sc_int<12> data;
};

Appendix C, “Memory Controller Example,” shows an example of
using an aggregate data type.

Using C++ Types

The native C++ data types, such as bool, char, int, long, short,
unsigned char, unsigned int, unsigned long, and unsigned short have
a platform-specific size. SystemC Compiler synthesizes variables of
these types to have the width dictated by your platform.

2-44

Refining for Behavioral Synthesis

for Loop Counter

In some situations, SystemC Compiler can determine that fewer bits
are required in hardware than is specified by the data type, which
produces a higher-quality result after synthesis. For example, if a
unique integer variable is declared as a for loop counter, SystemC
Compiler can determine the number of bits and build only the required
hardware. Example 2-8 shows a unique loop counter variable in bold.
SystemC Compiler can determine that 3 bits are required, and it would
build a 3-bit incrementer for variable i.

Example 2-8 Implicit Bit Size Restriction
for (int i=0; i < 7; i++){

 ... //loop code
}

If a variable is declared outside of the for loop, SystemC Compiler
cannot determine the bit size, because the intended use of the
variable is not known at the time of declaration. In this situation,
SystemC Compiler builds hardware for the platform-specific bit size.
Example 2-9 shows code (in bold) where the loop counter variable is
declared outside the loop. In such a situation, SystemC Compiler
infers that a variable of 32 or 64 bits is required, depending on the
platform. Therefore, it is strongly recommended that you use the
coding style shown in Example 2-8 instead of the style in Example 2-9.

Example 2-9 Unknown Variable Bit Size
int i;
...
for (i=0; i < 7; i++){

... //loop code
}

2-45

Refining for Behavioral Synthesis

Data Members of a Module

It is strongly recommended that you do not use data members for
storage. Use variables local to the process for all storage
requirements in a process. Example 2-10 shows a data member x
that is used by the process entry. Rewrite this code in the style shown
in Example 2-11. This prevents inadvertent use of the data member
variable for interprocess communication.

Example 2-10 Incorrectly Using a Data Member as a Variable
SC_MODULE module_name {

int x; // Data member
...

};
/***************************/
module::entry() {
 ...
if (x == 0){

for (int i=0; i < 7; i++) {
... //loop code

}
}

Example 2-11 Correct Use of Local Variables
/***************************/
/* Implementation file */
module::entry() {
...
int x; // Local variable declaration
...
if (x == 0){
 ...
 for (int i=0; i < 7; i++) {

 ... //loop code
 }
}

2-46

Refining for Behavioral Synthesis

Recommendations About Data Types

For a single-bit variable, use the native C++ type bool or the SystemC
type sc_bit.

For variables less than 64 bits wide, use sc_int or sc_uint data types.
Use sc_uint for all logic and unsigned arithmetic operations. Use
sc_int for signed arithmetic operations as well as for logic operations.

For variables larger than 64 bits, use sc_bigint or sc_biguint if you
want to do arithmetic operations with these variables. If you want to
do logic operations, use sc_bv instead.

Use sc_logic or sc_lv only when you need to model three-state signals
or buses. When you use these data types, avoid comparison with X
and Z values, because such comparisons are not synthesizable.

Use native C++ integer types for loop counters or when you need a
variable of the size defined by the native C++ type. For example, on
most platforms, a char is 8 bits wide, a short is 16 bits wide, and an
int and a long are each 32 bits wide.

Use the C++ enum for all enumerated types – for example, state
variables. Use the C++ struct for all aggregate types.

2-47

Refining for Behavioral Synthesis

Refining Control

To refine control, you specify I/O behavior and latency.

At this point in the refinement process, your code still looks like the
original software algorithm. To refine control, you need to insert wait
statements in your code to clearly specify the relative ordering of I/O
operations, the cycles in which I/O happens, and the latency of your
design.

The placement of wait statements is governed by the coding style
rules for the I/O scheduling mode you plan to use. Chapter 3,
“Behavioral Coding Guidelines,” describes the coding style rules that
govern the placement of wait statements in your code.

Follow the coding style rules in order to insert the minimal number of
wait statements to schedule your design with SystemC Compiler. For
cycle-fixed mode, the total number of waits in the longest path through
the code dictates the latency of the design. For superstate-fixed
mode, the scheduler determines the latency of the design. Therefore,
the latency of your design is specified indirectly through the number
of wait statements in the code.

Note that when you specify the I/O behavior of one module, you are
constraining the I/O behavior of the modules that interact with it.
Similarly, the I/O behavior of your module may be constrained by the
I/O behavior of the modules that interact with it. You respect these
constraints by properly placing wait statements in your code.
Examples of different communication protocols are provided in
Chapter 6, “Using Handshaking in the Circuit and Testbench,” and
several coding examples appear in Appendix B through E.

2-48

Refining for Behavioral Synthesis

Advanced Refinement Techniques

If you are not satisfied with the QoR obtained from synthesis after
your first pass through refinement, you can use the following
techniques to refine your design further to improve the QoR:

• Use preserved functions. See “Using Preserved Functions” on
page 4-4.

• Collapse consecutive loops into a single loop. See “Consecutive
Loops” on page 3-42.

• Rewrite loops to selectively unroll them. See “Selectively Unrolling
Loop Iterations” on page 3-40.

• Use fast handshaking. See “Fast Handshaking” on page 6-36.

2-49

Refining for Behavioral Synthesis

Refinement Recommendations

We recommend the following practices during refinement:

• After each step in refinement, reverify your design to ensure that
you did not introduce errors during that step.

• Although it is recommended that you thoroughly refine at each
refinement stage, it is not necessary. For example, during data
refinement, you can refine one data type at a time and evaluate
the impact on synthesizability and QOR using SystemC Compiler.
Similarly, you may want to replace one non-synthesizable
construct with a synthesizable construct, and reverify the design
before replacing the next non-synthesizable construct.

• Thoroughly refine the control at one time. Control refinement
affects the I/O behavior of the block and the blocks that interact
with it. It is easier to fix the I/O timing of all hardware blocks during
structure refinement and use that I/O timing during control
refinement.

2-50

Refining for Behavioral Synthesis

3-1

Behavioral Coding Guidelines

3
Behavioral Coding Guidelines 3

This chapter describes the behavioral coding style guidelines you can
use to ensure successful synthesis with SystemC Compiler.

This chapter contains the following sections:

• Using Clocked Thread Processes

• Using Inputs and Outputs

• Behavioral Coding Style Rules

• Using Conditional Statements

• Using Loops

• Using Resets

• Using Variables and Signals

3-2

Behavioral Coding Guidelines

Using Clocked Thread Processes

A clocked thread process, SC_CTHREAD, is the basic unit for
behavioral synthesis with SystemC Compiler. (For general
information about processes, see “Processes” on page 2-20.)

Each process is synthesized independently.

Characteristics of the Clocked Thread Process

An SC_CTHREAD process uses wait statements in the SystemC
code to synchronize reading from and writing to signals and ports in
the process. The SC_CTHREAD process is associated with a single
clock and is sensitive to either the clock’s positive or negative edge,
which is called the active edge. The clock and its active edge are
defined in the module’s constructor.

When the SC_CTHREAD process is invoked, it executes statements
in the process until either a wait(n) or a wait_until(cond) statement is
encountered. The process is then suspended until the next active
edge, or it is suspended until the next active edge where the condition
of wait_until is satisfied. All variables that are local to the process are
saved when the process is suspended, which means that the process
state is implicitly saved. When the process restarts, execution
continues at the statement that follows the wait or wait_until
statement.

The clock referenced by wait and implicitly referenced by wait_until
is the clock specified as an sc_in_clk port, which is defined as the
active edge in the module’s constructor.

3-3

Behavioral Coding Guidelines

Using the wait Statement

Each SC_CTHREAD process must have at least one wait statement.

The wait(n) statement suspends process execution for n active edges
of the clock. The default value of n is 1.

The outputs of an SC_CTHREAD process are modeled as being
registered. When an SC_CTHREAD process writes to an output
signal, the value appears after the next active edge of the clock.

Using the wait_until Statement

The wait_until(cond) statement suspends the process until the next
active edge. If the cond expression is false at the active edge, the
process remains suspended and the expression is tested at the next
active edge. When the cond expression is true, the process execution
resumes at the statement immediately following the wait_until
statement.

The wait_until argument is an expression for testing the value of a
port or signal; the port or signal must be type bool or sc_bit. The
expression is evaluated at the next active edge of the clock. This is
called a delay-evaluated expression, and it must use the delayed
method of the signal. For example,

wait_until(data_ready.delayed() == 1);

You can define complex expressions by using equal, not equal, and,
and or (==, !==, &&, ||) operators. For example,

wait_until(data_ready.delayed() == 1 &&
 enable.delayed() == 0);

3-4

Behavioral Coding Guidelines

For further details about using the wait and wait_until statements, see
the SystemC User’s Guide.

Controlling a Clocked Thread Process

Hardware typically executes continuously. To model this, place the
behavior of the hardware inside an infinite loop within the clocked
thread process, as shown in bold in Example 3-1. This ensures that
the behavior executes continuously. You can use the following types
of infinite loops:

Example 3-1 Infinite Loops
while (true) {
 // loop operations
}

do {
 // loop operations
} while (true);

for (;;) {
 // loop operations
}

Simple Clocked Thread Example

Example 3-2 shows a complete clocked thread example of a complex
number multiplier design. This example uses the port assignment
methods, port.read() and port.write(), to differentiate port reads and
writes from variable reads and writes. The port read and write
methods are shown in bold.

3-5

Behavioral Coding Guidelines

Example 3-2 Simple Clocked Thread Multiplier
// cmult.h header file
SC_MODULE(cmult) {

// Declare ports
sc_in<sc_int<8> > data_in;
sc_in_clk clk;
sc_out<sc_int<16> > real_out;
sc_out<sc_int<16> > imaginary_out;

// Declare internal variables and signals

// Declare processes in the module
void entry();

// Constructor
SC_CTOR (cmult) {

// Register processes and define
// the active clock edge
SC_CTHREAD(entry, clk.pos());

}
};
/*****************************/
// cmult.cc implementation file

#include “systemc.h”
#include “cmult.h”

void cmult :: entry() {
 sc_int<8> a, b, c, d;
 while (true) {
 // Read four data values from input port
 a = data_in. read();
 wait();
 b = data_in. read();
 wait();
 c = data_in. read();
 wait();
 d = data_in. read();
 wait();
 //Calculate and write output ports

3-6

Behavioral Coding Guidelines

 real_out.write(a * c - b * d);
 imaginary_out.write(a * d + b * d);
 wait();
 }
}

Using Inputs and Outputs

SystemC Compiler creates I/O when you write to or read from a port
or signal. For describing behavioral coding guidelines, this manual
treats ports and signals as identical.

Registered Outputs

SystemC Compiler registers outputs, which means that outputs come
from registers rather than directly from combinational logic. SystemC
Compiler does not register inputs and does not support bidirectional
I/Os for behavioral synthesis.

Inputs and Outputs Within Cycles

Input signals are read at the beginning of a clock cycle. Because
outputs are registered, outputs appear at the beginning of the next
cycle, as shown in Figure 3-1.

3-7

Behavioral Coding Guidelines

Figure 3-1 Simple Multiplier I/O Protocol

Specifying I/O Read and Write

In a behavioral description, the placement of port read and write
operations and wait statements in the code defines the I/O access
rate, the sequencing of I/O operations, the I/O groupings, and the
relationships between I/O operations. The description of the complex
number multiplier in Example 3-2 on page 3-5 implies the I/O protocol
in Figure 3-1.

Specifying I/O Cycles

The wait statements in your behavioral SystemC code constrain I/O
during scheduling. In the I/O protocol specification in Example 3-2 on
page 3-5, each read operation is followed by a wait statement.
Therefore, the read operations must occur in the described sequence
and are separated by at least one clock cycle. The wait statement
after the last read operation means the write operations occur at least
one clock cycle after all read operations are complete. Because there
is no wait statement between the write operations, both write
operations must occur in the same clock cycle.

data_in

real_out

imaginary_out

clk

a b c d

a * c - b * d

a * d + b * d

3-8

Behavioral Coding Guidelines

I/O Scheduling Modes

The effect of the wait statements in your code depends on the I/O
scheduling mode, which defines how I/O operations are scheduled
(or fixed) in specific clock cycles and dictates how other operations
are scheduled around the I/O operations.

You can specify an I/O scheduling mode to be either cycle-fixed or
superstate-fixed for the SystemC Compiler schedule command. For
a description of how to select scheduling modes with the schedule
command, see Chapter 3, “Scheduling,” in the CoCentric SystemC
Compiler User Guide.

Cycle-Fixed Scheduling Mode

In cycle-fixed scheduling mode, the I/O behavior of your synthesized
design matches your behavioral description cycle by cycle. l/O is fully
scheduled based on the wait statements in the behavioral description.

In cycle-fixed scheduling mode, you may need to add wait statements
to your code to allow SystemC Compiler to properly construct the
FSM and schedule the design.

A testbench monitors I/O at the clock boundaries, and handshake is
not required. Verification before and after synthesis is straight
forward.

Superstate-Fixed Schedule Mode

In the superstate-fixed scheduling mode, SystemC Compiler can add
clock cycles as needed to schedule the design. The region between
any two consecutive wait statements in the behavioral code is a

3-9

Behavioral Coding Guidelines

superstate. In the behavioral code, the superstate is one cycle long.
In the synthesized design, however, SystemC Compiler can add more
clock cycles to the superstate.

In the behavioral code, the I/O reads and writes between the two
consecutive wait statements belong to the superstate. I/O writes
always take place in the last cycle of the superstate. I/O reads that
belong to a superstate can happen in any clock cycle of that
superstate.

I/O constraints are not implicit from the behavioral description. For
verifying the design before and after synthesis, a testbench with
handshake is required. See Chapter 6, “Using Handshaking in the
Circuit and Testbench.”

Comparing I/O Scheduling Modes

Using the superstate-fixed I/O scheduling mode allows SystemC
Compiler greater flexibility to determine an optimum design. Using
cycle-fixed scheduling mode requires that you fully define the I/O
schedule with wait statements, which is more difficult than writing the
equivalent schedulable description for the superstate-fixed
scheduling mode. The superstate-fixed I/O scheduling mode allows
you to use SystemC Compiler commands and constraints to quickly
perform tradeoff analysis of clock period, latency, and resources
without modifying your source code. Latency tradeoff analysis for
cycle-fixed scheduling descriptions is not possible.

It is recommended that you use superstate-fixed scheduling mode
because the majority of designs are well suited for superstate-fixed
scheduling. The verification methodology for a design synthesized
with superstate-fixed scheduling mode that uses handshake is
described in Chapter 6, “Using Handshaking in the Circuit and
Testbench.”

3-10

Behavioral Coding Guidelines

Behavioral Coding Style Rules

Wait statements define the boundaries of clock cycles or a superstate,
depending on the scheduling mode. The behavioral coding style rules
for placing wait statements in your code are summarized in the
following three sections. Examples of using these coding rules begin
on page 3-13.

Definition of Coding Rule Terms

Terms used in the coding rules have the following meanings:

• Conditional loop

A conditional loop is a for, while, or do-while loop that is executed
only if the condition evaluates to true.

• Loop iteration condition

A loop iteration condition (if…else, switch…case, or the ?:
operator) is evaluated within a loop. If the condition evaluates to
true, the next iteration of the loop is executed. If the condition
evaluates to false, the loop is exited.

• Loop continue

A loop continue means the loop continues with execution of
another iteration of the loop.

3-11

Behavioral Coding Guidelines

General Coding Rules

The general coding rules are the following:

1. Place at least one wait statement in every loop, except an unrolled
for loop.

2. Place at least one wait statement between successive writes to
the same output.

3. Place at least one wait statement after the reset action and before
the main infinite loop. Do not include either a conditional branch
or a rolled loop in the reset behavior description.

4. If one branch of a conditional (if…else, switch…case, or the ?:
operator) has at least one wait statement, then place at least one
wait statement in each of the other branches, including the default
branch. You can have a different number of wait statements in
each branch.

5. Place at least one wait statement immediately after each loop to
exit the level of scheduling hierarchy created by the loop.

3-12

Behavioral Coding Guidelines

Cycle-Fixed Mode Coding Rules

In addition to the general coding rules, the cycle-fixed scheduling
mode rules are the following:

1. Place at least one wait statement immediately before a conditional
loop (for, while, or do-while).

2. With n representing the number of cycles required to evaluate a
loop iteration condition,

a. Inside the loop, place n wait statements immediately after the
loop conditional is evaluated

b. Outside the loop, place n wait statements immediately after the
loop exit

The value of n must be at least one. Do not place I/O read or
write statements between the n wait statements.

3. With n representing the number of cycles to perform computations
and memory access between reading from an input and writing
to an output, place n wait statements between reading from and
writing to the ports.

Superstate-Fixed Mode Coding Rules

In addition to the general coding rules, the superstate-fixed
scheduling mode rules are the following:

1. Place at least one wait statement after the last write inside a loop,
and before a loop continue or exit.

2. Place at least one wait statement after the last write before a loop.

3-13

Behavioral Coding Guidelines

General Coding Rules Examples

The general coding rules apply when you are using the schedule
command with an I/O mode (-io_mode option) of either
cycle_fixed or superstate_fixed modes.

Following are the general coding rules and an example of each.

General Coding Rule 1

Place at least one wait statement in every loop, except an unrolled
for loop.

Example 3-3 shows a loop without a wait statement, which causes
an HLS-52 error in cycle-fixed scheduling mode. To correct this error,
insert a wait statement, as shown in bold in Example 3-4.

Example 3-3 Error in Use of General Coding Rule 1
for (int i = 0; i>4; i++) {
 e = (a * c * d + i);
 // Error: no wait in loop.
}

Example 3-4 Correct General Coding Rule 1
for (int i = 0; i>4; i++) {
 e = (a * c * d + 1);
 wait();
}

3-14

Behavioral Coding Guidelines

General Coding Rule 2

Place at least one wait statement between successive writes to the
same output.

Example 3-5 shows a loop without a wait statement between two
successive writes. In either cycle-fixed or superstate-fixed scheduling
mode, SystemC Compiler removes the first signal write, because it
is eclipsed by the second write. It issues an SCC-142 warning during
execution of the compile_systemc command. Therefore, when
you violate this coding rule, no error is issued when the
bc_check_design or schedule command is executed. However,
the first write to the output is not executed. To correct this situation,
insert a wait statement, as shown in bold in Example 3-6.

Example 3-5 Error in Use of General Coding Rule 2
 for (int i = 0; i>4; i++) {
 real_out.write(e + i);
 // Error: no wait between successive writes.
 real_out.write(e + i +1);
 wait();
 }

Example 3-6 Correct General Coding Rule 2
 e = (a * c * d);
 for (int i = 0; i>4; i++) {
 real_out.write(e + i);
 wait();
 real_out.write(e + i + i);
 wait();
 }

3-15

Behavioral Coding Guidelines

General Coding Rule 3

Place at least one wait statement after the reset action and before
the main infinite loop. Do not include either a conditional branch or a
rolled loop in the reset behavior description. For more information
about resets, see “Using Resets” on page 3-46.”

Example 3-7 shows reset statements without a wait statement before
the infinite loop that implements the process behavior. This causes
an HLS-354 error. To correct this error, insert a wait statement, as
shown in bold in Example 3-8.

Example 3-7 Error in Use of General Coding Rule 3
 //Initialize and reset if reset asserts
 ready_for_data.write(false);
 output_data_ready.write(false);
 real_out.write(0);
 imaginary_out.write(0);
 //Error: need wait after reset.

 while (true) {
 //Implement process behavior
 }

Example 3-8 Correct General Coding Rule 3
 //Initialize and reset if reset asserts
 ready_for_data.write(false);
 output_data_ready.write(false);
 real_out.write(0);
 imaginary_out.write(0);
 wait();

 while (true) {
 // Implement process behavior
 }

3-16

Behavioral Coding Guidelines

General Coding Rule 4

If one branch of a conditional (if…else, switch…case, or the ?:
operator) has at least one wait statement, then place at least one wait
statement in each branch (including the default branch). You can have
a different number of wait statements in the branches.

Example 3-9 shows if…else conditional branching. The if branch has
a wait statement, and the else…if and else branches do not have wait
statements. This causes an HLS-233 error in cycle-fixed mode, and
an HLS-47 error in superstate-fixed mode. To correct this error, insert
a wait statement as shown in bold in Example 3-10.

Notice that Example 3-10 has two wait statements in the if branch
and only one wait statement in each of the other branches. This is
valid code because the number of wait statements does not need to
be the same in each conditional branch.

3-17

Behavioral Coding Guidelines

Example 3-9 Error in Use of General Coding Rule 4, If Conditional
if (a < b) {
 e = (a * c * d);
 wait();
 }
 else if (a = b) {
 e = (b * c * d);
 //no wait();
 }
 else {
 e = (c * d);
 //no wait();
 }

Example 3-10 Correct General Coding Rule 4, If Conditional
if (a < b) {
 e = (a * c * d);
 wait();
 wait();
 }
 else if (a = b) {
 e = (b * c * d);
 wait();
 }
 else {
 e = (c * d);
 wait();
 }

3-18

Behavioral Coding Guidelines

Example 3-11 shows if…else conditional branching with an implicit
else branch. The if branch and the else…if branches have wait
statements. An if…else conditional statement implies an else branch
by default. The implicit else branch causes an HLS-233 error in
cycle-fixed mode, and an HLS-47 error in superstate-fixed mode. To
correct this error, insert an else branch with a wait statement as shown
in bold in Example 3-12.

Example 3-11 Error in Use of General Coding Rule 4, If Conditional With
Implied Else

if (a < b) {
 e = (a * c * d);
 wait();
 }
 else if (a = b) {
 e = (b * c * d);
 wait();
 }

Example 3-12 Correct General Coding Rule 4, If Conditional
if (a < b) {
 e = (a * c * d);
 wait();
 wait();
 }
 else if (a = b) {
 e = (b * c * d);
 wait();
 }
 else {
 e = (c * d);
 wait();
 }

3-19

Behavioral Coding Guidelines

Example 3-13 shows switch…case conditional branching. The case
1 branch and the default branch are missing wait statements. This
causes an HLS-233 error in cycle-fixed mode and a HLS-43 error in
superstate-fixed mode. To correct this error, insert wait statements,
as shown in bold in Example 3-14.

Example 3-13 Error in Use of General Coding Rule 4, Switch Conditional
switch (sel) {
 case 0: real_out.write(a); wait(); break;
 case 1: real_out.write(b); break;//no wait
 case 2: real_out.write(c); wait(3); break;
 case 3: real_out.write(d); wait(); break;
 default: real_out.write(a + b); // no wait
 break;
}

Example 3-14 Correct General Coding Rule 4, Switch Conditional
switch (sel) {
 case 0: real_out.write(a); wait(); break;
 case 1: real_out.write(b); wait(); break;
 case 2: real_out.write(c); wait(3); break;
 case 3: real_out.write(d); wait();break;
 default: real_out.write(a + b); wait();
 break;
 }

3-20

Behavioral Coding Guidelines

General Coding Rule 5

Place at least one wait statement immediately after each loop to exit
the level of scheduling hierarchy the loop creates.

Each loop, except an unrolled for loop, is a level of scheduling
hierarchy. Example 3-15 shows a for loop with a nested while loop.
Both loops are missing a wait statement immediately after the loop
body, which causes an HLS-52 error in cycle-fixed mode. To correct
this error, insert wait statements, as shown in bold in Example 3-16.

In superstate-fixed mode, SystemC Compiler adds clock cycles to
exit the loop hierarchy. Therefore, not placing a wait statement
immediately after the loop does not cause an error. To avoid a
mismatch with post-synthesis simulation, you need to add a wait
statement after the loop.

You can exit from a local loop by using a conditional break statement.
Example 3-15 shows a conditional if statement with a break to exit
from the do...while loop.

3-21

Behavioral Coding Guidelines

Example 3-15 Error in Use of General Coding Rule 5
...
for (int i = 0; i>4; i++) {
 e = (a - 2);
 wait();
 while (i == 0) {
 e = (b - 2);
 wait();
 do {
 wait();
 e = (b - 2);
 if (i == 0) break;
 } while (i == 0);
 wait();
 }
 // no wait
 real_out.write(e);
 wait();
 }
 //no wait();
 real_out.write(e);
 wait();
 ...

3-22

Behavioral Coding Guidelines

Example 3-16 Correct General Coding Rule 5
 for (int i = 0; i>4; i++) {
 e = (a - 2);
 wait();
 while (i == 0) {
 e = (b - 2);
 wait();
 do {
 wait();
 e = (b - 2);
 if (i == 0) break;
 } while (i == 0);
 wait();
 }
 wait();
 e = (a - 2);
 wait();
 }
 wait();
 ...

3-23

Behavioral Coding Guidelines

Cycle-Fixed Mode Coding Rules Examples

Following are the cycle-fixed coding rules and an example of each.

Cycle-Fixed Coding Rule 1

Place at least one wait statement before a conditional (for, while, or
do-while) loop, except the main infinite loop.

Example 3-17 shows a for loop without a wait statement before the
loop, which causes an HLS-52 error. To correct this error, insert a wait
statement, as shown in bold in Example 3-18.

Example 3-17 Error in Use of Cycle-Fixed Mode Coding Rule 1,
for Loop

 e = (a * c * d);
 // no wait();
 for (int i = 0; i>4; i++) {
 e = (a * c * d + i);
 wait();
 }

Example 3-18 Correct Cycle-Fixed Mode Coding Rule 1, for Loop
 e = (a * c * d);
 wait();
 for (int i = 0; i>4; i++) {
 e = (a * c * d + 1);
 wait();
 }

3-24

Behavioral Coding Guidelines

Example 3-19 shows a while loop without a wait statement before the
loop, which causes an HLS-52 error. To correct this error, insert a wait
statement, as shown in bold in Example 3-20.

Example 3-19 Error in Use of Cycle-Fixed Mode Coding Rule 1,
while Loop

 e = (a * c * d);
 // no wait();
 while (e == 0) {
 e = (a * c * d + i);
 wait();
 }

Example 3-20 Correct Cycle-Fixed Mode Coding Rule 1, while loop
 e = (a * c * d);
 wait();
 while (e == 0) {
 e = (a * c * d + 1);
 wait();
 }

3-25

Behavioral Coding Guidelines

Example 3-21 shows a do-while loop without a wait statement before
the loop, which causes an HLS-52 error. To correct this error, insert
a wait statement as shown in bold in Example 3-22.

Example 3-21 Error in Use of Cycle-Fixed Mode Coding Rule 1,
do-while Loop

 e = (a * c * d);
 // no wait();
 do {
 e = (a * c * d + 1);
 wait();
 } while (e == 0);

Example 3-22 Correct Cycle-Fixed Mode Coding Rule 1, do-while loop
 e = (a * c * d);
 wait();
 do {
 e = (a * c * d + 1);
 wait();
 } while (e == 0);

3-26

Behavioral Coding Guidelines

Cycle-Fixed Coding Rule 2

With n representing the number of cycles required to evaluate a loop
iteration condition,

1. Inside the loop, place n wait statements immediately after the loop
conditional is evaluated.

2. Outside the loop, place n wait statements immediately after the
loop exit.

The value of n must be at least one. Do not place I/O read or write
statements between the n wait statements in either case.

Example 3-23 shows a while loop with a loop iteration condition that
takes several clock cycles to evaluate. For this example, the
conditional evaluation takes seven clock cycles. To correct this error,
insert wait statements, as shown in bold in Example 3-24.

You can determine n number of cycles from the report created by the
bc_time_design command. To calculate n, divide the time required
for loop iteration and computation by the available clock period (clock
period minus any margin).

Example 3-23 causes an HLS-52 error during schedule command
execution. See “Finding the Cause of Timing-Dependent Coding
Errors” on page 3-31.

Example 3-23 Error in Use of Cycle-Fixed Mode Coding Rule 2
while (e == !(a * b * c * d * a * d)) {
 wait(3); // insufficient wait statements
 // for condition evaluation.
 e = (a * b * c * d * a * d);
}
wait(3); // insufficient wait statements
 // after loop

3-27

Behavioral Coding Guidelines

Example 3-24 Correct Cycle-Fixed Mode Coding Rule 2
 while (e == !(a * b * c * d * a * d)) {
 wait(7);
 e = (a * b * c * d * a * d);
 }
 wait(7);

Example 3-25 shows a while loop with a loop iteration condition that
takes seven clock cycles to evaluate. I/O statements are not allowed
during the clock cycles required for condition evaluation. The write
statement in this example is a coding error. To correct this error, insert
wait statements, as shown in bold in Example 3-26.

Example 3-25 causes an HLS-52 error during schedule command
execution. Because the coding rule violation is directly related to
operator timing, the bc_check_design command cannot catch this
coding rule violation. See “Finding the Cause of Timing-Dependent
Coding Errors” on page 3-31.

Example 3-25 Error in Use of Cycle-Fixed Mode Coding Rule 2, Write
while (e == !(a * b * c * d * a * d)) {
 wait(3); // insufficient wait statements
 // for condition evaluation.
 e = (a * b);
 wait(2);
 real_out.write(e); // No I/O allowed here
 wait();
}
wait(3); // insufficient wait statements
 // after loop

3-28

Behavioral Coding Guidelines

Example 3-26 Correct Cycle-Fixed Mode Coding Rule 2, Write
 while (e == !(a * b * c * d * a * d)) {
 wait(7);
 e = (a * b);
 wait(2);
 real_out.write(e);
 wait();
 }
 wait(7);

Cycle-Fixed Coding Rule 3

With n representing the number of cycles to perform computations
and memory access between reading from an input and writing to an
output, place n wait statements between reading from and writing to
the ports.

You can determine n number of cycles from the report created by the
bc_time_design command. To calculate n, divide the time required
for loop iteration and computation by the available clock period (clock
period minus any margin).

Example 3-27 shows a computation that takes several clock cycles,
but the code allows only one clock cycle. To correct this error, insert
the appropriate number of wait statements to allow the computation
to complete before writing the output as shown in bold in Example
3-28.

Example 3-27 causes an HLS-52 error during schedule command
execution. See “Finding the Cause of Timing-Dependent Coding
Errors” on page 3-31.

3-29

Behavioral Coding Guidelines

Example 3-27 Error in Use of Cycle-Fixed Mode Coding Rule 3
 c = data_in.read();
 d = data_in.read();
 e = (c * d * c * d * (d + d));
 wait(); // insufficient wait statements
 // for computation.
 real_out.write(e);
 wait();

Example 3-28 Correct Cycle-Fixed Mode Coding Rule 3
 c = data_in.read();
 d = data_in.read();
 e = (c * d * c * d * (d + d));
 wait(8); // wait for computation
 real_out.write(e);
 wait();

Superstate-Fixed Mode Coding Rules Examples

Following are the superstate-fixed coding rules and an example of
each.

Superstate-Fixed Coding Rule 1

Place at least one wait statement after the last write inside a loop and
before a loop continue or exit.

Example 3-29 shows a for loop without a wait statement after a write
to an output and before the loop continue or break, which causes an
HLS-46 error. To correct this error, move the wait statement from after
the if statement to before the if statement, as shown in bold in Example
3-30.

3-30

Behavioral Coding Guidelines

Example 3-29 Error in Use of Superstate-Fixed Mode Coding Rule 1
 for (int i = 0; i>4; i++) {
 e = (a * c * d + i);
 real_out.write(e);
 // no wait after last write
 // and before continue or exit.
 if (i == data_in.read()) break;
 wait();
 }

Example 3-30 Correct Superstate-Fixed Mode Coding Rule 1
 for (int i = 0; i>4; i++) {
 e = (a * c * d + i);
 real_out.write(e);
 wait(); // move the wait before the if
 if (i == data_in.read()) break;
 }

Superstate-Fixed Coding Rule 2

Place at least one wait statement after the last write before a loop.

Example 3-31 shows a write to an output without a wait statement
before the loop. This causes an HLS-44 error. To correct this error,
add a wait statement before the loop statement, as shown in bold in
Example 3-32.

3-31

Behavioral Coding Guidelines

Example 3-31 Error in Use of Superstate-Fixed Mode Coding Rule 2
 e = (a * c * d + 1);
 real_out.write(e);
 // Error, no wait before loop

 for (int i = 0; i>4; i++) {
 real_out.write(e);
 wait();
 c = data_in.read();
 e = (a * c * d);
 }

Example 3-32 Correct Superstate-Fixed Mode Coding Rule 2
 e = (a * c * d);
 real_out.write(e);
 wait(); // Add wait before loop.

 for (int i = 0; i>4; i++) {
 real_out.write(e + i);
 wait();
 c = data_in.read();
 e = (a * c * d);
 }

Finding the Cause of Timing-Dependent Coding Errors

Use the SystemC Compiler bc_check_design command to detect
coding errors that are not dependent on operator timing. You can use
the bc_check_design command prior to using the
bc_time_design or schedule commands. The schedule
command checks for all errors, including those dependent on
operator timing. For details about these commands, see the
CoCentric SystemC Compiler User Guide.

3-32

Behavioral Coding Guidelines

Using Conditional Statements

Use conditional statements (if...else, switch...case, and the ?:
operator) in your code to specify your control flow.

SystemC Compiler uses the structure of conditional blocks to
determine mutually exclusive operations. Mutually exclusive
operations can share hardware, which reduces design costs.

In Example 3-33, SystemC Compiler does not consider the
operations A + B and A – B as mutually exclusive because they appear
in different if statements.

Example 3-33 Operations That Are Not Mutually Exclusive

if (A < 0) {
out = A + B;

}
if (A >= 0) {

out = A - B;
}

You can combine both operations into an else...if statement, as shown
in Example 3-34, so SystemC Compiler considers the operations
mutually exclusive.

Example 3-34 Mutually Exclusive Operations

if (A < 0) {
out = A + B;

}
else if (A => 0) {

out = A - B;
}

3-33

Behavioral Coding Guidelines

Using Loops

Loops repeat a sequence of operations. SystemC Compiler
synthesizes hardware based on while loops, do...while loops, and for
loops.

Understanding How Loops Are Scheduled

If a design contains nested loops, SystemC Compiler schedules the
innermost loop first, then successively schedules the next (outward)
loop until all the loops are scheduled.

After scheduling an inner loop to a number of cycles, SystemC
Compiler treats the loop as though it is fixed, which means the
inner-loop operations must remain scheduled relative to each other.
The latency of the inner loop reported by SystemC Compiler equals
the longest path through all the inner loop’s iterations.

Similarly, the latency reported by SystemC Compiler of an outer loop
equals the longest path through the loop, including the latency of any
inner loops.

Timing constraints on the outer loops do not affect scheduling of the
inner loops, but timing constraints on the inner loops affect scheduling
of the outer loops. Therefore, specify timing constraints on inner loops
rather than on outer loops.

When a design contains successive loops at the same level, SystemC
Compiler preserves the source code ordering of these loops, even if
there are no data dependencies between them. This means that the
first loop in the source code will be fully executed in hardware before
the loop that follows it is entered.

3-34

Behavioral Coding Guidelines

Labeling a Loop

To simplify setting constraints on loops, give each loop a label. If you
do not assign labels, SystemC Compiler assigns a default name to
each loop. Example 3-35 shows in bold how to label a loop with either
a C language line label or a synopsys compiler directive. If both are
applied to a line of code, SystemC Compiler uses the C line label for
scheduling constraints and in generated reports.

Example 3-35 Labeling a Loop
my_module1 :: entry {

// C style line label
reset_loop1: while (true) {
 ...
 wait();
 ...
 wait();

 }
}

my_module2 :: entry {
 // Synopsys compiler directive
while (true) { //snps line_label reset_loop2
 ...
 wait();
 ...
 wait();
}

}

In reports generated by SystemC Compiler commands, the label is
reflected in report hierarchy as

my_module1
 entry
 reset_loop1

3-35

Behavioral Coding Guidelines

Using while Loops

A while loop has a conditional exit that can be dynamic, which means
it is data dependent and not determinable at compile time. A while
loop is always rolled and has its own level of hierarchy. Example 3-36
shows the structure of a while loop.

Example 3-36 Structure of a while Loop
//SystemC

while (cond) {
 //operations
}

Using an Infinite while Loop

An infinite while loop is one with a condition that is always true, as
shown in Example 3-37. SystemC Compiler requires that you enclose
a clocked thread process body within an infinite while loop.

Example 3-37 Infinite while Loop
while (true) {
 //operations of clocked thread
}

3-36

Behavioral Coding Guidelines

Using do...while Loops

You can use the do...while loop construct in situations where you want
to guarantee that the loop is executed once before evaluation of the
while condition test. Example 3-38 shows the structure of the
do…while loop.

Example 3-38 Structure of do...while Loop

do {
 //operations
} while(cond);

Using for Loops

A for loop executes a certain number of iterations by using an iteration
counter, as shown in Example 3-39.

Example 3-39 for Loop

for (int i = 0; i <= 7; i++) {
 //operations
}

Rolled Versus Unrolled Loops

SystemC Compiler keeps all loops rolled by default. An unrolled loop
replicates the code body for each loop iteration. If you unroll a loop,
it is no longer considered a loop during synthesis.

3-37

Behavioral Coding Guidelines

Rolled for Loops

SystemC Compiler keeps for loops rolled by default. This strategy
means

• Shorter elaboration times

• Serial execution of each iteration

• Less area

• Shorter scheduling times

Rolled for loops have their own level of hierarchy for scheduling. This
means that the scheduled loop is treated as a subdesign of the entire
design.

Unrolling for Loops

You can force a for loop to unroll by using the synopsys unroll
compiler directive. Place the synopsys unroll compiler directive
as a comment in the first line in the body of the for loop, as shown in
bold in Example 3-40.

Example 3-40 Unrolled for Loop Compiler Directive
...
for (int i=0; i < 8; i++) {
 // synopsys unroll
 .. // loop operations
}
...

3-38

Behavioral Coding Guidelines

The advantages to unrolling are the following:

• The iterations are performed in parallel to reduce latency, if there
are no data dependencies.

• Loop overhead is eliminated, reducing loop counting hardware.

• Execution of consecutive loop iterations has the potential to
overlap.

• Execution of operations before and after the loop can overlap with
loop execution.

• Constants can propagate to the operations in the loop body.

Data dependencies between loop iterations allow overlapping of their
schedules.

Unrolling for loops can sometimes improve the quality of scheduling
by reducing latency, but it can also produce longer SystemC Compiler
runtimes and larger designs.

Example 3-41 shows an unrolled for loop.

Example 3-41 Unrolled for Loop and Its Execution
//SystemC

x4_times: for (i = 0; i <= 3; i++) {
/* synopsys unroll */
a[i] = b[i] + c[i];

}

3-39

Behavioral Coding Guidelines

When the for loop in Example 3-41 is unrolled, the loop appears as

a[0] = b[0] + c[0];
a[1] = b[1] + c[1];
a[2] = b[2] + c[2];
a[3] = b[3] + c[3];

Comparing Rolled and Unrolled Loops

Figure 3-2 shows a comparison of rolled and unrolled loops.

Figure 3-2 Rolled and Unrolled for Loops

rolled_loop:
 for (int i=0; i<=7; i++) {
 c[i] = a[i] + b[i];
 wait();
 } // end rolled_loop

unrolled_loop:
 for (int i=0; i<=7; i++) {
 /* synopsys unroll */
 c[i] = a[i] + b[i];
 wait();
 } // end unrolled_loop

 c[0] = a[0] + b[0]

 c[1] = a[1] + b[1]

 c[2] = a[2] + b[2]

 c[3] = a[3] + b[3]

 c[4] = a[4] + b[4]

 c[5] = a[5] + b[5]

 c[6] = a[6] + b[6]

 c[7] = a[7] + b[7]

c[i] = a[i] + b[i]

counter for i

3-40

Behavioral Coding Guidelines

When to Use Unroll

When the cycle budget for implementing the entire for loop is less
than the number of iterations multiplied by the latency of the loop,
use the unroll directive shown in Example 3-42.

Example 3-42 When to Use unroll

 for (i = 0; i <= 5; i++) {
/* synopsys unroll */

 // Loop body takes 2 cycles
 a[i] = (b[i] * c[i]) + d[i];
 ...
 } // end of unrolled loop

If the cycle budget is greater than 10, the for loop in Example 3-42
should not be unrolled, because the number of iterations times the
latency of the loop is 10. Keeping the loop rolled gives SystemC
Compiler extra cycles to schedule operations, which can reduce
design costs while meeting the latency specifications.

Selectively Unrolling Loop Iterations

Keeping a for loop rolled simplifies the scheduling process, but
unrolling the loop allows exploration of parallelism between
operations in different loop iterations. Selectively unrolling loop
iterations helps balance the advantages of rolling and unrolling.
Example 3-43 shows a for loop and how you can convert it to a group
of nested for loops.

3-41

Behavioral Coding Guidelines

Example 3-43 Selective Unrolling of a for Loop
//Rolled for loop

for (k=0; k<=7; k++) {
 // loop_operations that are dependent on k
}

//The same for loop converted to a group
//of nested for loops, selectively unrolled.
loop1: for (i=0; i<=1; i++) {

loop2: for (j=0; j<=3; j++) {
/* synopsys unroll */
k = 4 * i + j;

 //loop_operations that are dependent on k
}

}

To unroll the inner loop while keeping the outer loop rolled, place an
unroll directive on the inner loop. This change results in scheduling
two loop iterations rather than the eight in the original code. Each
iteration of the outer loop contains four iterations of the inner. Use
this methodology to explore the most efficient implementation while
retaining design simplicity.

Ensuring a Statically Determinable Exit Condition

SystemC Compiler requires that unrolled for loops have a statically
determinable exit condition at compile time. Example 3-44 is an
example of code that does not have a statically determinable exit
condition.

3-42

Behavioral Coding Guidelines

Example 3-44 for Loop Without Static Exit Condition

if (x) count = 12;
else count = in_port.read();
for (i = 0; i <= count; i++) {

/* synopsys unroll */
//operations
wait();

}

The code in Example 3-44 does not have a statically determinable
exit condition because the value of count depends on the value of an
input, which cannot be determined at compile time. In this situation,
SystemC Compiler ignores the unroll directive, keeps the loop
rolled, and issues a warning that it cannot unroll the loop.

Consecutive Loops

Each loop is a level of scheduling hierarchy. According to general
coding rule 5, you need to place a wait statement immediately after
each loop to exit the level of scheduling hierarchy the loop creates.
When your design contains consecutive loops, there is an overhead
of one clock cycle latency to exit the loop hierarchy, as shown in bold
in Example 3-45.

3-43

Behavioral Coding Guidelines

Example 3-45 Consecutive Loops With Overhead
...
for(int i = 0; i>4; i++) {
 e = (a - 2);
 wait();
 while (i == 0) {
 e = data_in.read();
 wait();
 }
 wait(); // Extra cycle
 while (i == 1) {
 e = (b + 3);
 wait();
 }
 wait();
 real_out.write(e);
 wait();
 }
 wait();
...

If your design has consecutive loops, you can improve the latency by
modifying your code to collapse consecutive loops, as shown in
Example 3-46.

3-44

Behavioral Coding Guidelines

Example 3-46 Collapsed Consecutive Loops
...
// Collapse the consecutive loops
 for (int i = 0; i>4; i++) {
 wait();
 e = (a - 2);
 wait();
 while (i == 0 || i == 1) {
 wait();
 if (i == 0){
 e = data_in.read();
 }
 else if (i == 1){
 e = (b + 3);
 }
 else e = (a - 2);
 }
 wait();
 real_out.write(e);
 wait();
 }
 wait();
 }
}
...

3-45

Behavioral Coding Guidelines

Pipelining Loop Rules

Loops can be automatically pipelined. For information about using
the loop_pipeline command, see the CoCentric SystemC
Compiler User Guide. The pipeline rules are the following:

• Only rolled loops can be pipelined.

• Pipelined loops cannot contain other loops except unrolled for
loops.

• Pipelined loops cannot contain a wait_until statement.

• Loop latency must be an integer multiple of the initiation interval,
as illustrated in Figure 3-3.

• Loop exits can occur only within the initiation interval, as illustrated
in Figure 3-4.

Figure 3-3 Loop Latency and Initiation Interval

Figure 3-4 Loop Exit

*,**,*

iter 1

+,++,+
++
--

iter 2

Latency
= 4

Initiation
= 3

*,**,*
+,++,+
++
--

*,**,*

iter 1

+,++,+
++
--

iter 2

Latency
= 4

Initiation
= 2

*,**,*
+,++,+
++
--

*,**,*

iter 1

+,++,+
ExitExit

--

iter 2

Latency
= 4 *,**,*

+,++,+
ExitExit

--

Initiation
= 2

*,**,*

iter 1

ExitExit

++
--

iter 2

Latency
= 4

*,**,*
ExitExit

++
--

Initiation
= 2

3-46

Behavioral Coding Guidelines

Using Resets

A reset for SystemC Compiler is a global signal that resets the FSM
registers and other registers in the design to a known state. Describe
the global reset behavior explicitly in the SystemC code so you can
simulate the reset behavior at the behavioral level.

Describing a Global Reset

You can define only one global reset signal per process for synthesis.
To define global reset behavior, you need to specify an input signal
to watch, as shown in Example 3-47 in bold. Notice that the reset port
is an sc_in port of type bool. Use the delayed method in the
constructor so reset assertion is checked at every active clock edge
in the process.

Specifying the Reset Behavior

Specify the reset behavior before the infinite while loop, as shown in
Example 3-47 in bold. In the reset behavior, define the appropriate
constant values for ports, internal signals, and variables needed to
reset the design.

The reset behavior must not contain

• Conditional branches such as an if…else or switch…case
statements, or the ?: operator

• Rolled loops such as a for, while, or do-while loop

• Operations that require more than the mandatory wait statement

3-47

Behavioral Coding Guidelines

A wait statement, also shown in bold in Example 3-47, is required
before the infinite while loop that contains the main process body. For
details about the reset coding rule and an example of it, see “General
Coding Rule 3” on page 3-15.

Place initialization or operations that require one or more wait
statements at the beginning of the main behavioral process body
rather than making it part of the reset behavior.

Example 3-47 Global Reset Watching
//Interface file for module
SC_MODULE(example) {

sc_in<bool> reset;
sc_in_clk clk;
sc_out<bool> out_valid;
sc_out<sc_uint<8> > out1, out2;
//other ports
...
void entry();
//constructor

 SC_CTOR(example) {
 SC_CTHREAD(entry, clk.pos());

// Declare global watched signal here
watching(reset.delayed() == true);

}
};

/*******************************/
//Implementation file for module
#include "systemc.h"
#include "example.h"
void example::entry()
{

//Code to handle reset
out_valid.write(true);
out1.write(0);
out2.write("11111111");
wait(); //wait required before while loop

3-48

Behavioral Coding Guidelines

//Infinite while loop with process behavior
while (true) {

//process behavior
}

}

Specifying a Reset Implementation

You can define only a synchronous reset. It is possible to force
asynchronous reset behavior in the gate-level description by
specifying a specific implementation, using the
set_behavioral_reset command during synthesis. The
command can also be used to set other properties of the reset
behavior of the design.

For a discussion of reset implementation, see the CoCentric SystemC
Compiler User Guide or the man page for the
set_behavioral_reset command.

3-49

Behavioral Coding Guidelines

Using Variables and Signals

Storing data values that are internal to a SystemC process as signals
or variables can significantly affect coding flexibility and the quality of
results (QOR). Store intermediate results in variables. SystemC
Compiler can use one register to store multiple variables if the
lifetimes of the variables do not overlap. Register sharing reduces
design costs.

Use variables instead of signals whenever possible to store
intermediate results, because

• SystemC Compiler can move variables (non-I/O operations)
anyplace in the schedule if doing so does not violate data and
control dependencies

• SystemC Compiler allocates a dedicated register for each signal
used in the process; variables can share registers if the variable
lifetimes do not overlap

• Signal reads and writes are constrained by wait statements
(depending on the I/O scheduling mode); variable reads and
writes are not constrained by wait statements

Initializing Variables

SystemC Compiler supports initialization of ports, signals, or
variables only during global reset, as shown in Example 3-47 on page
3-47. Use a global reset to define initial values, to ensure that
pre-synthesis and post-synthesis simulation results match.

3-50

Behavioral Coding Guidelines

Using Signals and Wait Statements

Figure 3-5 shows a segment of code that reads data from signals,
performs a calculation, and writes to the output port. Rather than
storing the read data in variables, the code reads again from the
signals to perform the second calculation. Seven or more clock cycles
are required to execute this segment of code. The operations happen
sequentially because the read operations create data dependencies.

Figure 3-5 illustrates the design’s data flow graph, where circles
represent operations and lines represent dependent data
relationships. A circle containing an r represents a port read
operation, a w is a port write, x is a multiply, and so forth. The dashed
lines represent clock cycles.

3-51

Behavioral Coding Guidelines

Figure 3-5 Comparing Signal Use and Data Flow

SystemC Compiler implements the following functionality for the code
snippet in Figure 3-5:

1. Read port_a, port_b, and port_c.

2. Compute the result of (port_a * port_b + port_c).

3. Write the result to real_out at the end of the clock cycle.

4. Read port_a, port_b, and port_c again in the next clock cycle.

5. Compute the result of (port_a * port_c - port_b).

6. Write the result to real_out in the next clock cycle.

wait();

real_out.write(port_a.read() *

 port_b.read() +

 port_c.read());

wait();

real_out.write(port_a.read() *

 port_c.read() -

 port_b.read());

wait();

+

r r r

x

-

w

w

r r r

x

port_a port_b port_c

port_a port_b port_c

real_out

real_out

3-52

Behavioral Coding Guidelines

Note that this design schedules in superstate_fixed mode but
fails to schedule in cycle_fixed mode unless the operations
between a read and write can be computed in one clock cycle. See
“Cycle-Fixed Mode Coding Rules” on page 3-12.

Using Variables and Wait Statements

Figure 3-6 shows a data flow graph and a modified version of the
code segment in Figure 3-5. In this version, variables store
intermediate results.

The ports are read and assigned to variables. Because the operations
based on variables can happen as soon as the variable data becomes
available, data availability rather than the wait statements constrain
operations. When you use variables, SystemC Compiler processes
operations in parallel rather than sequentially.

Figure 3-6 Variable Use and Data Flow

SystemC Compiler implements the following functionality for the code
in Figure 3-6:

wait();
a = port_a.read();
b = port_b.read();
c = port_c.read();
real_out.write(a * b + c);
wait();
real_out.write(a * c - b);
wait();

+

r

x

-

w

w

x

port_a port_b port_c

real_out

real_out

r r

3-53

Behavioral Coding Guidelines

1. Read port_a, port_b, and port_c and assigns their values to
variables a, b, and c.

2. Compute the result of (a * b + c) and write the result to the real_out
port.

3. Compute the result of (a * c - b) and write the result to the real_out
port.

Note that the functionality of Figure 3-5 is different from the
functionality of Figure 3-6 if the values of port_a, port_b, and port_c
change in successive cycles. As a general recommendation, read
ports, store their values in variables, and read the ports when you
need new data.

Using Variables for Register Allocation Efficiency

The efficiency of register allocation depends on how the SystemC
design description uses variables. SystemC Compiler can map a
variable to many registers or many variables to a single register.

Registers store multiple variables if the lifetimes of the variables do
not overlap. A register can store different variables, and the same
variable can be stored in different registers at different times.
SystemC Compiler minimizes the number of registers needed for the
design.

3-54

Behavioral Coding Guidelines

Determining the Lifetime of Variables

SystemC Compiler automatically determines the lifetime of variables.
The way you write your design description, however, affects variable
lifetime.

The lifetime of a variable starts with the cycle it is first assigned to
and ends at the end of the cycle when it is last used. The last use of
a variable is the latest reference to its value. Multiple assignments to
the same variable are equivalent to single assignments to different
variables with different lifetimes.

4-1

Using Functions and DesignWare Components

4
Using Functions and DesignWare
Components 4

Use functions to increase code readability and to reduce scheduling
complexity. Using functions to encapsulate combinational and
sequential behavior allows you to reuse these structures in multiple
places in your code. Functions are also useful for grouping bit
manipulating logic or timing-critical operations.

This chapter contains the following sections:

• Using Member Functions

• Using Nonmember Functions

• Using Preserved Functions

• Using DesignWare Components

4-2

Using Functions and DesignWare Components

Using Member Functions

In C++, a function defined inside a class is called a member function.
These member functions have access to all the class data variables,
and they provide a powerful means for describing functionality.

Example 4-1 illustrates declaring, defining, and calling a member
function (in bold). The semantics of C++ allow you to define a member
function before or after the function is called.

You can define and use any number of member functions. A member
function can contain wait statements, but you are not required to have
a wait statement in a function. Appendix E, “Inverse Quantization
Example,” shows an example that uses numerous member functions
to ensure that the complex functionality is easy to understand.

4-3

Using Functions and DesignWare Components

Example 4-1 Member Function
//member_example.h file
SC_MODULE(member_example) {
 ...
 //Member function declaration
 sc_int<19> mac_func(sc_int<8> x,
 sc_int<8> y,
 sc_int<8> z);

 SC_CTOR(member_example) {
 SC_CTHREAD(entry, clk.pos();
 }
}

/*************************/
//member_example.cpp file
#include <systemc.h>
#include <member_example.h>

//Member function definition
sc_int<19>member_example::mac_func (
 sc_int<8> x,
 sc_int<9> y,
 sc_int<19> z) {
 sc_int<19> temp;
 temp = x*y;
 temp += z;
 return temp;
}

void member_example::entry() {
 sc_int<19> tmp_out;
 sc_int<8> val1, val2, val3;
 ...
 //Calling the member function
 tmp_out = mac_func(val1, val2, val3);
 real_out.write(tmp_out);
 wait();
 ...
}

4-4

Using Functions and DesignWare Components

Using Nonmember Functions

You declare a nonmember function outside of a class. Nonmember
functions are standard C functions that you can use for any purpose.
Nonmember functions can contain wait statements, but they do not
need a wait statement.

Note that nonmember functions do not have access to the data
members of a class.

Using Preserved Functions

Preserved functions allow you to create complex components. By
default, SystemC Compiler creates inline code for functions and
removes the level of hierarchy the functions might represent. You can
direct SystemC Compiler to preserve a function instead of inlining it.

For each preserved function, SystemC Compiler creates a level of
hierarchy during elaboration. During synthesis, the level of hierarchy
is compiled into a component that is treated exactly the same way as
any other combinational component, such as an adder or a multiplier.
Only functions that describe purely combinational RTL designs can
be preserved.

4-5

Using Functions and DesignWare Components

When to Preserve Functions

Use a preserved function when you want to do the following:

• Preserve a complex function as an operator

• Group components that belong in the same cycle into one
operation so SystemC Compiler treats the encapsulated function
as a single operator

• Incorporate custom netlists into your design (for example,
preexisting combinational and pipelined parts)

• Precompile parts and enable more accurate timing estimation

• Use the preserved function as a resource that can be shared

Preserved Function Restrictions

The following sequential constructs are not allowed in preserved
functions:

• Sequential DesignWare parts, such as memories and pipelined
parts, although the preserved function itself can be pipelined

• Wait statements

• Signal reads and writes

• Rolled loops

• Preserved functions (no nesting of preserved functions)

4-6

Using Functions and DesignWare Components

Creating Preserved Functions

To preserve a function, annotate it with the preserve_function
compiler directive, as shown in bold in Example 4-2. This example
also shows the declaration, definition, and the call to the preserved
member function in bold. Note that the preserve_function
directive must be the first line in the function body.

A preserved function may be either a member function or a
nonmember function. If it is a member function, define the function in
the implementation file.

4-7

Using Functions and DesignWare Components

Example 4-2 Creating Preserved Functions
// cmult_hs.h header file
SC_MODULE(cmult_hs) {

// Declare ports
 ...

// Declare processes in the module
void entry();

 // Declare member functions
 sc_int<19> my_prefunc (sc_int<8> aa,
 sc_int<8> bb, sc_int<8> cc);

...// Constructor
};
/*********************************/
// cmult_func.cc implementation file

#include "systemc.h"
#include "cmult_func.h"

void cmult_hs :: entry() {
 sc_int<8> a, b, c, d;
 sc_int<19> e;
 sc_int<8> val1, val2, val3;

 //Initialize and reset if reset asserts
 ...
 while (true) {
 ...
 e = my_prefunc(val1, val2, val3);
 real_out.write(e);
 wait();
 } //end while
} // end entry

// Definition of preserved function.
sc_int<19> cmult_hs::my_prefunc (
 sc_int<8> aa,
 sc_int<8> bb,
 sc_int<8> cc) {
 /* snps preserve_function */
 sc_int<19> temp;

4-8

Using Functions and DesignWare Components

 temp = aa * bb;
 temp += cc;
 return temp;
}

SystemC Compiler automatically synthesizes preserved functions
into components, using a default compile strategy. You can implement
finer control of the compile strategy by using the
compile_preserved_functions command prior to using the
bc_time_design command.

You can direct the compile_preserved_functions command to
save the synthesized components as .db files. Then you can use the
read_preserved_function_netlist command to read in the
previously synthesized component as a preserved function. This
means you do not have to resynthesize the preserved functions every
time you use SystemC Compiler.

For information about using the compile_preserved_functions
and read_preserved_function_netlist commands, see the
CoCentric SystemC Compiler User Guide.

4-9

Using Functions and DesignWare Components

Nonmember Preserved Functions

You can define a nonmember function as a preserved function. Define
the nonmember function in the same file as the module that uses it.
Place the preserve_function compiler directive in the first line in
the block of code that defines the nonmember function, as shown in
bold in Example 4-3.

Example 4-3 Nonmember Preserved Function Declaration
//my_module.h header file
SC_MODULE(my_module) {
 ...
 ...
 SC_CTOR(my_module) {
 SC_CTHREAD(entry,clk.pos());
 }
}

/**********************/
// my_module.cc implementation file
#include "my_module.h"

// Define my_func
int my_func(int y, int& x) {
 /* synopsys preserve_function */
 x = x + y;
 return x;
}

void my_module::entry() {
 int a, b, c;
 ...
 c = my_func(a , b);
 ...
}

4-10

Using Functions and DesignWare Components

Using Reference Parameters in Preserved Functions

SystemC Compiler maps nonconstant C++ reference parameters to
the output ports of the design corresponding to a preserved function.
If the preserved function contains a read from a reference parameter,
SystemC Compiler assumes that you are trying to read an output port
and issues an error message unless you use the inout_param
compiler directive, shown in bold in Example 4-4. Notice that the
inout_param is placed immediately after the reference parameter
and is inside the parentheses. The preserve_function directive
is the first line in the function body.

Example 4-4 Preserved Function With Reference Parameter
void my_func (int y, int& x /*snps inout_param */) {
 /* snps preserve_function */
 x = x + y;
}

When you use the inout_param compiler directive, SystemC
Compiler creates an input port x and an output port x’ for the x
reference parameter so it can perform the read and write.

4-11

Using Functions and DesignWare Components

Using DesignWare Components

The map_to_operator compiler directive performs an action
similar to the preserve_function compiler directive, except that
it enables use of standard DesignWare components.

Using map_to_operator

Example 4-5 shows code in bold that uses a DesignWare component.
The map_to_operator and return_port_name compiler
directives must be the first line in the function body.

Example 4-5 Using DesignWare Parts
//Code fragment

sc_int<16> my_mult (const sc_int<8> A,
 const sc_int<8> B) {

 // snps map_to_operator MULT2_TC_OP
 // snps return_port_name Z
 // Function code block
 ...
 return (A*B);
}

After you execute the SystemC Compiler compile_systemc
command, this function is replaced by the DesignWare component
MULT2_TC_OP, provided it exists in a synthetic library.

See the DesignWare Developer Guide for information on using
DesignWare components.

4-12

Using Functions and DesignWare Components

Guidelines for Using map_to_operator

Functions with the map_to_operator compiler directive require
special consideration. The following guidelines apply:

• In the declaration of the function’s prototype, specify the
map_to_operator compiler directive in the first line of the
function body; for example,

int xyz(int a, intb) {
 /* snps map_to_operator XYZ_OP */;
 ...
}

• Declare input parameters as either pass-by-value or
constant-qualified references. For example, if a and b are inputs,

int xyz(int a, const int& b) {
 /* snps map_to_operator XYZ_OP */;
 ...
}

• Declare output parameters as nonconstant-qualified references.
For example, if a and b are inputs and c is an output,

 void abc(int a, const int& b, int& c) {
 /* snps map_to_operator ABC_OP */;
 ...
}

If you have a C++ simulation model, you need to ensure that your
code only writes to output c and does not read from it.

• Ensure that the parameter names for inputs and outputs exactly
match the DesignWare operator port names, which is required by
the linker of the Design Compiler tool. DesignWare operator port
names are case-sensitive. SystemC Compiler issues an error if
the names do not match.

4-13

Using Functions and DesignWare Components

• The name of the return port must exactly match an output port of
the DesignWare component, which is Z by default. You can
override the name by using the return_port_name compiler
directive; for example,

int xyz(int a, const int& b) {
 /* snps map_to_operator XYZ_OP */
 /* snps return_port_name C */
 ...
}

If the DesignWare synthetic operator does not have a port Z, you
need to include the return_port_name directive to specify its
name.

• If you use reference parameters, you need to ensure that you are
not using an alias by mistake. You create an alias when you pass
the same object by reference to different parameters. For
example, this problem occurs in the following:

//Definition
void abc(int a, const int& b, int& c) {
 /* snps map_to_operator ABC_OP */
 ...
}

void xyz () {
 //function call that causes alias
 abc(x, y, y);
 ...
}

In above example, parameters b and c are bound to the same y
variable, causing an error. Another more subtle alias can result
from the following function call:

abc(x, a[i], a[j]);

4-14

Using Functions and DesignWare Components

In the above function call, a potential alias occurs, based on the
value of i and j. In such a situation, you can use a temporary
variable to avoid the problem; for example,

abc(x, a[i], temp);
a[j] = temp;

5-1

Using Arrays, Register Files, and Memories

5
Using Arrays, Register Files, and Memories5

This chapter describes how to use arrays, including how to map
arrays to register files and memories. It also provides coding
guidelines for efficiently accessing register files and memories.

This chapter contains the following sections:

• Using Arrays

• Array Implementations

• Mapping Arrays to Register Files

• Mapping Arrays to Memories

• Accessing Register Files and Memories Efficiently

5-2

Using Arrays, Register Files, and Memories

Using Arrays

SystemC Compiler supports single-dimension arrays and
multidimensional arrays. Variable indexing into arrays creates
decoding logic in hardware, and sharing of array index operations
creates multiplexing hardware. Array accesses can have an impact
on SystemC Compiler runtimes, area estimates, and timing
estimates.

Declaring Arrays

You can declare an array of variables or signals as a data member,
which allows all processes in a module to access the array. Example
5-1 shows a single-dimension data member array declaration in bold.

Example 5-1 Data Member Array
SC_MODULE (my_module) {
 ...
 int arr1[64];
 SC_CTOR(my_module) {
 SC_CTHREAD(process1, clk.pos());
 SC_CTHREAD(process2, clk.pos());
 ...
 }
}

You can also declare an array local to a process, which allows only
that process to access the array. Example 5-2 shows a
multidimensional array declaration local to a process in bold.

Example 5-2 Array Local to a Process
void process1() {
 sc_int<8> arr2[64] [32];
 ...
}

5-3

Using Arrays, Register Files, and Memories

Reading From and Writing to Variable Arrays

SystemC Compiler creates dedicated decode hardware for each read
from or write to an array location. The hardware decodes the index
used to reference the array location.

If SystemC Compiler can statically determine that the array access
index is a constant, it creates significantly less decode hardware.
Example 5-3 shows (in bold) declaring a variable array and reading
from it with a constant index and a nonconstant index.

Example 5-3 Reading From a Variable Array
sc_int<8> a[16];
sc_int<8> temp;
sc_int<4> i;
...
temp = a[5]; // read constant index 5
...
temp = a[i]; // read nonconstant index i

Example 5-4 shows (in bold) declaring a variable array and writing to
it with a constant index and a nonconstant index.

Example 5-4 Writing to a Variable Array
sc_int<8> a[16];
sc_int<8> temp;
sc_int<4> i;
...
a[5] = temp; // write constant index 5
...
a[i] = temp; // write nonconstant index i

5-4

Using Arrays, Register Files, and Memories

Reading From and Writing to Signal Arrays

You can declare an array of signals as sc_signal, sc_out, or sc_in
types. Use signal arrays to communicate data between different
processes in your design.

Access signal arrays in the same way that you access I/O ports and
other signals in your design, and adhere to the coding style rules
described in “Behavioral Coding Style Rules” on page 3-10.

As with variable arrays, SystemC Compiler creates significantly less
hardware for decoding a constant index. Example 5-5 shows (in bold)
declaring a signal array and reading from it with a constant and
nonconstant index.

Example 5-5 Reading From a Signal Array
sc_signal<sc_int<8> > a[16];
sc_int<8> temp;
sc_int<4> i;
...
temp = a[5].read(); // read constant index 5
...
temp = a[i].read(); // read nonconstant index I

Example 5-6 shows (in bold) declaring a signal array and writing to it
with a constant index and a nonconstant index.

Example 5-6 Writing to a Signal Array
sc_signal<sc_int<8> > a[16];
sc_int<8> temp;
sc_int<4> i;
...
a[5].write(temp); // write with a constant index
...
a[i].write(temp); // write with non-constant index i

5-5

Using Arrays, Register Files, and Memories

Accessing Slices of an Array Location

SystemC Compiler generates decoding hardware for each read and
write access to an array location, even if you are accessing a single
bit or a range of bits (called a slice) of the data contained in that array
location. If you access multiple slices of the same array location by
using separate reads to that location, decode hardware is generated
for each read.

Example 5-7 shows accesses to multiple slices within the same array
location.

Example 5-7 Multiple Accesses to Slices in the Same Array
sc_int<8> a[16];
sc_int<4> temp1, temp2;
sc_int<4> i;
...
temp1 = a[i].range(3,0); // array read of first slice

// in location a[i]
temp2 = a[i].range(7,4); // array read of second slice

// in location a[i]
...
a[i].range(3,0) = temp1; // array write of first slice

// in location a[i]
a[i].range(7,4) = temp2; // array write of second slice

// in location a[i]

To improve the efficiency of the hardware created, copy the array
location into a temporary variable, and access the various slices from
the temporary variable. This coding style requires just one array
access and creates one instance of decode hardware.

Example 5-8 shows an example of this alternate coding style.

5-6

Using Arrays, Register Files, and Memories

Example 5-8 Multiple Array Accesses Using a Variable
sc_int<8> a[16];
sc_int<8> temp;
sc_int<4> temp1, temp2;
sc_int<4> i;
...
temp = a[i];
temp1 = temp.range(3,0);
temp2 = temp.range(7,4);
...
temp.range(3,0) = temp1;
temp.range(7,4) = temp2;
a[i] = temp;

Unlike a variable array, you cannot access slices of array locations
in a signal array. It is not allowed. Example 5-9 shows the coding style
you need to use to access slices of signal array locations.

Example 5-9 Accessing Slices of a Signal Array Location
sc_signal<sc_int<8> > a[16];
sc_int<8> temp;
sc_int<4> temp1, temp2;
sc_int<4> i;
...
temp = a[i].read();
temp1 = temp.range(3,0);
temp2 = temp.range(7,4);
...
temp.range(3,0) = temp1;
temp.range(7,4) = temp2;
a[i].write(temp);

5-7

Using Arrays, Register Files, and Memories

Array Implementations

By default, SystemC Compiler generates registers and logic for
indexing into the arrays (including multidimensional arrays) in the
behavioral code. SystemC Compiler generates dedicated logic for
each read from or write to an array. This can result in a large amount
of logic.

You can improve the synthesis of designs that have large arrays by
mapping an array to a register file or memory. If your design includes
large arrays (more than 1024 elements) that are not mapped to a
register file or memory, SystemC Compiler will issue a warning,
because large unmapped arrays can cause long runtimes.

It is generally more efficient to map arrays to memory than to map
them to register files. However, unless you have ready access to the
appropriately sized memory and all the models you need (a timing
model for synthesis and a behavioral model for simulation), it is easier
to map arrays to register files. For details about how to use memories,
constrain designs with memories, obtain reports about memories,
and generate a memory wrapper interface, see the CoCentric
SystemC Compiler User Guide.

SystemC Compiler can use only synchronous memories. For
information about converting an asynchronous memory to a
synchronous memory, see the CoCentric SystemC Compiler User
Guide.

5-8

Using Arrays, Register Files, and Memories

Mapping Arrays to Register Files

Register files are similar to memories, except that SystemC Compiler
builds the read and write operators and the register array on the fly.
Figure 5-1 shows the architecture of a register file.

Figure 5-1 Register File Architecture

Array MasterArray WriteData

Address

Array WriteData

Address

Array ReadData

Address

Array ReadData

Address

5-9

Using Arrays, Register Files, and Memories

Mapping All Arrays to Register Files

To map all the arrays in your code to register files, set the
bc_use_registerfiles variable to true.

You can quickly compare the runtime of the compile_systemc
command with this variable set to true and then to false to see if your
design would benefit from mapping arrays to register files or
memories. For details about using register files, see the CoCentric
SystemC Compiler User Guide.

Mapping Specific Arrays to Register Files

To map specific arrays to register files, use the synopsys resource
compiler directive and the map_to_registerfiles attribute in
your code to specify the arrays that are to be mapped to register files.

Example 5-10 shows a section of code that uses the synopsys
resource compiler directive and the map_to_registerfiles
attribute (shown in bold) to map an array named mem. In this
example, R1 is a resource in the synthetic library.

5-10

Using Arrays, Register Files, and Memories

Example 5-10 Mapping Specific Arrays to Register Files
sc_int<16> mem[16];

sc_int<32> mem [16];
/*synopsys resource R1:

 variables="mem",
 map_to_registerfiles = "TRUE";*/

 //The following are all mapped to memory.
//Write to mem
mem[0] = a;
mem[1] = b;
// and so forth

//Read from mem
a = mem[0];
b = mem[1];
// and so forth

5-11

Using Arrays, Register Files, and Memories

Mapping Arrays to Memories

You can map read or write operations of arrays to memory read or
write operations. A memory (RAM) contains accessing logic that is
transparent to your design.

Map arrays of variables to memories.

You can declare memory locally, which means the memory is
accessed only by the process in which it is declared. You can
alternatively declare memory as a data member so that the memory
is shared by all processes in a design.

To map a specific array to a local or shared memory, use the
synopsys resource compiler directive and the map_to_module
attribute in your code to specify the array that is to be mapped to
memory.

Local Memory

Example 5-11 shows a section of code that maps the array named
amem to a memory local to the process. In a local memory
declaration, place the compiler directives immediately after the array
declaration, as shown in bold.

5-12

Using Arrays, Register Files, and Memories

Example 5-11 Declaring Local Memory Resources
//SystemC code fragment
while (true){

sc_int<32> amem[16];

/* synopsys
resource RAM_A:
variables = "amem",
map_to_module = "my_mem_model"

*/
// array amem mapped to a single RAM

amem[i] = ser_in;
a = amem[j];

}

The statements in Example 5-11 collectively declare a resource
named RAM_A. Accesses to array amem map to this memory. The
my_mem_model is the memory wrapper interface (described in
CoCentric SystemC Compiler User Guide).

DesignWare libraries provide some synchronous memory models
such as DW_ram_r_w_s_dff that you can use.

The address range declarations must match the actual memory
address range. If multiple arrays map to one memory, SystemC
Compiler automatically places them in non-overlapping address
spaces in the memory.

5-13

Using Arrays, Register Files, and Memories

Multiple Arrays Accessing One Memory

You can use one memory for multiple arrays. Example 5-12 shows
two arrays mapped to one memory resource. The memory must be
as large as or larger than the combined size of the arrays mapped to it.

Example 5-12 Multiple Arrays Accessing One Memory
// Mapping arrays to a RAM
void my_proc() {
 sc_int<8> amem[256];
 sc_int<8> bmem[256];
 /* synopsys resource RAM_A:
 variables="amem bmem",
 map_to_module = "ram1_s_d";
 */

When you map multiple arrays to one memory, SystemC Compiler
automatically places them in non-overlapping address spaces in the
memory. Figure 5-2 shows a representation of the address space
mapping of Example 5-12, with two arrays accessing the same
memory resource. Address space is allocated in the order the
variables are declared.

Figure 5-2 Multiple Array Address Space Mapping

amem

bmem

 0

255
256

511

31 0

5-14

Using Arrays, Register Files, and Memories

Exploring Alternative Memory Types

You can explore the tradeoffs of using various memory types, such
as single port, dual port, or pipelined memories. If the synthetic library
descriptions are available for each memory type, you can explore the
impact of the different memory types by changing only the
map_to_module attribute, as shown in bold in Example 5-13.

Example 5-13 Changing Memory Types
//Single port memory
while (true){

sc_int<32> amem[16];

/* synopsys
resource RAM_A:

variables = "amem",
map_to_module = "my_single_port_mem_model"

*/
// array amem mapped to a single-port RAM

amem[i] = ser_in;
a = amem[j];

}

//Change to dual-port memory
while (true){

sc_int<32> amem[16];

/* synopsys
resource RAM_A:

variables = "amem",
map_to_module = "my_dual_port_mem_model"

*/
// array amem mapped to a dual-port RAM

amem[i] = ser_in;
a = amem[j];

}

5-15

Using Arrays, Register Files, and Memories

Accessing Register Files and Memories Efficiently

Minimize the number of array read and write operations accessing a
register files or a memory to improve the latency of your design.

By default, SystemC Compiler constrains all accesses to a memory
or register file so that they occur one at a time. This prevents multiple
accesses from reading or writing the same array location
simultaneously. Redundant memory accesses, however, can inflate
the latency of your design, so you should avoid them.

You can prevent SystemC Compiler from constraining reads and
writes so that they occur one at a time, by using the
ignore_array_precedences command for register files and the
ignore_memory_precedences command for memories. See the
CoCentric SystemC Compiler User Guide for information about using
this command.

5-16

Using Arrays, Register Files, and Memories

Accessing Memory

Each memory access requires one or more clock cycles, which has
an effect on design latency. For example, if a memory read takes two
clock cycles, the circuit needs time to access the memory. In
superstate-fixed I/O scheduling mode, clock cycles are automatically
inserted. In cycle-fixed scheduling mode, you need to insert wait
statements in your code. Example 5-14 shows a memory read that
requires a second clock cycle, which is inserted correctly in Example
5-15 in bold.

Example 5-14 Incorrect Memory Read Timing for Cycle-Fixed
...
while (true) {
 ...
 wait(); // one cycle
 addr = input_port.read();
 // Need another cycle before write to output
 output_port.write(memory[addr]);
 wait();

Example 5-15 Correct Memory Read Timing for Cycle-Fixed
...
while (true) {
 ...
 wait(); // one cycle
 addr = input_port.read();
 wait(); // second cycle needed
 output_port.write(memory[addr]);
 wait();

5-17

Using Arrays, Register Files, and Memories

Allowing for Vendor Memory Timing

Unlike with arithmetic operations, SystemC Compiler does not
reserve time in the clock period for vendor timing specifications such
as read, write, off-chip, or BIST logic access (see Figure 5-3).

Figure 5-3 Memory Access Time Specification

You need to provide this timing information, using the
set_memory_output_delay and set_memory_input_delay
commands. See the CoCentric SystemC Compiler User Guide for
information about these commands.

DATAPATH

STATE N

Cycle Boundary

Structural HDL Wrapper

RAMRAM

tread
tcy - tread

Assumes memory outputs
NOT Registered

DATAPATH

twritetcy - twrite

5-18

Using Arrays, Register Files, and Memories

Eliminating Redundant Memory Accesses

Every array access infers a memory read or memory write operation.
Redundant memory operations result in longer schedules to avoid
memory contention.

Example 5-16 creates a redundant memory read.

Example 5-16 Redundant Memory Read
x = a[i] + 5;
y = a[i] + 11;

A more efficient coding style assigns the array location to a temporary
variable, as shown in Example 5-17.

Example 5-17 Array Location Assigned to Temporary Variable
temp = a[i];
x = temp + 5;
y = temp + 11;

5-19

Using Arrays, Register Files, and Memories

Accessing Bit Slices of Memory Data

Variable and signal accesses (such as assignment or use in an
expression) operate on the entire value. When a single bit or a bit
slice of a variable or signal is assigned a value, the following steps
occur:

1. The original value of the variable or signal is retrieved.

2. The new bit value is patched in.

3. The resulting value is assigned to the variable or signal.

This process is inefficient when you need to access only a bit or slice
of memory data. For example, assume that

• R is an array of struct types with fields red, green, and blue.

• R maps to a memory with one-cycle read and write operations.

The following assignment requires two cycles—one to read the
original value of R[i] and one to write back the new value of R[i]:

R[i].red = v_red;

SystemC Compiler first reads the array location from memory,
because when SystemC Compiler is writing, the full array location is
updated (see Figure 5-4).

5-20

Using Arrays, Register Files, and Memories

Figure 5-4 Bit Slice Accesses

The following code takes six cycles to execute—two cycles for each
line of code:

R[i].red = v_red;
R[i].green = v_green;
R[i].blue = v_blue;

You can accomplish this task by using a variable to collect the bit or
slice values prior to writing the complete array location.This method
requires only one memory write, which executes in one cycle. In the
following example, v is a variable of the appropriate struct type:

v.red = v_red;
v.green = v_green;
v.blue = v_blue;
R[i] = v;

R[i].red

red green blue

R[i].red

red green blue

R[1]

R[2]
...

R[i]

R[i]

R[i].red

Read complete
array location

(1 cycle)

R[i].red

R[1]

R[2]

...

R[i]

R[i]

Write complete
array location

(1 cycle)

R[i].red

Replace bit slice with
R[i].red = v_red

6-1

Using Handshaking in the Circuit and Testbench

6
Using Handshaking in the Circuit and
Testbench 6

In the superstate-fixed scheduling mode, SystemC Compiler may
insert clock cycles in addition to those you specify, in order to properly
schedule the design. Therefore, a testbench that you use for
verification at the behavioral level may no longer work at the RTL or
gate level. To ensure that the same testbench can be used throughout
the design process, it is strongly recommended that you use
handshaking in both the design and the testbench. Using
handshaking also ensures that the block you are designing can
communicate with other blocks, regardless of the number of clock
cycles introduced during scheduling.

This chapter contains the following sections:

• Using Handshake Protocols

• Using One-Way Handshake Protocols

6-2

Using Handshaking in the Circuit and Testbench

• Using Two-Way Handshake Protocols

• Fast Handshaking

• Using a Pipeline Handshake Protocol

6-3

Using Handshaking in the Circuit and Testbench

Using Handshake Protocols

The I/O scheduling mode you use to schedule a design affects your
simulation methodology. SystemC Compiler can allocate additional
cycles in the superstate-fixed I/O scheduling mode, so you need to
use handshake protocols to test and verify the functionality at the
register transfer and gate levels.

Handshake protocols allow you to use the same testbench to test the
circuit at the behavioral, register transfer, and gate levels of
abstraction. You do not have to modify the testbench to compare the
behavioral simulation results with the RTL simulation results after
scheduling.

Use handshake signals to communicate between the behavioral
block and the other blocks in the system. The behavioral block can
use handshake signals to notify the other blocks in the system when

• The behavioral block can accept new data

• The outputs of the behavioral block are ready

This ensures that the behavioral block operates the same way before
and after scheduling in the context of other blocks in the design.

6-4

Using Handshaking in the Circuit and Testbench

Using One-Way Handshake Protocols

Use one-way handshake protocols to communicate with other blocks
in the system that have a fixed response time. A block with fixed
response time is one that can grant a request after a fixed number of
cycles from the time the behavioral block issues the request, and the
behavioral block does not need an acknowledgement signal from the
other block.

One-Way Handshake Initiated From Behavioral Block

Figure 6-1 shows a timing diagram for a greatest common divisor
(GCD) behavioral block that uses one-way handshake protocols to
get data and to write data out. The GCD block initiates the handshake
with the testbench. Example 6-1 shows the code for the GCD block,
the testbench, and the main routine for simulation.

Note:
The number of cycles needed to compute the GCD is not fixed,
because it depends on the value of the two numbers for which the
GCD is computed. Therefore, this example requires the use of
handshaking.

6-5

Using Handshaking in the Circuit and Testbench

Figure 6-1 One-Way Handshake Protocol

clk

data

gcd c

send_data

gcd_ready

a b

Number of
cycles to
perform GCD is dependent on the input value

6-6

Using Handshaking in the Circuit and Testbench

Example 6-1 One-Way Handshake Protocol Behavioral Block
// gcd1.h header file

#define READ_LATENCY 2
#define WRITE_LATENCY 3

SC_MODULE(gcd_mod) {
 // Ports
 sc_in_clk clk; // Clock input
 sc_in<bool> reset; // Reset input
 sc_in<int> data; // Port to get data
 sc_out<bool> send_data; // Handshake signal to
 // request input
 sc_out<bool> gcd_ready; // Handshake signal to
 // indicate output is ready

 sc_out<int> gcd; // Port to send GCD value

 // Process
 void gcd_algo(); // The process that does GCD

 // Internal functions
 int do_gcd(int a, int b);// Function of actual
 // gcd algorithm

 SC_CTOR(gcd_mod) {
 SC_CTHREAD(gcd_algo, clk.pos());
 watching(reset.delayed() == true);
 }
};

/**********************************/
// gcd1.cc implementation file

#include “systemc.h”
#include “gcd1.h”

void gcd_mod::gcd_algo()
{
 int a, b; // The two variables to compute gcd
 int c; // The GCD

 // Reset operations
 gcd.write(0);
 send_data.write(false);
 gcd_ready.write(false);

6-7

Using Handshaking in the Circuit and Testbench

 wait();

 while (true) {
// First get the two inputs

 // using receiver initiated handshake.
send_data.write(true);
wait();
// Wait READ_LATENCY cycles before

 // getting first data.
wait(READ_LATENCY);
send_data.write(false);
a = data.read();
wait();
b = data.read();

// Now do the algorithm
c = do_gcd(a, b);

// Now write the output
 // using sender initiated handshake.

gcd_ready.write(true);
gcd.write(c);
wait(WRITE_LATENCY);
gdc_ready.write(false);
wait();

 }
}

int gcd_mod::do_gcd(int a, int b)
{
 int temp;

 if (a != 0 && b != 0) {
while (b != 0) {
 while (a >= b) {

a = a - b;
wait();

 }
 temp = a;
 a = b;
 b = temp;
 wait();
}

 }
 else {

a = 0;
wait();

 }

6-8

Using Handshaking in the Circuit and Testbench

 return a;
}

/***********************************/
// gcd1_test.h header file.

#ifndef READ_LATENCY
#define READ_LATENCY 2
#endif

#ifndef WRITE_LATENCY
#define WRITE_LATENCY 2
#endif

SC_MODULE(testbench) {
 sc_in_clk clk;
 sc_in<bool> send_data;
 sc_in<bool> gcd_ready;
 sc_in<int> gcd;
 sc_out<bool> reset;
 sc_out<int> data;

 // Process
 void do_run();

 // Internal function
 void do_handshake(int a, int b);

 SC_CTOR(testbench) {
SC_CTHREAD(do_run, clk.pos());

 }
};

/***********************************/
// gcd1_test.cc implementation file

#include “systemc.h”
#include “gcd1_test.h”

void testbench::do_run()
{
 reset.write(false);
 wait();
 reset.write(true);
 wait();

6-9

Using Handshaking in the Circuit and Testbench

 reset.write(false);
 wait();

 cout << “*** Reset Done. Begin Testing. ***\n”;

 do_handshake(12, 6);
 do_handshake(172, 36);
 do_handshake(36, 172);
 do_handshake(19, 5);
 do_handshake(2584, 4712);
 do_handshake(15, 0);
 cout << “ *** Testing Done ***\n”;
 sc_stop();
}

void testbench::do_handshake(int a, int b)
{
 cout << “GCD of “ << a << “ and “ << b
 << “ is = “;

 // Receiver initiated handshake.
 // Wait until receiver is ready
 wait_until(send_data.delayed() == true);
 wait(READ_LATENCY - 1); // Wait for latency
 // Now write data in 2 consecutive cycle.
 data.write(a);
 wait();
 data.write(b);
 wait();

 // Sender initiated handshake.
 // Wait until sender is ready.
 wait_until(gcd_ready.delayed() == true);
 wait(WRITE_LATENCY - 1); // Wait for latency
 // Now read data.
 cout << gcd.read() << endl;
}

/**/
// gcd1_main.cc top-level simulation model.

#include “systemc.h”
#include “gcd1.h”
#include “gcd1_test.h”

int
main()

6-10

Using Handshaking in the Circuit and Testbench

{
 sc_signal<int> data, gcd;
 sc_signal<bool> reset, send_data, gcd_ready;
 sc_clock clock(“Clock”, 20, 0.5);

 gcd_mod G(“GCD”);
 G(clock, reset, data, send_data, gcd_ready, gcd);

 testbench TB(“TB”);
 TB(clock, send_data, gcd_ready, gcd, reset, data);

 sc_trace_file *tf = sc_create_vcd_trace_file(“gcd1”);
 sc_trace(tf, clock.signal(), “Clock”);
 sc_trace(tf, reset, “Reset”);
 sc_trace(tf, send_data, “Send Data”);
 sc_trace(tf, data, “In”);
 sc_trace(tf, gcd_ready, “Out Ready”);
 sc_trace(tf, gcd_ready, “Out”);

 sc_start(-1);
 return 0;
}

The following steps describe how the handshaking protocol works:

1. The behavioral block asserts the handshake signal send_data
(high), to indicate that it can process new data. It waits for
READ_LATENCY cycles, which gives the testbench time to
respond. In this example, READ_LATENCY is 2.

2. The testbench sees the send_data signal and responds with the
first piece of data after READ_LATENCY cycles.

3. The behavioral block reads the first piece of data, and in the cycle
immediately following, it de-asserts send_data (low) and reads
the second piece of data.

4. This process repeats each time the behavioral block can process
the next data set.

6-11

Using Handshaking in the Circuit and Testbench

5. The behavioral block proceeds to compute the GCD of the two
numbers it has read. This computation can take an indeterminate,
but finite, number of cycles.

The following steps are used to implement the output handshake
protocol:

1. The behavioral block asserts the handshake signal gcd_ready
(high), to indicate that it can send new output data, and it waits
WRITE_LATENCY cycles – where WRITE_LATENCY is 3 in this
example. This gives the testbench time to read the output.

2. After the testbench sees the gcd_ready signal, it has
WRITE_LATENCY cycles within which to sample the result of
GCD.

3. This process repeats each time the behavioral block can send
new output data.

Looking at the testbench code in Example 6-1, you can see that the
handshaking for the testbench is done in the do_handshake function.
To send data to the behavioral block, the testbench waits until the
send_data signal is asserted (high). To model the testbench latency
for a read, the code has a wait (READ_LATENCY - 1) statement. At
the end of this wait, the testbench writes two consecutive values on
the data port, which the behavioral block reads.

To get the output of the behavioral block, the testbench waits until the
behavioral block asserts the gcd_ready signal (high). To model the
testbench latency for a write, the code contains a wait
(WRITE_LATENCY - 1) statement. At the end of this wait, the
testbench reads the output of the behavioral block from the gcd port.

6-12

Using Handshaking in the Circuit and Testbench

One-Way Handshake Initiated From Testbench

Figure 6-2 shows a timing diagram for the GCD behavioral block with
a slightly different handshaking mechanism than Figure 6-1. In this
example, the testbench initiates the handshake to the GCD block
before sending new input. After computing the output, the GCD block
initiates sending the output to the testbench. Example 6-2 shows the
code for the GCD block, the testbench, and the top-level simulation
executable.

Figure 6-2 Testbench-Initiated One-Way Handshake

clk

data

gcd c

data_ready

gcd_ready

a b

Number of
cycles to
perform GCD is dependent on the input value

6-13

Using Handshaking in the Circuit and Testbench

Example 6-2 Behavioral Block Responding to One-Way
Handshake

// gcd2.h header file

#define READ_LATENCY 2
#define WRITE_LATENCY 3

SC_MODULE(gcd_mod) {
 // Ports
 sc_in_clk clk; // Clock input
 sc_in<bool> reset; // Reset input
 sc_in<int> data; // Port to get data
 sc_in<bool> data_ready; // Handshake signal to
 // indicate input ready
 sc_out<bool> gcd_ready; // Handshake signal to
 // indicate output is ready
 sc_out<int> gcd; // Port to send GCD value

 // Process
 void gcd_algo(); // Process to do GCD

 // Internal functions
 // Function to compute gcd algorithm
 int do_gcd(int a, int b);

 SC_CTOR(gcd_mod) {
 SC_CTHREAD(gcd_algo, clk.pos());
 watching(reset.delayed() == true);
 }
};

/**********************************/
// gcd2.cc implementation file

#include “systemc.h”
#include “gcd2.h”

void gcd_mod::gcd_algo()
{
 int a, b; // Two variables to compute GCD
 int c; // The GCD

 // Reset operations
 gcd.write(0);
 gcd_ready.write(false);

6-14

Using Handshaking in the Circuit and Testbench

 wait();

 while (true) {
 // First get the two inputs
 // using sender initiated handshake.
 wait_until(data_ready.delayed() == true);
 // Wait READ_LATENCY cycles for the first data
 wait(READ_LATENCY);
 a = data.read();
 wait();
 b = data.read();

 // Now do the algorithm
 c = do_gcd(a, b);

 // Now write the output
 // using sender initiated handshake.
 gcd_ready.write(true);
 gcd.write(c);
 wait(WRITE_LATENCY);
 gcd_ready.write(false);
 wait();
 }
}

int gcd_mod::do_gcd(int a, int b)
{
 int temp;

 if (a != 0 && b != 0) {
 while (b != 0) {
 while (a >= b) {
 a = a - b;
 wait()
 }
 temp = a;
 a = b;
 b = temp;
 wait();
 }
 }
 else {
 a = 0;
 wait();
 }
 return a;
}

6-15

Using Handshaking in the Circuit and Testbench

/*****************************/
// gcd2_test.h header file

#ifndef READ_LATENCY
#define READ_LATENCY 2
#endif

#ifndef WRITE_LATENCY
#define WRITE_LATENCY 3
#endif

SC_MODULE(testbench) {
 sc_in_clk clk;
 sc_out<bool> data_ready;
 sc_in<bool> gcd_ready;
 sc_in<int> gcd;
 sc_out<bool> reset;
 sc_out<int> data;

 // Process
 void do_run();

 // Internal function
 void do_handshake(int a, int b);

 SC_CTOR(testbench) {
SC_CTHREAD(do_run, clk.pos());

 }
};

/***********************************/
// gcd2_test.cc testbench implementation file

#include “systemc.h”
#include “gcd2_test.h”

void testbench::do_run()
{
 reset.write(false);
 data_ready.write(false);
 wait();
 reset.write(true);
 wait();
 reset.write(false);
 wait();

 cout << “*** Reset Done - Begin Testing ***\n”;

6-16

Using Handshaking in the Circuit and Testbench

 do_handshake(12, 6);
 do_handshake(172, 36);
 do_handshake(36, 172);
 do_handshake(19, 5);
 do_handshake(2584, 4712);
 do_handshake(15, 0);
 cout << “ *** Testing Done ***\n”;
 sc_stop();
}

void testbench::do_handshake(int a, int b)
{
 cout << “GCD of “ << a << “ and “ << b << “ is = “;

 // Sender initiated handshake - send data ready signal
 data_ready.write(true);
 wait(READ_LATENCY); // Wait for latency
 // Now write data in 2 consecutive cycles
 data.write(a);
 data_ready.write(false);
 wait();
 data.write(b);
 wait();

 // Sender initiated handshake - wait until sender is ready
 wait_until(gcd_ready.delayed() == true);
 wait(WRITE_LATENCY - 1); // Wait for latency
 // Now read data
 cout << gcd.read() << endl;
 wait();
}

/**/
// gcd2_main.cc top-level simulation model.

#include “systemc.h”
#include “gcd2.h”
#include “gcd2_test.h”

int
main()
{
 sc_signal<int> data, gcd;
 sc_signal<bool> reset, data_ready, gcd_ready;
 sc_clock clock(“Clock”, 20, 0.5);

6-17

Using Handshaking in the Circuit and Testbench

 gcd_mod G(“GCD”);
 G(clock, reset, data, data_ready, gcd_ready, gcd);

 testbench TB(“TB”);
 TB(clock, data_ready, gcd_ready, gcd, reset, data);

 sc_trace_file *tf = sc_create_vcd_trace_file(“gcd”);
 sc_trace(tf, clock.signal(), “Clock”);
 sc_trace(tf, reset, “Reset”);
 sc_trace(tf, data_ready, “Data Ready”);
 sc_trace(tf, data, “In”);
 sc_trace(tf, gcd_ready, “Out Ready”);
 sc_trace(tf, gcd_ready, “Out”);

 sc_start(-1);
 return 0;
}

The following steps describe how the input handshaking protocol
works:

1. The testbench asserts the data_ready signal (high), to indicate
that it can send new data in READ_LATENCY cycles. In this
example, READ_LATENCY is 2.

2. The behavioral block waits until it sees the data_ready signal.
Then it waits a further READ_LATENCY cycles before it can read
the data.

3. At the end of this wait, the behavioral block reads two consecutive
values from the data port.

4. This process repeats each time the testbench can send the next
data set.

The steps for implementing the output handshake protocol are
identical to the steps in Example 6-1 on page 6-6.

6-18

Using Handshaking in the Circuit and Testbench

Looking at the testbench code in Example 6-2, you see that the
handshaking for the testbench is done in the do_handshake function.
To send data to the behavioral block, the testbench asserts
data_ready (high) and then waits READ_LATENCY cycles. This
models the time it takes the testbench to get the data ready. At the
end of this wait, the testbench writes two consecutive values on the
data port, which the behavioral block reads.

The handshaking for the output of the behavioral block is identical to
that in Example 6-1 on page 6-6.

6-19

Using Handshaking in the Circuit and Testbench

Constraining the Width of Handshake Strobes

Because SystemC Compiler can insert clock cycles in the
superstate-fixed scheduling mode, you need to constrain the number
of clock cycles used to raise or lower handshake signals, and you
also need to constrain the number of cycles between raising a
handshake signal and reading or writing data. For example, in
Example 6-1 on page 6-6, you need to constrain the number of cycles
between reading a and reading b to one cycle. And you also need to
constrain the number of cycles between assertion of send_data and
reading the value of a. Figure 6-3 shows the section of code with the
input handshaking where you need to constrain the cycles. Line labels
are added to make it more convenient to use the set_cycles
command.

Figure 6-3 Constraining Input Handshake Signals

Use the set_cycles and find commands, described in the
CoCentric SystemC Compiler User Guide, to set these constraints
before scheduling. For example,

dc_shell> data = find cell *send_data_send_d* -hier
dc_shell> a = find cell *a_read_d1* -hier
dc_shell> b = find cell *b_read_d2* -hier
dc_shell> set_cycles 2 -from data -to a
dc_shell> set_cycles 1 -from a -to b

send_d: send_data.write(true);
 wait();
 wait(READ_LATENCY);

read_d1: a = data.read();

 send_data.write(false);

 wait();
read_d2: b = data.read();

Constrain to
READ_LATENCY
cycles

Constrain to
one cycle

6-20

Using Handshaking in the Circuit and Testbench

Similarly, you need to constrain the number of cycles for the output
handshake. Figure 6-4 shows the output handshake section of code
from Example 6-1 with line labels added.

Figure 6-4 Constraining Output Handshake Signals

You can use the set_cycles command to constrain the output
handshake cycles. For example,

dc_shell> r1 = find cell *gcd_ready_ready1* -hier
dc_shell> r0 = find cell *gcd_ready_ready0* -hier
dc_shell> set_cycles 3 -from r1 -to r0

ready1: gcd_ready.write(true);
 gcd.write(c);
 wait(WRITE_LATENCY);

ready0: gcd_ready.write(false);

 wait();

Constrain to
WRITE_LATENCY
cycles

6-21

Using Handshaking in the Circuit and Testbench

Using Two-Way Handshake Protocols

Use two-way handshake protocols for modules that do not have a
fixed response time and are scheduled with the superstate-fixed I/O
scheduling mode. A two-way handshake protocol means the block
requesting to send or receive data waits for an acknowledgement
signal from the other block. Therefore, two-way handshake uses an
acknowledgement signal rather than using a fixed latency like a
one-way handshake.

Two-Way Handshake Initiated From Behavioral Block

Figure 6-5 shows a timing diagram for a GCD behavioral block that
uses two-way handshake protocols to get data and to write data out.
The GCD block initiates the handshake with the testbench. Example
6-3 shows the code for the GCD block, the testbench, and the main
routine for simulation.

Note:
The number of cycles needed to compute the GCD is not fixed
because it depends on the value of the two numbers for which the
GCD is computed. Therefore, this example requires the use of
handshaking.

6-22

Using Handshaking in the Circuit and Testbench

Figure 6-5 Two-Way Handshake Protocol

clk

data

gcd c

send_data

gcd_ready

a b

Number of
cycles to
perform GCD is dependent on the input value

data_ready

gcd_seen

6-23

Using Handshaking in the Circuit and Testbench

Example 6-3 Two-Way Handshake Protocol From GCD Block
// gcd3.h Two-way handshake header file.

SC_MODULE(gcd_mod) {
 // Ports
 sc_in_clk clk; // Clock input
 sc_in<bool> reset; // Reset input
 sc_in<int> data_in; // Port for getting data

 // Handshake signals
 sc_out<bool> send_input; // Request input
 sc_in<bool> data_ready; // Data is ready
 sc_out<bool> output_ready; // Output is ready
 sc_in<bool> output_seen; // Output is seen

 sc_out<int> gcd_out; // Port to send GCD value

 // Process
 void gcd_algo(); // The process that does GCD

 // Internal functions
 int do_gcd(int a, int b); // Function of gcd algorithm

 SC_CTOR(gcd_mod) {
 SC_CTHREAD(gcd_algo, clk.pos());
 watching(reset.delayed() == true);
 }
};

/**********************************/
// gcd3.cc two-way handshake implementation file.

#include “systemc.h”
#include “gcd3.h”

void gcd_mod::gcd_algo()
{
 int a, b; // Two variables to compute gcd
 int c; // The GCD

 // Reset operations
 gcd_out = 0;
 send_input = false;
 output_ready = false;
 wait();

 while (true) {

6-24

Using Handshaking in the Circuit and Testbench

 // First get the two inputs
 // using receiver initiated handshake.
 send_input.write(true);
 wait();
 wait_until(data_ready.delayed() == true);
 // Read data and deassert send_input
 send_input.write(false);
 a = data_in.read();
 wait();
 b = data_in.read();

 // Now do the algorithm
 c = do_gcd(a, b);

 // Now write the output
 // using sender initiated handshake.
 output_ready = true;
 gcd_out = c;
 wait();
 wait_until(output_seen.delayed() == true);
 output_ready = false;
 wait();
 }
}

int gcd_mod::do_gcd(int a, int b) {
 int temp;

 if (a != 0 && b != 0) {
 while (b != 0) {
 while (a >= b) {
 a = a - b;
 wait();
 }
 temp = a;
 a = b;
 b = temp;
 wait();
 }
 }
 else {
 a = 0;
 wait();
 }
 return a;
}

6-25

Using Handshaking in the Circuit and Testbench

/***********************************/
// gcd3_test.h header file

SC_MODULE(testbench) {
 sc_in_clk clk;
 sc_in<bool> send_data;
 sc_out<bool> data_ready;
 sc_in<bool> gcd_ready;
 sc_out<bool> gcd_seen;
 sc_in<int> gcd;
 sc_out<bool> reset;
 sc_out<int> data;

 // Process
 void do_run();

 // Internal function
 void do_handshake(int a, int b);

 SC_CTOR(testbench) {
SC_CTHREAD(do_run, clk.pos());

 }
};

/***********************************/
// gcd3_test.cc testbench implementation file.

#include “systemc.h”
#include “gcd3_test.h”

void testbench::do_run()
{
 reset = false;
 gcd_seen = false;
 data_ready = false;
 wait();
 reset = true;
 wait();
 reset = false;
 wait();

 cout << “*** Reset Done - Begin Testing ***\n”;

 do_handshake(12, 6);
 do_handshake(172, 36);
 do_handshake(36, 172);
 do_handshake(19, 5);
 do_handshake(2584, 4712);

6-26

Using Handshaking in the Circuit and Testbench

 do_handshake(15, 0);
 cout << “ *** Testing Done ***\n”;
 sc_stop();
}

void testbench::do_handshake(int a, int b)
{
 cout << “GCD of “ << a << “ and “ << b << “ is = “;

 // Receiver initiated handshake
 // Wait until receiver is ready
 wait_until(send_data.delayed() == true);

 // Indicate data is ready and
 // write data in 2 consecutive cycles
 data_ready = true;
 data = a;
 wait();
 data_ready = false; // Deassert data_ready
 data = b;
 wait();

 // Sender initiated handshake
 // Wait until sender is ready
 wait_until(gcd_ready.delayed() == true);

 // Now read data
 cout << gcd.read() << endl;
 gcd_seen = true;
 wait();
 gcd_seen = false;
 wait();
}

/**/
// gcd3_main.cc simulation executable.

#include “systemc.h”
#include “gcd3.h”
#include “gcd3_test.h”

int
main()
{
 sc_signal<int> data, gcd;
 sc_signal<bool> reset, send_data, data_ready,
 gcd_ready, gcd_seen;
 sc_clock clock(“Clock”, 20, 0.5);

6-27

Using Handshaking in the Circuit and Testbench

 gcd_mod G(“GCD”);
 G(clock, reset, data, send_data, data_ready,
 gcd_ready, gcd_seen, gcd);

 testbench TB(“TB”);
 TB(clock, send_data, data_ready, gcd_ready,
 gcd_seen, gcd, reset, data);

 sc_trace_file *tf = sc_create_vcd_trace_file(“gcd”);
 sc_trace(tf, clock.signal(), “Clock”);
 sc_trace(tf, reset, “Reset”);
 sc_trace(tf, send_data, “Send Data”);
 sc_trace(tf, data_ready, “Data Ready”);
 sc_trace(tf, data, “In”);
 sc_trace(tf, gcd_ready, “Out Ready”);
 sc_trace(tf, gcd_seen, “Out Seen”);
 sc_trace(tf, gcd_ready, “Out”);

 sc_start(-1);
 return 0;
}

The following steps describe how the input handshaking protocol
works:

1. The behavioral block asserts the handshake signal send_data
(high), to indicate that it can process new data. It waits until it sees
a data_ready signal from the testbench. When it sees the
data_ready signal asserted, it reads the first piece of data.

2. In the next cycle, the module de-asserts (low) the send_data
signal and reads the second piece of data.

3. The behavioral block proceeds to compute the GCD of the two
numbers it has read. This computation can take an indeterminate,
but finite, number of cycles.

4. This process repeats each time the behavioral block is ready to
accept new data.

6-28

Using Handshaking in the Circuit and Testbench

The following steps are used to implement the output handshake
protocol:

1. The behavioral block asserts the gcd_ready signal, to indicate
that it can send new output data, and writes the output to the gcd
port.

2. The testbench waits until it sees the gcd_ready signal, reads the
output on the gcd port, and asserts (high) the gcd_seen signal.

3. The behavioral block waits until it sees the gcd_seen signal and
de-asserts (low) the gcd_ready signal. The testbench also
de-asserts the gcd_seen signal.

4. This process repeats each time the behavioral block can send
new output data.

6-29

Using Handshaking in the Circuit and Testbench

Two-Way Handshake Initiated From Testbench

Figure 6-6 shows a timing diagram for a GCD behavioral block that
uses two-way handshake protocols to get data and to write data out.
The testbench initiates the input handshake with the GCD block, and
the GCD block initiates the output handshake to send the GCD output
to the testbench. Example 6-4 shows the code for the GCD block,
the testbench, and the main routine for simulation.

Note:
The number of cycles needed to compute the GCD is not fixed,
because it depends on the value of the two numbers for which the
GCD is computed. Therefore, this example requires the use of
handshaking.

Figure 6-6 Two-Way Handshake Protocol

clk

data

data_ready

a

Number of
cycles to
perform GCD is dependent on the input value

data_seen

b

gcd c

gcd_ready

gcd_seen

6-30

Using Handshaking in the Circuit and Testbench

Example 6-4 Two-Way Handshake Protocol From Testbench
// gcd4.h Two-way handshake from testbench header file.

SC_MODULE(gcd_mod) {
 // Ports
 sc_in_clk clk; // Clock input
 sc_in<bool> reset; // Reset input
 sc_in<int> data_in; // Port to get data

 // Handshake signals
 sc_out<bool> data_seen; // Data read
 sc_in<bool> data_ready; // Data ready
 sc_out<bool> output_ready; // Output is ready
 sc_in<bool> output_seen; // Output is seen

 sc_out<int> gcd_out; // Port to send GCD value

 // Process
 void gcd_algo(); // The GCD process

 // Internal functions
 int do_gcd(int a, int b); // GCD algorithm function

 SC_CTOR(gcd_mod) {
 SC_CTHREAD(gcd_algo, clk.pos());
 watching(reset.delayed() == true);
 }
};

/**********************************/
// gcd4.cc behavioral module implementation file.

#include “systemc.h”
#include “gcd4.h”

void gcd_mod::gcd_algo()
{
 int a, b; // Two variables to compute gcd
 int c; // The GCD

 // Reset operations
 gcd_out = 0;
 data_seen = false;
 output_ready = false;
 wait();

6-31

Using Handshaking in the Circuit and Testbench

 while (true) {
 // First get the two inputs
 // using sender initiated handshake.
 wait_until(data_ready.delayed() == true);
 // Read data and assert data_seen
 data_seen = true;
 a = data_in.read();
 wait(2); // Two cycles for new data to arrive
 b = data_in.read();
 data_seen = false;
 wait();

 // Now do the algorithm
 c = do_gcd(a, b);

 // Now write the output
 // using sender initiated handshake
 output_ready = true;
 gcd_out = c;
 wait();
 wait_until(output_seen.delayed() == true);
 output_ready = false;
 wait();
 }
}

int gcd_mod::do_gcd(int a, int b)
{
 int temp;

 if (a != 0 && b != 0) {
 while (b != 0) {
 while (a >= b) {
 a = a - b;
 wait();
 }
 temp = a;
 a = b;
 b = temp;
 wait();
 }
 }
 else {
 a = 0;
 wait();
 }
 return a;
}

6-32

Using Handshaking in the Circuit and Testbench

/***********************************/
// gcd4_test.h testbench header file.

SC_MODULE(testbench) {
 sc_in_clk clk;
 sc_in<bool> data_seen;
 sc_out<bool> data_ready;
 sc_in<bool> gcd_ready;
 sc_out<bool> gcd_seen;
 sc_in<int> gcd;
 sc_out<bool> reset;
 sc_out<int> data;

 // Process
 void do_run();

 // Internal function
 void do_handshake(int a, int b);

 SC_CTOR(testbench) {
SC_CTHREAD(do_run, clk.pos());

 }
};

/***********************************/
// gcd4_test.cc testbench implementation file.

#include “systemc.h”
#include “gcd4_test.h”

void testbench::do_run()
{
 reset = false;
 gcd_seen = false;
 data_ready = false;
 wait();
 reset = true;
 wait();
 reset = false;
 wait();

 cout << “*** Reset Done - Begin Testing ***\n”;

 do_handshake(12, 6);
 do_handshake(172, 36);
 do_handshake(36, 172);

6-33

Using Handshaking in the Circuit and Testbench

 do_handshake(19, 5);
 do_handshake(2584, 4712);
 do_handshake(15, 0);
 cout << “ *** Testing Done ***\n”;
 sc_stop();
}

void testbench::do_handshake(int a, int b)
{
 cout << “GCD of “ << a << “ and “ << b << “ is = “;

 // Sender initiated handshake.
 // Send data ready signal and first data.
 data_ready = true;
 data = a;
 wait();
 wait_until(data_seen.delayed() == true);
 // Now send the second data
 // and deassert data_ready.
 data_ready = false; // Deassert data_ready
 data = b;
 wait();

 // Sender initiated handshake.
 // Wait until sender is ready.
 wait_until(gcd_ready.delayed() == true);
 // Now read data
 cout << gcd.read() << endl;
 gcd_seen = true;
 wait();
 gcd_seen = false;
 wait();
}

/**/
// gcd4_main simulation executable.

#include “systemc.h”
#include “gcd4.h”
#include “gcd4_test.h”

int
main()
{
 sc_signal<int> data, gcd;
 sc_signal<bool> reset, data_seen, data_ready,
 gcd_ready, gcd_seen;

6-34

Using Handshaking in the Circuit and Testbench

 sc_clock clock(“Clock”, 20, 0.5);

 gcd_mod G(“GCD”);
 G(clock, reset, data, data_seen, data_ready,
 gcd_ready, gcd_seen, gcd);

 testbench TB(“TB”);
 TB(clock, data_seen, data_ready, gcd_ready,
 gcd_seen, gcd, reset, data);

 sc_trace_file *tf = sc_create_vcd_trace_file(“gcd”);
 sc_trace(tf, clock.signal(), “Clock”);
 sc_trace(tf, reset, “Reset”);
 sc_trace(tf, data_seen, “Data Seen”);
 sc_trace(tf, data_ready, “Data Ready”);
 sc_trace(tf, data, “In”);
 sc_trace(tf, gcd_ready, “Out Ready”);
 sc_trace(tf, gcd_seen, “Out Seen”);
 sc_trace(tf, gcd_ready, “Out”);

 sc_start(-1);
 return 0;
}

The following steps describe how the input handshaking protocol
works:

1. The testbench asserts the handshake signal data_ready (high),
to indicate that it has new data to process.

2. The behavioral module waits until it sees the data_ready signal.
Then it asserts (high) the data_seen signal and reads the first
piece of data in the same cycle.

3. The testbench waits until it sees the data_seen signal asserted
(high). Then it sends the second piece of data and de-asserts
data_ready (low).

6-35

Using Handshaking in the Circuit and Testbench

4. Because the testbench needs to see the data_seen signal before
it sends the next piece of data, which takes two cycles, the
behavioral module waits two cycles before reading the second
piece of data, and it de-asserts (low) the data_seen signal to
indicate that it has finished reading the data set.

5. The behavioral block proceeds to compute the GCD of the two
numbers it has read. This computation can take an indeterminate,
but finite, number of cycles.

6. This process repeats each time the testbench has the next data
to send to the behavioral module.

The output handshake protocol is the same as Example 6-3 on page
6-23, which initiates the output handshake from the behavioral
module.

6-36

Using Handshaking in the Circuit and Testbench

Fast Handshaking

Example 6-5 shows a fragment of code for a behavioral block that
needs to wait for a ready_for_data handshake signal before it can
assert a new_data_available signal and write the new data in the
same clock cycle. General coding rule 5 (“General Coding Rule 5” on
page 3-20) requires a wait statement (shown in bold) immediately
after a while loop.

Example 6-5 Two-Way Handshake Using a while Loop
new_data_available.write(0);
while(ready_for_data.read() == 0) {

wait();
}
wait(); // Wait required after loop
new_data_available.write(1);
data.write(...);
wait();
...

The requirement of general coding rule 5 produces the timing diagram
shown in Figure 6-7. Two cycles are required between the assertion
of the ready_for_data signal and the new_data_available signal.

6-37

Using Handshaking in the Circuit and Testbench

Figure 6-7 Timing Diagram of while Loop

Using if…else

You can use an infinite while loop that contains an if...else conditional
branch to accomplish the handshake in one cycle. This method
moves the wait statement required for loop exit into the loop. Example
6-6 shows a fragment of code for this alternative code with the wait
statement in bold and Figure 6-8 shows the timing diagram.

Example 6-6 Fast Two-Way Handshake Using while Loop
new_data_available.write(0);
while (true) {
 if (ready_for_data.read() == 0) {

 wait();
 }
 else {
 new_data_available.write(1);
 data.write(...);
 wait();
 break;
 }
}
wait();

clk

data New data

ready_for_data

Old data

new_data_available

6-38

Using Handshaking in the Circuit and Testbench

Figure 6-8 Timing Diagram Using if…else

SystemC provides an convenient, alternative syntax for fast
handshaking, the wait_until statement, described in the next section.

clk

data New data

ready_for_data

new_data_available

Old data

6-39

Using Handshaking in the Circuit and Testbench

Using wait_until

You can use a wait_until statement rather than a while loop to
accomplish a fast handshake, as shown in bold in the code fragment
in Example 6-7. This method eliminates the extra wait statement
required to exit the while loop hierarchy, and it produces the timing
diagram shown in Figure 6-9.

Example 6-7 Fast Two-Way Handshake Using wait_until
new_data_available.write(0);
wait_until (rdy_for_data.delayed() == 0);
new_data_available.write(1);
data.write(...);
wait();

Figure 6-9 Timing Diagram Using wait_until

clk

data New data

ready_for_data

new_data_available

Old data

6-40

Using Handshaking in the Circuit and Testbench

Using a Pipeline Handshake Protocol

Loop pipelining has two restrictions that affect how handshake
protocols are implemented:

1. The pipelined loop can contain only unrolled loops. Therefore,
pipelined loops use only one-way handshake protocols, because
two-way handshake requires a rolled loop.

2. During execution, iterations of a pipelined loop overlap. You
cannot have a signal write operation in one loop iteration within
the same clock cycle as a write operation to the same signal in
any overlapping iteration.

Example 6-8 shows, in bold, a pipelined loop with a handshake signal
assertion in the first clock cycle of the loop. This is followed by a
de-assertion of the same signal in the next clock cycle of the loop.

Example 6-8 Incorrect Loop Pipeline With Handshake
...
while (true) {
 // Loop to pipeline with handshake
 for (int i = 0; i < 3; i++){
 send_data.write(true);
 wait();
 send_data.write(false);
 wait();
 ...
 }
}

If you pipeline the loop with an initiation interval of one clock cycle,
the three loop iterations overlap, as shown in Figure 6-10.

6-41

Using Handshaking in the Circuit and Testbench

Figure 6-10 Incorrect Loop Pipeline With Handshake

Figure 6-10 shows an incorrect handshake protocol for a pipelined
loop that causes resource contention on the send_data port when
the initiation interval is one clock cycle. In clock cycle 2, the send_data
port writes a FALSE in iteration 1 and a TRUE in iteration 2. In clock
cycle 3, the situation is similar. SystemC Compiler reports a resource
contention error on the send_data port.

You can resolve this resource contention by extending the initiation
interval to two clock cycles, as shown in Figure 6-11.

Iteration i=0 Iteration i=1 Iteration i=2

send_data.write(TRUE)

send_data.write(FALSE) send_data.write(TRUE)

send_data.write(FALSE) send_data.write(TRUE)

send_data.write(FALSE)

Clock
cycles Conflicting writes

to port send_data
at clock cycle 2.

Iteration 1 writes
a FALSE, and
iteration 2 writes
a TRUE.

A similar situation
exists at cycle 3

1

2

3

.

.

.

Initiation interval = 1

6-42

Using Handshaking in the Circuit and Testbench

Figure 6-11 Correct Loop Pipeline With Extended Initiation Interval

Changing the initiation interval to 2, as shown in Figure 6-11, however,
is not acceptable if the initiation interval must be one clock cycle.

To resolve a pipelined loop handshake resource contention with an
initiation interval of 1, assert the handshake signal in the first iteration
of the pipelined loop, and de-assert it after the pipelined loop exits
from the outer loop. Example 6-9 shows (in bold) this method of
correctly handshaking in a pipelined loop.

Iteration i=0 Iteration i=1 Iteration i=2

send_data.write(TRUE)

send_data.write(FALSE)

send_data.write(TRUE)

send_data.write(FALSE)

send_data.write(TRUE)

send_data.write(FALSE)

Clock
cycles

1

2

3

.

.

.

Initiation interval = 2

6-43

Using Handshaking in the Circuit and Testbench

Example 6-9 Correct Handshake in a Pipelined Loop
...
while (true){
 // Loop to pipeline with handshake
 for (int i = 0; i < 3; i++){
 ...
 send_data.write(true); //Assert handshake
 ...
 }
 wait();
 send_data.write(false); //De-assert
 ...
}

For Example 6-9, create a testbench that detects assertion of
send_data, and assume that the next assertion of the signal happens
after the initiation interval. This assumption is valid because of the
periodicity of loop pipelining.

When the testbench detects de-assertion of send_data, it recognizes
that the pipelined loop has exited. There are no more loop iterations
for the testbench to process, and therefore no more assumed
assertions of send_data.

Figure 6-12 illustrates loop pipelining of Example 6-9 with an initiation
interval of 1 clock cycle. Resource contention is prevented by
de-asserting send_data after the loop, rather than inside the loop.

6-44

Using Handshaking in the Circuit and Testbench

Figure 6-12 Correct Loop Pipeline Without Handshake Signal De-assertion

For coding rules about pipelining loops, see “Pipelining Loop Rules”
on page 3-45.

Iteration i=0 Iteration i=1 Iteration i=2

send_data.write(TRUE)

send_data.write(TRUE)

send_data.write(TRUE)

Clock
cycles

1

2

3

.

.

.

Initiation interval = 1

These two writes
do not cause
send_data to toggle.

send_data.write(FALSE)
After
loop
exit

These two writes
do not cause
send_data to toggle,
but testbench
 assumes a
toggle.

A-1

Compiler Directives

A
Compiler Directives A

This appendix provides a list of the compiler directives you can use
with SystemC Compiler, and it tells you where you can find further
details about using them.

A-2

Compiler Directives

Synthesis Compiler Directives

To specify a compiler directive in your SystemC code, insert a
comment in which the first word is either synopsys or snps. You
can use either a multiple-line comment enclosed in /* and */
characters or a single-line comment beginning with two slash
(//) characters.

Table A-1 lists the compiler directives in alphabetical order.

Table A-1 SystemC Compiler Compiler Directives

Compiler Directive Details

/* snps inout_param */ page A-5

/* snps line_label string */ page A-3

/* snps map_to_operator dw_part */ page A-3

/* snps preserve_function */ page A-4

/* snps resource name: variables = var,
 map_to_module = memory_module_name;
[memory_address_ports = port_name] */

page A-6

/* snps resource name: variables = var,
map_to_registerfiles = “TRUE”; */

page A-6

/* snps return_port_name port */ page A-4

/* snps synthesis_off */ and
/* snps synthesis_on */

page A-7

/* snps translate_off */ and
/* snps translate_on */

Use synthesis_off and synthesis_on
instead of translate_off and
translate_on.

/* snps unroll */ page A-8

A-3

Compiler Directives

line_label

Use the line_label compiler directive to label a loop or a line of
code. In SystemC Compiler generated reports, the label is reflected
in the report hierarchy.

my_module2 :: entry {
 // Synopsys compiler directive
while (true) { //snps line_label reset_loop2
 ...
 wait();
 ...
 wait();
}

}

See “Labeling a Loop” on page 3-34.

map_to_operator

Use the map_to_operator compiler directive to use a standard
DesignWare synthetic operator to implement a function. Place the
compiler directive in the first line of the function body.

sc_int<16> my_mult (const sc_int<8> A,
 const sc_int<8> B) {

 // snps map_to_operator MULT2_TC_OP
 // snps return_port_name P
 // Function code block
 ...

 return (A*B);
}

See “Using DesignWare Components” on page 4-11.

A-4

Compiler Directives

return_port_name

When you use the map_to_operator compiler directive, the name
of the return port, if any, is Z by default. You can override the name
by using the return_port_name compiler directive.

int xyz(int a, const int& b) {
 /* snps map_to_operator XYZ_OP */
 /* snps return_port_name P */
 ...
}

See “Using DesignWare Components” on page 4-11.

preserve_function

Use the preserve_function compiler directive to preserve a
function as a separate level of hierarchy. Place the compiler directive
in the first line of the function body.

// Define my_func
int my_func(int y, int& x) {
 /* synopsys preserve_function */
 x = x + y;
 return x;
}

void my_module::entry() {
 int a, b, c;
 ...
 c = my_func(a , b);
 ...
}

A-5

Compiler Directives

During synthesis, the level of hierarchy is compiled into a component
that is treated exactly the same way as any other combinational
component, such as an adder or a multiplier. Only functions that
describe purely combinational RTL designs can be preserved. See
“Using Preserved Functions” on page 4-4.

inout_param

Use the inout_param compiler directive with the
preserve_function compiler directive.

SystemC Compiler maps nonconstant C++ reference parameters to
the output ports of the design corresponding to a preserved function.
If the preserved function contains a read from a reference parameter,
SystemC Compiler assumes that you are trying to read an output port
and issues an error message unless you use the inout_param
compiler directive. Notice that the inout_param is placed
immediately after the reference parameter and is inside the
parentheses. The preserve_function directive is placed in the
first line of the function body.

void my_func (int y, int& x /*snps inout_param */) {
 /* snps preserve_function */
 x = x + y;
}

When you use the inout_param compiler directive, SystemC
Compiler creates an input port x and an output port x’ for the x
reference parameter so it can perform the read and the write.

A-6

Compiler Directives

resource

Use the resource compiler directive and the map_to_module
attribute in your code to specify the array that is to be mapped to a
memory. See “Mapping Arrays to Memories” on page 5-11.

while (true){

sc_int<32> amem[16];

/* synopsys
resource RAM_A:

variables = "amem",
map_to_module = "my_mem_model"

*/
// array amem mapped to a single RAM

amem[i] = ser_in;
a = amem[j];

}

Use the synopsys resource compiler directive and the
map_to_registerfiles attribute in your code to specify the array
that is to be mapped to a register file. See “Mapping Arrays to Register
Files” on page 5-8.

A-7

Compiler Directives

sc_int<32> mem [16];
/*synopsys resource R1

 variables="mem",
 map_to_registerfiles="TRUE";*/

 //The following are all mapped to memory.
//Write to mem
mem[0] = a;
mem[1] = b;
// and so forth

//Read from mem
a = mem[0];
b = mem[1];
// and so forth

synthesis_off and synthesis_on

Use the synthesis_off and synthesis_on compiler directives
to isolate simulation-specific code and prevent the code from being
interpreted for synthesis.

/* synopsys synthesis_off */
... //Simulation-only code
/* snps synthesis_on */

translate_off and translate_on

Use synthesis_off and synthesis_on compiler directives
instead.

A-8

Compiler Directives

unroll

Use the synopsys unroll compiler directive to unroll a for loop.
Place the synopsys unroll compiler directive as a comment in
the first line in the body of the for loop. See “Unrolling for Loops” on
page 3-37.

...
for (int i=0; i < 8; i++) {
 // synopsys unroll
 .. // loop operations
}
...

A-9

Compiler Directives

C/C++ Compiler Directives

You can use C/C++ compiler directives instead of or in addition to the
equivalent synopsys compiler directives.

C Line Label

Use the C line label instead of the line_label compiler directive. See
“Labeling a Loop” on page 3-34.

my_module1 :: entry {
// C style line label
reset_loop1: while (true) {
 ...
 wait();
 ...
 wait();

 }
}

C Conditional Compilation

Use the C/C++ language #if, #ifdef, #ifndef, #elif, #else, and #endif
conditional compilation directives to isolate blocks of code and
prevent them from being included during synthesis.

 //C directive
#ifdef SIM
...//Simulation-only code
#endif

A-10

Compiler Directives

B-1

First-In-First-Out Example

B
First-In-First-Out Example B

This appendix provides a simple first-in-first-out (FIFO) circular buffer
example that shows you a behavioral model with a testbench and the
equivalent RTL model that uses the same testbench.

This chapter contains the following sections:

• FIFO Description

• Architectural Model

• Behavioral Model

• RTL Model

B-2

First-In-First-Out Example

FIFO Description

The FIFO is a circular buffer that accepts a 32-bit integer value from
the input and writes an integer to the output. A reset port clears all
data in the buffer.

Architectural Model

The architectural model describes the FIFO algorithm. The size of
the FIFO is specified with the BUFSIZE macro. The number of bits
required to address the FIFO is specified with the LOGBUFSIZE
macro. Example B-1 shows the architectural simulation model, which
works for a FIFO with a size that is a power of 2.

B-3

First-In-First-Out Example

Example B-1 Architectural Simulation Model
/*
 fifo.cc executable specification.

 This model works for a FIFO
 with a size that is a power of 2.
 */

#include "systemc.h"

#define BUFSIZE 4
#define LOGBUFSIZE 2

struct circ_buf {
 int buffer[BUFSIZE]; // The FIFO buffer
 sc_uint<LOGBUFSIZE> headp; // Pointer to head of FIFO
 sc_uint<LOGBUFSIZE> tailp; // Pointer to tail of FIFO
 int num_in_buf; // Number of buffer elements

 // Routine to initialize the FIFO
 void init() {
 num_in_buf = 0;
 headp = 0;
 tailp = 0;
 }

 // Constructor
 circ_buf() {
 init();
 }

 void status(); // Status of the FIFO
 int read(); // To read from the FIFO
 void write(int data); // To write to the FIFO
 bool is_full(); // To determine if FIFO is full
 bool is_empty(); // To determine if FIFO is empty
};

int
circ_buf::read() {
 if (num_in_buf) {
 num_in_buf--;
 return (buffer[headp++]);
 }
 // Otherwise ignore read request
}

B-4

First-In-First-Out Example

void
circ_buf::write(int data) {
 if (num_in_buf < BUFSIZE) {
 buffer[tailp++] = data;

num_in_buf++;
 }
 // Otherwise ignore write request
}

bool
circ_buf::is_full() {
 return (num_in_buf == BUFSIZE);
}

bool
circ_buf::is_empty() {
 return (num_in_buf == 0);
}

void
circ_buf::status() {
 cout << "FIFO is ";
 if(is_empty()) cout << "empty\n" ;
 else if (is_full()) cout << "full\n" ;
 else cout << "neither full nor empty\n";
}

int
main()
{
 circ_buf fifo; // instantiate buffer

 // This is the testbench for the FIFO

 fifo.status();

 cout << "FIFO write 1\n"; fifo.write(1);
 cout << "FIFO write 2\n"; fifo.write(2);
 cout << "FIFO write 3\n"; fifo.write(3);
 fifo.status();
 cout << "FIFO write 4\n"; fifo.write(4);
 fifo.status();

 cout << "FIFO read " << fifo.read() << endl;
 fifo.status();
 cout << "FIFO read " << fifo.read() << endl;
 cout << "FIFO read " << fifo.read() << endl;
 cout << "FIFO read " << fifo.read() << endl;

B-5

First-In-First-Out Example

 fifo.status();

 cout << "FIFO write 1\n"; fifo.write(1);
 cout << "FIFO write 2\n"; fifo.write(2);
 cout << "FIFO write 3\n"; fifo.write(3);
 fifo.status();
 cout << "FIFO read " << fifo.read() << endl;
 cout << "FIFO read " << fifo.read() << endl;
 fifo.status();

 cout << "FIFO write 4\n"; fifo.write(4);
 cout << "FIFO write 5\n"; fifo.write(5);
 fifo.status();
 cout << "FIFO write 6\n"; fifo.write(6);
 fifo.status();

 cout << "FIFO read " << fifo.read() << endl;
 fifo.status();
 cout << "FIFO read " << fifo.read() << endl;
 cout << "FIFO read " << fifo.read() << endl;
 fifo.status();
 cout << "FIFO read " << fifo.read() << endl;
 fifo.status();

 return 0;
}

B-6

First-In-First-Out Example

Behavioral Model

The behavioral description of the FIFO has one SC_CTHREAD
clocked thread process.

Ports and Signals

Several signals are added for the hardware description.

The FIFO has the following ports and signals:

• data_in

An sc_in port of type int to write 32-bit data into the FIFO.

• data_out

An sc_out port of type int to read 32-bit data from the FIFO.

• clk

An sc_in_clk port for the SC_CTHREAD process

• reset

An sc_in port of type bool to clear the data from the buffer, which
is specified as a global reset.

• read_info

An sc_in port of type bool that indicates a read from the FIFO.

• write_info

An sc_in port of type bool that indicates a write to the FIFO.

B-7

First-In-First-Out Example

• full

An sc_out port of type bool that indicates that the FIFO is full.

• empty

An sc_out port of type bool that indicates that the FIFO is empty.

B-8

First-In-First-Out Example

Behavioral Description

Example B-2 shows the header file, Example B-3 shows the
implementation file, and Example B-4 shows a command script to
synthesize to gates for the behavioral model of the FIFO.

Example B-2 Behavioral Header File
/* fifo_bhv.h header file */

#define BUFSIZE 4
#define LOGBUFSIZE 2
#define LOGBUFSIZEPLUSONE 3

SC_MODULE(circ_buf) {
 sc_in_clk clk; // The clock
 sc_in<bool> read_fifo; // Indicate read from FIFO
 sc_in<bool> write_fifo; // Indicate write to FIFO
 sc_in<int> data_in; // Data written to FIFO
 sc_in<bool> reset; // Reset the FIFO

 sc_out<int> data_out; // Data read from the FIFO
 sc_out<bool> full; // Indicate FIFO is full
 sc_out<bool> empty; // Indicate FIFO is empty

 int buffer[BUFSIZE]; // FIFO buffer
 sc_uint<LOGBUFSIZE> headp; // Pointer to FIFO head
 sc_uint<LOGBUFSIZE> tailp; // Pointer to FIFO tail
 // Counter for number of elements
 sc_uint<LOGBUFSIZEPLUSONE> num_in_buf;

 void read_write(); // FIFO process

 SC_CTOR(circ_buf) {
 SC_CTHREAD(read_write, clk.pos());
 watching(reset.delayed() == true);
 }
};

B-9

First-In-First-Out Example

Example B-3 Behavioral Implementation File
 /* fifo_bhv.cc implementation file */

#include "systemc.h"
#include "fifo_bhv.h"

void
circ_buf::read_write() {
 // Reset operations
 headp = 0;
 tailp = 0;
 num_in_buf = 0;
 full = false;
 empty = true;
 data_out = 0;
 wait();

 // Main loop
 while (true) {
 if (read_fifo.read()) {

 // Check if FIFO is not empty
 if (num_in_buf != 0) {
 num_in_buf--;
 data_out = buffer[headp++];
 full = false;
 if (num_in_buf == 0) empty = true;
 }
 // Ignore read request otherwise
 wait();
 }
 else if (write_fifo.read()) {

 // Check if FIFO is not full
 if (num_in_buf != BUFSIZE) {
 buffer[tailp++] = data_in;
 num_in_buf++;
 empty = false;
 if (num_in_buf == BUFSIZE) full = true;
 }
 // Ignore write request otherwise
 wait();
 }
 else {
 wait();
 }
 }
}

B-10

First-In-First-Out Example

Example B-4 Behavioral Synthesis to Gates Script
search_path = search_path + "$SYNOPSYS/libraries/syn"
target_library = {"tc6a_cbacore.db"};
synthetic_library = {"dw01.sldb","dw02.sldb"}
link_library = {"*"} + target_library + synthetic_library

bc_enable_analysis_info = "false"
effort_level = medium
io_mode = super
top_unit = "fifo_bhv"

sh date
compile_systemc top_unit + ".cc"

create_clock clk -p 10

bc_time_design

schedule -io io_mode -effort effort_level

compile

write -hier -f db -o top_unit + "_gate.db"

B-11

First-In-First-Out Example

Behavioral Testbench

Example B-5 shows the header file for the FIFO testbench; Example
B-6 shows the implementation file; and Example B-7 shows the
top-level simulation file, main.cc.

Example B-5 Behavioral Testbench Header File
/* fifo_bhv_test.h header file */

SC_MODULE(testbench) {
 sc_in_clk clk;
 sc_in<int> data_in;
 sc_in<bool> full;
 sc_in<bool> empty;

 sc_out<bool> read_fifo;
 sc_out<bool> write_fifo;
 sc_out<int> data_out;
 sc_out<bool> reset;

 void stim();
 void monitor();

 SC_CTOR(testbench) {
SC_CTHREAD(stim, clk.pos());

 }
};

Example B-6 Behavioral Testbench Implementation File
/* fifo_bhv_test.cc testbench implementation file */

#include "systemc.h"
#include "fifo_bhv_test.h"

void
testbench::stim()
{
 reset.write(0);
 write_fifo.write(false);
 read_fifo.write(false);
 wait();

B-12

First-In-First-Out Example

 reset.write(true);
 wait(2);
 reset.write(false);
 cout << " *** Reset Done - starting test ***\n";
 wait();

 write_fifo.write(true);
 cout << "FIFO write 1"; data_out.write(1); monitor();
 wait();
 cout << "FIFO write 2"; data_out.write(2); monitor();
 wait();
 cout << "FIFO write 3"; data_out.write(3); monitor();
 wait();
 cout << "FIFO write 4"; data_out.write(4); monitor();
 wait();
 write_fifo.write(false); monitor(); wait();

 read_fifo.write(true); monitor();
 wait(2);
 cout << "FIFO read " << data_in.read(); monitor();
 wait();
 cout << "FIFO read " << data_in.read(); monitor();
 wait();
 cout << "FIFO read " << data_in.read(); monitor();
 read_fifo.write(false); wait();
 cout << "FIFO read " << data_in.read(); monitor();
 wait();

 write_fifo.write(true);
 cout << "FIFO write 1"; data_out.write(1); monitor();
 wait();
 cout << "FIFO write 2"; data_out.write(2); monitor();
 wait();
 cout << "FIFO write 3"; data_out.write(3); monitor();
 wait();
 write_fifo.write(false); monitor(); wait();

 read_fifo.write(true); monitor(); wait(2);
 read_fifo.write(false);
 cout << "FIFO read " << data_in.read() ; monitor();
 wait();
 cout << "FIFO read " << data_in.read() ; monitor();
 wait();

 write_fifo.write(true);
 cout << "FIFO write 4"; data_out.write(4); monitor();
 wait();
 cout << "FIFO write 5"; data_out.write(5); monitor();

B-13

First-In-First-Out Example

 wait();
 cout << "FIFO write 6"; data_out.write(6); monitor();
 wait();
 write_fifo.write(false); monitor(); wait();

 read_fifo.write(true); monitor();
 wait(2);
 cout << "FIFO read " << data_in.read() ; monitor();
 wait();
 cout << "FIFO read " << data_in.read() ; monitor();
 wait();
 cout << "FIFO read " << data_in.read() ; monitor();
 read_fifo.write(false); wait();
 cout << "FIFO read " << data_in.read() ; monitor();
 monitor();
 wait(10);

 sc_stop();
}

void
testbench::monitor()
{
 cout << " FULL = " << full.read();
 cout << " EMPTY = " << empty.read();
 cout << endl;
}

B-14

First-In-First-Out Example

Example B-7 Behavioral Top-Level Simulation File
/* main.cc simulation file for behavioral fifo testbench. */

#include "systemc.h"
#include "fifo_bhv.h"
#include "fifo_bhv_test.h"

int
main()
{
 sc_signal<bool> reset, write_fifo,
 read_fifo, full, empty;
 sc_signal<int> data_in, data_out;

 sc_clock clock("Clock", 20.0, 0.5);

 testbench T("Testbench");
 T(clock, data_out, full, empty, read_fifo,
 write_fifo, data_in, reset);

 circ_buf FIFO("FIFO");
 FIFO(clock, read_fifo, write_fifo, data_in,
 reset, data_out, full, empty);

 sc_trace_file *tf =
 sc_create_vcd_trace_file("bhv");
 sc_trace(tf, reset, "Reset");
 sc_trace(tf, write_fifo, "WRITE");
 sc_trace(tf, read_fifo, "READ");
 sc_trace(tf, full, "FULL");
 sc_trace(tf, empty, "EMPTY");
 sc_trace(tf, data_in, "DATA-IN");
 sc_trace(tf, data_out, "DATA-OUT");
 sc_trace(tf, clock.signal(), "Clock");
 sc_start(-1);

 return 0;
}

B-15

First-In-First-Out Example

RTL Model

To create an RTL model instead of a behavioral model, you need to
do the following:

• Separate the control logic and data path

• Define an explicit FSM for the control logic

• Refine the module to be cycle accurate internally

Example B-8 shows the header file for the RTL version of the FIFO,
and Example B-9 shows the implementation file. This RTL example
shows the level of detail you need in order to describe an RTL model,
which is automatically created by SystemC Compiler from a
behavioral description. The RTL coding style has separate processes
for the FSM control and data path. The FIFO RTL model has the
following separate processes:

• ns_logic

The process for describing the next state logic.

• update_regs

The process for updating all the FIFO registers.

• gen_full

The process for generating a buffer full signal.

• gen_empty

The process for generating a buffer empty signal.

B-16

First-In-First-Out Example

RTL Description

The I/O communication for the RTL model is identical to the I/O for
the behavioral model. Because the FIFO RTL description has four
separate processes, the RTL description has extra internal signals to
communicate between the processes.

Example B-8 RTL Header File
/* fifo_rtl.h header file */

#define BUFSIZE 4
#define LOGBUFSIZE 2
#define LOGBUFSIZEPLUSONE 3

SC_MODULE(circ_buf) {
 // Same I/O as behavioral
 sc_in<bool> clk;
 sc_in<bool> read_fifo;
 sc_in<bool> write_fifo;
 sc_in<int> data_in;
 sc_in<bool> reset;
 sc_out<int> data_out;
 sc_out<bool> full;
 sc_out<bool> empty;

 // Internal signals
 sc_signal<int> buf0, buf0_next;
 sc_signal<int> buf1, buf1_next;
 sc_signal<int> buf2, buf2_next;
 sc_signal<int> buf3, buf3_next;
 sc_signal<sc_uint<LOGBUFSIZEPLUSONE> >
 num_in_buf, num_in_buf_next;
 sc_signal<bool> full_next, empty_next;
 sc_signal<int> data_out_next;

 // Declare processes
 void ns_logic(); // Next-state logic
 void update_regs();// Update all registers
 void gen_full(); // Generate a full signal
 void gen_empty(); // Generate an empty signal

 // Constructor
 SC_CTOR(circ_buf) {

B-17

First-In-First-Out Example

SC_METHOD(ns_logic);
sensitive << read_fifo << write_fifo

 << data_in << num_in_buf;

SC_METHOD(update_regs);
sensitive_pos << clk;

SC_METHOD(gen_full);
sensitive << num_in_buf_next;

SC_METHOD(gen_empty);
sensitive << num_in_buf_next;

 }
};

Example B-9 RTL Implementation File
/* fifo_rtl.cc implementation file */

#include "systemc.h"
#include "fifo_rtl.h"

void circ_buf::gen_full(){
 if (num_in_buf_next.read() == BUFSIZE)
 full_next = 1;
 else
 full_next = 0;
}

void circ_buf::gen_empty(){
 if (num_in_buf_next.read() == 0)
 empty_next = 1;
 else
 empty_next = 0;
}

void circ_buf::update_regs(){
 if (reset.read() == 1) {
 full = 0;
 empty = 1;
 num_in_buf = 0;
 buf0 = 0;
 buf1 = 0;
 buf2 = 0;
 buf3 = 0;
 data_out = 0;

B-18

First-In-First-Out Example

 }
 else {
 full = full_next;
 empty = empty_next;
 num_in_buf = num_in_buf_next;
 buf0 = buf0_next;
 buf1 = buf1_next;
 buf2 = buf2_next;
 buf3 = buf3_next;
 data_out = data_out_next;
 }
}

void circ_buf::ns_logic(){
 // Default assignments
 buf0_next = buf0;
 buf1_next = buf1;
 buf2_next = buf2;
 buf3_next = buf3;
 num_in_buf_next = num_in_buf;
 data_out_next = 0;

 if (read_fifo.read() == 1) {
 if (num_in_buf.read() != 0) {
 data_out_next = buf0;
 buf0_next = buf1;
 buf1_next = buf2;
 buf2_next = buf3;
 num_in_buf_next = num_in_buf.read() - 1;
 }
 }
 else if (write_fifo.read() == 1) {
 switch(int(num_in_buf.read())) {
 case 0:
 buf0_next = data_in.read();
 num_in_buf_next = num_in_buf.read() + 1;
 break;
 case 1:
 buf1_next = data_in.read();
 num_in_buf_next = num_in_buf.read() + 1;
 break;
 case 2:
 buf2_next = data_in.read();
 num_in_buf_next = num_in_buf.read() + 1;
 break;
 case 3:
 buf3_next = data_in.read();
 num_in_buf_next = num_in_buf.read() + 1;

B-19

First-In-First-Out Example

 default:
 // ignore the write command
 break;
 }
 }
}

B-20

First-In-First-Out Example

RTL Testbench

The RTL testbench is identical to the behavioral testbench, Example
B-5 on page B-11 and Example B-6 on page B-11. Example B-10
shows the top-level RTL simulation file.

Example B-10 RTL Top-Level Simulation File
/* main_rtl.cc simulation run file. */

#include "systemc.h"
#include "fifo_rtl.h"
#include "fifo_rtl_test.h"

int
main()
{
 sc_signal<bool> reset, write_fifo,
 read_fifo, full, empty;
 sc_signal<int> data_in, data_out;

 sc_clock clock("Clock", 20.0, 0.5);

 testbench T("Testbench");
 T(clock, data_out, full, empty, read_fifo,
 write_fifo, data_in, reset);

 circ_buf FIFO("FIFO");
 FIFO(clock, read_fifo, write_fifo, data_in,
 reset, data_out, full, empty);

 sc_trace_file *tf =
 sc_create_vcd_trace_file("bhv");
 sc_trace(tf, reset, "Reset");
 sc_trace(tf, write_fifo, "WRITE");
 sc_trace(tf, read_fifo, "READ");
 sc_trace(tf, full, "FULL");
 sc_trace(tf, empty, "EMPTY");
 sc_trace(tf, data_in, "DATA-IN");
 sc_trace(tf, data_out, "DATA-OUT");
 sc_trace(tf, clock.signal(), "Clock");
 sc_start(-1);

 return 0;
}

C-1

Memory Controller Example

C
Memory Controller Example C

This appendix provides a simple memory controller example.

It contains the following sections:

• Memory Controller Description

• Functional Simulation Model

• Refined Behavioral Model

C-2

Memory Controller Example

Memory Controller Description

The memory controller handles all internal memory accesses in a
system and provides a simple, command-based interface that lets
the testbench or other modules read to and write from memory.

Commands

The memory controller responds to the following four commands
(other commands are illegal):

• WTBYT

The WTBYT command writes a byte of memory. It is a 3-byte
sequence of the WTBYT command, address, and data.

• WTBLK

The WTBLK command writes a block of memory. It is a 6-byte
sequence of the WTBLK command, address, and 4 bytes of data.

• RDBYT

The RDBYT command reads a byte of memory. It is a 3-byte
sequence of the RDBYT command, address, and getting the new
data.

• NOP

The NOP command is an idle or no operation state.

C-3

Memory Controller Example

Ports

The memory controller has the following ports:

• into

An sc_in port for reading the command, address, and data

• outof

An sc_out port for returning the data read from memory

• clk

An sc_in_clk port for the process

• reset

An sc_in port for global reset, which de-asserts the com_complete
signal

• new_command

An sc_in port handshake signal that asserts high when a new
command is available for processing

• com_command

An sc_out port handshake signal that asserts high when a
command is complete and the memory controller can accept a
new command

C-4

Memory Controller Example

Communication Protocol

The communication protocol between the memory controller and a
testbench or another module executes in the following sequence:

1. A testbench or module communicating with the memory controller
writes a token (defined in Example C-4) on the into port, and then
it asserts the new_command signal.

2. The memory controller reacts to the assertion of the
new_command in the following sequence:

a. Reads the token from the into port

b. Executes the WTBYT, WRBLK, or RDBYT command. In the
case of a NOP command, it does nothing and skips step 3.

c. Asserts the com_complete signal

3. The testbench or communicating module reacts to the
com_complete assertion and de-asserts the new_command
signal

4. The memory controller reacts to the de-assertion of the
new_command signal by de-asserting the com_complete signal.

C-5

Memory Controller Example

Functional Simulation Model

Example C-1 shows the header file, and Example C-2 shows the
implementation file for the functional simulation model of the memory
controller. At the functional level of abstraction, the input and output
data is a user-defined token, defined in Example C-3. A token is 8
bits wide and implemented with a struct. The token consists of a
command_t (defined in Example C-4) with an address of type
unsigned char and a four-element array of type unsigned char
(defined in Example C-3).

In Example C-1, notice that the process is an SC_METHOD sensitive
to the new_command and reset signals.

C-6

Memory Controller Example

Example C-1 Memory Controller Header File
//mem_controller.h header file
#ifndef _MEM_CONTROLLER_H_
#define _MEM_CONTROLLER_H_

SC_MODULE(mem_controller) {

 sc_in<token> into;
 sc_in<bool> reset;
 sc_in<bool> new_command;
 sc_out<token> outof;
 sc_out<bool> com_complete;

 // Internal variables
 unsigned char memory[256];

 void entry();
 SC_CTOR(mem_controller) {
 SC_METHOD(entry);
 sensitive << new_command << reset;
 }

};
 #endif

C-7

Memory Controller Example

Example C-2 Memory Controller Implementation File
//mem_controller.cpp implementation file
#include "systemc.h"
#include "memc_types.h"
#include "token.h"
#include "mem_controller.h"

void mem_controller::entry() {
 token com_pkt;

 if (reset == true) {
 com_complete.write(false);
 }
 else if (new_command.posedge()) {

 com_pkt = into.read();
 switch (com_pkt.command) {// opcode
 case NOP:
 break;
 case RDBYT:
 // get data out of memory
 com_pkt.data[0] =
 (memory[com_pkt.address]);
 outof.write(com_pkt);
 break;
 case WTBYT:
 memory[com_pkt.address] = com_pkt.data[0];
 break;
 case WTBLK:
 for(short i=0;i<4;i++) {
 memory[com_pkt.address+i] =
 com_pkt.data[i];
 }
 break;
 default:
 cout << "Illegal opcode : "
 << com_pkt.command << endl;
 break;
 } // end switch
 com_complete.write(true); // handshake
 } // end else if

C-8

Memory Controller Example

 else if (new_command.negedge()) {
 com_complete.write(false); //handshake
 } // end else if else
} // end entry

Example C-3 Token Header File
//token.h header file
struct token {
 command_t command;
 unsigned char address;
 unsigned char data[4];

 // Define the == operator
 inline bool operator ==
 (const token& rhs) const{
 return
 (command == rhs.command && address == rhs.address &&
 data[0] == rhs.data[0] && data[1] == rhs.data[1] &&
 data[2] == rhs.data[2] && data[3] == rhs.data[3]);
 }
 };

Example C-4 Memory Controller Command Types
//memc_types.h
#ifndef _MEMC_TYPES_
#define _MEMC_TYPES_

 enum command_t {
 NOP,
 RDBYT,
 WTBYT,
 WTBLK
};

#endif

C-9

Memory Controller Example

Refined Behavioral Model

Refining the functional simulation model to a behavioral
synthesizable model means clarifying the data types and the
communication protocol.

The process type is changed to a SC_CTHREAD clocked thread
process instead of an SC_METHOD process.

Data Types

To refine the abstract data types in Example C-3 to specified bit-width
data types, Example C-5 shows,

• The into and outof data ports are declared as
sc_in<sc_uint<8> > and sc_out<sc_uint<8> > types instead of
the abstract token type.

• The memory is declared as an array of type sc_int<8> instead of
an array of type unsigned char.

Communication Protocol

Figure C-1 illustrates the data flow into and out of the memory
controller.

C-10

Memory Controller Example

Figure C-1 Behavioral Input Data Flow

Clock Placement

Notice the placement of wait statements in the implementation file
(Example C-6) that implicitly define the control.

Behavioral Model

Example C-5 shows the header file and Example C-6 shows the
implementation file for the refined behavioral model of the memory
controller. Example C-7 shows a command script for behavioral
synthesis to gates.

The functional and behavioral abstraction levels use the same
memc_types.h file to define the memory controller commands, shown
in Example C-4

A
d

d
r

A
d

d
r

D
at

a

D
at

a

D
at

a

D
at

a

7

A
d

d
r

Time

WTBLK RDBYT WTBYT

G
et

d
at

a

ad
d

r

ad
d

r+
1

ad
d

r+
2

ad
d

r+
3

0

cycle boundariescycle boundaries

C
o

m
m

an
d

D
at

a

C
o

m
m

an
d

C
o

m
m

an
d

C-11

Memory Controller Example

Example C-5 Behavioral Header File
//mem_controller.h header file

#ifndef _MEM_CONTROLLER_H_
#define _MEM_CONTROLLER_H_

SC_MODULE(mem_controller) {

 sc_in<sc_uint<8> > into;
 sc_in<bool> reset;
 sc_out<sc_uint<8> > outof;
 sc_in_clk clk;

 // Internal variables
 sc_int<8> memory[32];
 /* snps resource RAM_A: variables = "memory",
 map_to_registerfiles = "TRUE"; */

 void entry();

 SC_CTOR(mem_controller) {
 SC_CTHREAD(entry, clk.pos());
 watching(reset.delayed() == true);
 }
};
#endif

C-12

Memory Controller Example

Example C-6 Behavioral Implementation File
//mem_controller.cpp implementation file
#include <math.h>
#include "systemc.h"
#include "memc_types.h"
#include "mem_controller.h"

void mem_controller::entry() {
 sc_uint<8> data_tmp;
 sc_uint<8> address;
 data_tmp = 0;
 address = 0;
 wait();
 while (true) {
 data_tmp = into.read();
 switch (data_tmp) {// determine opcode
 case NOP:
 wait(); // do nothing
 break;
 case RDBYT:
 wait();
 address = into.read(); // get address
 wait(); //wait one to mimic latency
 data_tmp = memory[address]; // get data out of memory
 outof.write(data_tmp);
 wait();
 break;
 case WTBYT:
 wait();
 address = into.read(); // get address
 wait();
 data_tmp = into.read(); // get data
 memory[address] = data_tmp; // write data
 wait();
 break;
 case WTBLK:
 wait();
 address = into.read(); // get address
 wait();
 for (short i=0; i<4; i++) {
 data_tmp = into.read(); // get data

C-13

Memory Controller Example

 memory[address+i] = data_tmp;
 // write data
 wait();
 }
 break;
 default:
 wait();
 break;
 } // end switch
 } // end while
} // end entry

Example C-7 Behavioral Synthesis to Gates Script
top_unit = "mem_controller"
search_path = search_path + {"../ram"}
synthetic_library = {"dw01.sldb" "ram.sldb"}
bc_enable_analysis_info = "true"
target_library = "tc6a_cbacore.db";
link_library = target_library + synthetic_library ;

compile_systemc mem_controller.cpp
write -f db -hier -o top_unit + "_elab.db"

create_clock -p 20.0 clk
bc_time_design
write -f db -hier -o top_unit + "_time.db"

schedule -io super
write -f db -hier -o top_unit + "_rtl.db"

compile
write -f db -hier -o top_unit + "_gate.db"

C-14

Memory Controller Example

D-1

Fast Fourier Transform Example

D
Fast Fourier Transform Example D

This appendix provides a 16-point fast Fourier transform (FFT)
example that shows you a functional floating-point model and a
behavioral fixed-point model that uses numerous arrays and bit
manipulations.

This chapter contains the following sections:

• FFT Description

• FFT Functional Model

• FFT Behavioral Model

• FFT Testbench

D-2

Fast Fourier Transform Example

FFT Description

Figure D-1 shows the input and output ports and data types for the
16-point FFT.

Figure D-1 FFT Ports and Data Types

FFT Computation

The FFT block computes a 16-point FFT on a sequence of complex
inputs by using a radix-2 decimation in frequency algorithm. The input
data is read as a signed 16-bit fixed-point number with 10 fractional
bits. Twiddle factors and output values are in the same
representation.

Internally in the block, computation is performed with fixed-point
arithmetic. The input samples and output transformations are
externally inferred as 16-bit integers.

FFTFFT

data_req

data_valid

in_real

in_imag

data_ready

data_ack

out_real

out_imag

clk reset

D-3

Fast Fourier Transform Example

Refining From Functional to Behavioral

The floating-point functional version of the FFT was developed to
prove the algorithm and verify the results, working at the highest level
of abstraction. To use behavioral synthesis, the floating-point version
was refined into the fixed-point behavioral version. The data ports
were refined from an infinite precision representation to a finite
bit-width representation. The computations were refined to fixed-point
arithmetic.

Data Read Two-Way Handshake

The FFT block initiates reading of a data sample by assertion of the
data_req signal. Next it waits for the data_valid signal to assert. Then
it de-asserts the data_req signal and reads from the in_real and
in_imag ports. The FFT block reads 16 samples of data.

Data Write Two-Way Handshake

After the FFT calculation is performed, the block writes the
transformed values to a sink block in the testbench. It writes the real
and imaginary components of the transformed value on the out_real
and out_imag ports. Next it asserts the data_ready signal, indicating
that the FFT is ready to read data from its ports. It waits for the
data_ack signal to assert, then it sends the next set of 16 values.

D-4

Fast Fourier Transform Example

FFT Functional Model

Example D-1 shows the header file, and Example D-2 shows the
implementation file of the 16-point FFT functional model. This model
uses floating-point data types, which are refined to fixed-point data
types for the behavioral model.

Example D-1 FFT Functional Header File
struct fft: sc_module {

 sc_in<sc_int<16> > in_real;
 sc_in<sc_int<16> > in_imag;
 sc_in<bool> data_valid;
 sc_in<bool> data_ack;
 sc_out<sc_int<16> > out_real;
 sc_out<sc_int<16> > out_imag;
 sc_out<bool> data_req;
 sc_out<bool> data_ready;
 sc_in<bool> reset;
 sc_in_clk CLK;

 SC_CTOR(fft)
 {
 SC_CTHREAD(entry, CLK.pos());
 watching(reset.delayed()==true);
 }

 void entry();
};

D-5

Fast Fourier Transform Example

Example D-2 FFT Functional Description File
// fft.cpp floating-point functional model.

#include "systemc.h"
#include "fft.h"
#include "math.h"
void fft::entry()
{ float sample[16][2];
 unsigned int index;

 while(true) {
 data_req.write(false);
 data_ready.write(false);
 index = 0;
 //Reading in the Samples
 cout << endl << "Reading in the samples..." << endl;
 while(index < 16) {
 data_req.write(true);
 wait_until(data_valid.delayed() == true);
 sample[index][0] = in_real.read();
 sample[index][1] = in_imag.read();
 index++;
 data_req.write(false);
 wait();
 }
 index = 0;

 /* Computation:
 1D Complex DFT In-Place DIF
 Computation Algorithm
 */

 //Size of FFT, N = 2**M
 unsigned int N, M, len ;
 float theta;
 float W[7][2], w_real, w_imag, w_rec_real;
 float w_rec_imag, w_temp;

 //Initialize
 M = 4; N = 16;
 len = N/2;
 theta = 8.0*atan(1.0)/N;

 cout << "Computing..." << endl;

 //Calculate the W-values recursively
 w_real = cos(theta);

D-6

Fast Fourier Transform Example

 w_imag = -sin(theta);

 w_rec_real = 1;
 w_rec_imag = 0;

 index = 0;
 while(index < len-1)
 {
 w_temp = w_rec_real*w_real - w_rec_imag*w_imag;
 w_rec_imag = w_rec_real*w_imag + w_rec_imag*w_real;
 w_rec_real = w_temp;
 W[index][0] = w_rec_real;
 W[index][1] = w_rec_imag;
 index++;
 }

 float tmp_real, tmp_imag, tmp_real2, tmp_imag2;
 unsigned int stage, i, j,index2, windex, incr;

 //Begin Computation
 stage = 0;

 len = N;
 incr = 1;

 while (stage < M)
 {
 len = len/2;

 //First Iteration : With No Multiplies
 i = 0;

 while(i < N)
 {
 index = i; index2 = index + len;

 tmp_real = sample[index][0] + sample[index2][0];
 tmp_imag = sample[index][1] + sample[index2][1];

 sample[index2][0] = sample[index][0] -
 sample[index2][0];
 sample[index2][1] = sample[index][1] -
 sample[index2][1];

 sample[index][0] = tmp_real;
 sample[index][1] = tmp_imag;

D-7

Fast Fourier Transform Example

 i = i + 2*len;

 }

 //Remaining Iterations: Use Stored W
 j = 1; windex = incr - 1;
 while (j < len) // This loop executes N/2 times
 // at first stage, and once at last stage.
 {
 i = j;
 while (i < N)
 {
 index = i;
 index2 = index + len;

 tmp_real = sample[index][0] + sample[index2][0];
 tmp_imag = sample[index][1] + sample[index2][1];
 tmp_real2 = sample[index][0] - sample[index2][0];
 tmp_imag2 = sample[index][1] - sample[index2][1];

 sample[index2][0] = tmp_real2*W[windex][0] -
 tmp_imag2*W[windex][1];
 sample[index2][1] = tmp_real2*W[windex][1] +
 tmp_imag2*W[windex][0];

 sample[index][0] = tmp_real;
 sample[index][1] = tmp_imag;

 i = i + 2*len;

 }
 windex = windex + incr;
 j++;
 }
 stage++;
 incr = 2*incr;
 }

 ///

 // Writing out the normalized transform values
 // in bit reversed order
 sc_uint<4> bits_i;
 sc_uint<4> bits_index;
 bits_i = 0;

D-8

Fast Fourier Transform Example

 i = 0;

 cout << "Writing the transform values..." << endl;
 while(i < 16)
 {
 bits_i = i;
 bits_index[3]= bits_i[0];
 bits_index[2]= bits_i[1];
 bits_index[1]= bits_i[2];
 bits_index[0]= bits_i[3];
 index = bits_index;
 out_real.write(sample[index][0]);
 out_imag.write(sample[index][1]);
 data_ready.write(true);
 wait_until(data_ack.delayed() == true);
 data_ready.write(false);
 i++;
 wait();
 }
 index = 0;
 cout << "Done..." << endl;
 }
 }

D-9

Fast Fourier Transform Example

FFT Behavioral Model

Example D-3 shows the header file, and Example D-4 shows the
implementation file of the 16-point FFT model. Example D-5 shows
a command script for behavioral synthesis to gates.

Example D-3 FFT Header File
// fft.h fft_module header file
SC_MODULE(fft_module) {

 // Input ports Declaration
 sc_in<sc_int<16> > in_real;
 sc_in<sc_int<16> > in_imag;
 sc_in<bool> data_valid;
 sc_in<bool> data_ack;
 sc_in<bool> reset;

 // Output ports Declaration
 sc_out<sc_int<16> > out_real;
 sc_out<sc_int<16> > out_imag;
 sc_out<bool> data_req;
 sc_out<bool> data_ready;

 // Clock Declaration
 sc_in_clk clk;

 // Declare implementation functions
 void fft_process();

 // Constructor
 SC_CTOR(fft_module)
 {
 SC_CTHREAD(fft_process, clk.pos());
 watching(reset.delayed()==true);
 }

};

D-10

Fast Fourier Transform Example

Example D-4 FFT Implementation File
// fft.cc FFT implementation file
#include "systemc.h"
#include "fft.h"

/***
Function Definition for butterfly computation

**/
 void func_butterfly
 (const sc_int<16>& w_real,
 const sc_int<16>& w_imag,
 const sc_int<16>& real1_in,
 const sc_int<16>& imag1_in,
 const sc_int<16>& real2_in,
 const sc_int<16>& imag2_in,
 sc_int<16>& real1_out,
 sc_int<16>& imag1_out,
 sc_int<16>& real2_out,
 sc_int<16>& imag2_out
) {

 // Variable declarations
 sc_int<17> tmp_real1;
 sc_int<17> tmp_imag1;
 sc_int<17> tmp_real2;
 sc_int<17> tmp_imag2;
 sc_int<34> tmp_real3;
 sc_int<34> tmp_imag3;

 // Begin Computation
 tmp_real1 = real1_in + real2_in;

 // <s,6,10> = <s,5,10> + <s,5,10>
 tmp_imag1 = imag1_in + imag2_in;

 // <s,6,10> = <s,5,10> - <s,5,10>
 tmp_real2 = real1_in - real2_in;

 // <s,6,10> = <s,5,10> - <s,5,10>
 tmp_imag2 = imag1_in - imag2_in;

 // <s,13,20> = <s,6,10>*<s,5,10> -
 // <s,6,10>*<s,5,10>
 tmp_real3 = tmp_real2*w_real - tmp_imag2*w_imag;

 // <s,13,20> = <s,6,10>*<s,5,10> +
 // <s,6,10>*<s,5,10>
 tmp_imag3 = tmp_real2*w_imag + tmp_imag2*w_real;

D-11

Fast Fourier Transform Example

 // assign the sign-bit(MSB)
 real1_out[15] = tmp_real1[16];
 imag1_out[15] = tmp_imag1[16];

 // assign the rest of the bits
 real1_out.range(14,0) = tmp_real1.range(14,0);
 imag1_out.range(14,0) = tmp_imag1.range(14,0);

 // assign the sign-bit(MSB)
 real2_out[15] = tmp_real3[33];
 imag2_out[15] = tmp_imag3[33];

 // assign the rest of the bits
 real2_out.range(14,0) = tmp_real3.range(24,10);
 imag2_out.range(14,0) = tmp_imag3.range(24,10);

 }; // end func_butterfly

/*************************************
 Process Definition Begin
**************************************/

void fft_module::fft_process() {

/*************************************
 Variable Declarations
**************************************/
 sc_int<16> real[16];
 /* snps resource reg_a: variables = "real",
 map_to_registerfiles = "TRUE"; */
 sc_int<16> imag[16];
 /* snps resource reg_b: variables = "imag",
 map_to_registerfiles = "TRUE"; */
 sc_int<16> W_real[7];
 /* snps resource reg_c: variables = "W_real",
 map_to_registerfiles = "TRUE"; */
 sc_int<16> W_imag[7];
 /* snps resource reg_d: variables = "W_imag",
 map_to_registerfiles = "TRUE"; */
 sc_int<16> w_real;
 sc_int<16> w_imag;
 sc_int<16> real1_in;
 sc_int<16> imag1_in;
 sc_int<16> real2_in;
 sc_int<16> imag2_in;
 sc_int<16> real1_out;
 sc_int<16> imag1_out;

D-12

Fast Fourier Transform Example

 sc_int<16> real2_out;
 sc_int<16> imag2_out;
 sc_int<4> stage;
 sc_int<6> N;
 sc_int<4> M;
 sc_int<6> len;
 sc_uint<4> bits_i;
 sc_uint<4> bits_index;
 short i;
 short j;
 short index;
 short index2;
 short windex;
 short incr;

/**
 Reset/Initializion of signals and variables
***/
 data_req.write(0);
 data_ready.write(0);
 index = 0;
 W_real[0] = 942;// Precomputed twiddle factors for 16 point FFT
 W_imag[0] = -389 ;
 W_real[1] = 718;
 W_imag[1] = -716;
 W_real[2] = 388;
 W_imag[2] = -932;
 W_real[3] = 2;
 W_imag[3] = -1005;
 W_real[4] = -380;
 W_imag[4] = -926;
 W_real[5] = -702;
 W_imag[5] = -708;
 W_real[6] = -915;
 W_imag[6] = -385;

 wait();

/***
 Overall Functionality Loop
**/

 while(true) {
 wait();
 /***
 Read Input Samples Look
 ***/
 cout << endl << "Reading in the samples..."

D-13

Fast Fourier Transform Example

 << endl;

 while(index < 16) {
 data_req.write(1);
 wait_until(data_valid.delayed() == 1);
 real[index] = in_real.read();
 imag[index] = in_imag.read();
 index++;
 data_req.write(0);
 wait();
 }
 // Initialize
 index = 0;
 M = 4; N = 16;
 len = N >> 1;
 stage = 0;
 len = N;
 incr = 1;

 cout << "Computing..." << endl;

 /***************************************
 Stages Loop
 **************************************/
 // Loop iterates over the number of stages. There are M stages
 // where M = log2(N), already defined above. Loop control variable
 // is "stages". For every iteration stage it is incremented by 2
 // and incr is multiplied by 2.

 while (stage < M)
 {
 len = len >> 1;
 i = 0;

 /**************************************
 First Pass Loop
 **************************************/
 // Loop does the following:
 // a. loop execute condition (checked before executing anything)
 // is i < N
 // b. "i" is updated for every next iteration as i = i + len*2

 while(i < N) {
 index = i; index2 = i + len;

 real1_out = real[index] + real[index2];
 imag1_out = imag[index] + imag[index2];

D-14

Fast Fourier Transform Example

 real[index2] = (real[index] - real[index2]);
 imag[index2] = (imag[index] - imag[index2]);

 real[index] = real1_out;
 imag[index] = imag1_out;

 i = i + (len << 1);
 wait();
 }
 j = 1; windex = incr - 1;

 /**************************************
 Remaining Passes Loop
 **************************************/
 // This loop executes N/2 times at the first stage,
 // N/2 times at the second, and once at last stage.

 while (j < len)
 {
 i = j;
 while (i < N)
 {
 index = i;
 index2 = i + len;

 // Read in the data and twiddle factors

 w_real = W_real[windex];
 w_imag = W_imag[windex];
 real1_in = real[index];
 imag1_in = imag[index];
 real2_in = real[index2];
 imag2_in = imag[index2];

 // Call butterfly computation function
 func_butterfly(w_real, w_imag, real1_in,
 imag1_in, real2_in, imag2_in, real1_out, imag1_out,
 real2_out, imag2_out);

 // Store back the results
 real[index] = real1_out;
 imag[index] = imag1_out;
 real[index2] = real2_out;
 imag[index2] = imag2_out;

 i = i + (len << 1);
 }
 windex = windex + incr;

D-15

Fast Fourier Transform Example

 j++;
 }

 stage++;
 incr = incr << 1;
 }

 bits_i = 0;
 bits_index = 0;
 i = 0;
 cout << "Writing the transform values..." << endl;

 /*************************************
 Write Transform Values Loop
 *************************************/
 // Write loop that writes the transform values to output
 // ports out_real and out_imag.

 while(i < 16)
 {
 bits_i = i;
 bits_index[3]= bits_i[0];
 bits_index[2]= bits_i[1];
 bits_index[1]= bits_i[2];
 bits_index[0]= bits_i[3];
 index = bits_index;
 out_real.write(real[index]);
 out_imag.write(imag[index]);
 data_ready.write(1);
 wait_until(data_ack.delayed() == true);
 data_ready.write(0);
 i++;
 wait();
 }

 index = 0;
 cout << "Done..." << endl;
 }
}
/***************************************
 End Process Definition
**/

D-16

Fast Fourier Transform Example

Example D-5 Behavioral Synthesis to Gates Script
search_path = search_path + "$SYNOPSYS/libraries/syn"
target_library = {"tc6a_cbacore.db"};
synthetic_library = {"dw01.sldb","dw02.sldb"}
link_library = {"*"} + target_library + synthetic_library

bc_enable_analysis_info = "false"
effort_level = medium
io_mode = super
top_unit = "fft"

sh date
compile_systemc top_unit + ".cc"

create_clock clk -p 25

bc_time_design

schedule -io io_mode -effort effort_level

compile

write -hier -f db -o top_unit + "_gate.db"

D-17

Fast Fourier Transform Example

FFT Testbench

The FFT testbench consists of three files: source.cc, sink.cc, and
main_fft.cc.

• The source.cc file reads in real and imaginary samples from files
named in_real and in_imag, which are ASCII files containing
values. The source block interacts with the FFT behavioral block
using two-way handshake.

• The sink.cc file reads the real and imaginary components of the
output transform values from the FFT block. It writes the values
to output files named out_real and out_imag, which are ASCII
format files of the output values. The sink block also interacts with
the FFT block by using two-way handshake.

Example D-6 shows the source block, Example D-7 shows the sink
block, and Example D-8 shows the top-level simulation executable
main_fft.cc.

D-18

Fast Fourier Transform Example

Example D-6 FFT Testbench Source
// source.h header file

SC_MODULE(source_module) {
 sc_in<bool> data_req;
 sc_out<sc_int<16> > out_real;
 sc_out<sc_int<16> > out_imag;
 sc_out<bool> data_valid;
 sc_out<bool> reset;
 sc_in_clk CLK;

 void source_process();
 SC_CTOR(source_module)
 {
 SC_CTHREAD(source_process, CLK.pos());
 }

};

/****************************/
// source.cc implementation file

#include "systemc.h"
#include "source.h"
void source_module::source_process()
{ FILE *fp_real, *fp_imag;

 int tmp_val;

 fp_real = fopen("in_real", "r");
 fp_imag = fopen("in_imag", "r");

 reset.write(true);
 wait(5);
 reset.write(false);
 data_valid.write(false);

 while(true)
 {
 wait_until(data_req.delayed() == true);
 if (fscanf(fp_real,"%d", &tmp_val) == EOF)
 { cout << "End of Input Stream: Simulation Stops" << endl;
 sc_stop();
 break;

};
 out_real.write(tmp_val);
 if (fscanf(fp_imag,"%d", &tmp_val) == EOF)

D-19

Fast Fourier Transform Example

 { cout << "End of Input Stream: Simulation Stops" << endl;
 sc_stop();

break;
};

 out_imag.write(tmp_val);
 data_valid.write(true);
 wait_until(data_req.delayed() == false);
 data_valid.write(false);
 wait();
 }
}

D-20

Fast Fourier Transform Example

Example D-7 FFT Testbench Sink
// sink.h header file

SC_MODULE(sink_module) {
 sc_in<bool> data_ready;
 sc_out<bool> data_ack;
 sc_in< sc_int<16> > in_real;
 sc_in< sc_int<16> > in_imag;
 sc_in<bool> reset;
 sc_in_clk CLK;

 void sink_process();

 SC_CTOR(sink_module) {
 SC_CTHREAD(sink_process, CLK.pos());
 watching(reset.delayed() == 1);
 }

};
/****************************/
// sink.cc implementation file

#include "systemc.h"
#include "sink.h"

void sink_module::sink_process(){
 FILE *fp_real, *fp_imag;
 sc_int<16> tmp;
 int tmp_out;
 fp_real = fopen("out_real","w");
 fp_imag = fopen("out_imag","w");

 data_ack.write(false);

 while(true){
 wait_until(data_ready.delayed() == true);
 tmp = in_real.read();
 tmp_out = tmp;
 fprintf(fp_real,"%d \n",tmp_out);
 tmp = in_imag.read();
 tmp_out = tmp;
 fprintf(fp_imag,"%d \n",tmp_out);
 data_ack.write(true);
 wait_until(data_ready.delayed() == false);
 data_ack.write(false);
 }
}

D-21

Fast Fourier Transform Example

Example D-8 FFT Testbench Top-Level Model
// Filename: main_fft.cc
// This file instantiates all modules and ties them together with signals

#include "systemc.h"
#include "fft.h"
#include "source.h"
#include "sink.h"

int sc_main(int ac, char* av[])
{
 sc_signal<sc_int<16> > in_real;
 sc_signal<sc_int<16> > in_imag;
 sc_signal<bool> data_valid;
 sc_signal<bool> data_ack;
 sc_signal<sc_int<16> > out_real;
 sc_signal<sc_int<16> > out_imag;
 sc_signal<bool> data_req;
 sc_signal<bool> data_ready;
 sc_signal<bool> reset;
 sc_clock clock("CLOCK", 10, 0.5, 0.0);

 fft_module FFT1("FFTPROCESS");
 FFT1.in_real(in_real);
 FFT1.in_imag(in_imag);
 FFT1.data_valid(data_valid);
 FFT1.data_ack(data_ack);
 FFT1.out_real(out_real);
 FFT1.out_imag(out_imag);
 FFT1.data_req(data_req);
 FFT1.data_ready(data_ready);
 FFT1.reset(reset);
 FFT1.clk(clock);

 source_module SOURCE1("SOURCEPROCESS");
 SOURCE1.data_req(data_req);
 SOURCE1.out_real(in_real);
 SOURCE1.out_imag(in_imag);
 SOURCE1.data_valid(data_valid);
 SOURCE1.reset(reset);
 SOURCE1.CLK(clock);

 sink_module SINK1("SINKPROCESS");
 SINK1.data_ready(data_ready);
 SINK1.data_ack(data_ack);
 SINK1.in_real(out_real);
 SINK1.in_imag(out_imag);
 SINK1.reset(reset);

D-22

Fast Fourier Transform Example

 SINK1.CLK(clock);

 sc_start(clock, -1);

 return 0;
}

E-1

Inverse Quantization Example

E
Inverse Quantization Example E

This appendix provides an inverse quantization (IQ) example that
shows you a complex behavioral model. This model uses many
member functions to describe the functionality, which makes it easier
to understand the functional complexity.

This chapter contains the following sections:

• IQ Description

• IQ Behavioral Model

E-2

Inverse Quantization Example

IQ Description

The IQ is a block in an MPEG-2 that contains subblocks for inverse
quantization arithmetic, saturation, and mismatch control, as shown
in Figure E-1.

Figure E-1 IQ Blocks

Saturation
Mismatch
Control

QF[v][u]

Quant_scale_code

W[w][v][u]

F’’[v][u] F’[v][u] F[v][u]

Inverse Quantizer

Inverse
Quantization
Arithmetic

E-3

Inverse Quantization Example

IQ Data Flow

Figure E-2 shows the IQ arithmetic block and the data flow into the
saturation and mismatch control blocks.

Figure E-2 IQ Data Flow

Saturation

f(input)

+/-

*

Mismatch
Control

f(input)

In
p

u
t

O
u

tp
u

t
in

to
 R

A
M

Inverse
Quantization
Arithmetic

Inverse Quantizer

f(input)

* *

table

/

f(input)

E-4

Inverse Quantization Example

IQ Block Diagram

Figure E-3 shows the IQ block diagram.

Figure E-3 IQ Block Diagram

IQ Behavioral Model

Example E-1 shows the header file, and Example E-2 shows the
implementation file for the IQ behavioral model. Example E-3 shows
a command script to synthesize the model to gates.

 + * *

Intra
Matrix
RAM

Saturation

Unit

Mismatch

Unit

Scale

Input

Corrector

Scale_code

Scale_type

Default
Constant

Non-
Intra

Matrix
RAM

E-5

Inverse Quantization Example

Example E-1 IQ Header File
SC_MODULE (VD_iq) {
 // Declare ports
 sc_in_clk CLK;
 sc_in<bool> reset;
 sc_in<bool> iq_start;
 sc_in<bool> slice;
 sc_in<bool> load_intra_quantizer_matrix;
 sc_in<bool> load_non_intra_quantizer_matrix;
 sc_in<sc_uint<8> > W;
 sc_in<bool> run_level_valid;
 sc_in<sc_uint<5> > quantizer_scale_code;
 sc_in<sc_uint<2> > intra_dc_precision ;
 sc_in<sc_uint<5> > dct_dc_size;
 sc_in<sc_uint<11> > dct_dc_differential;
 sc_in<bool> q_scale_type;
 sc_in<bool> alternate_scan;
 sc_in<bool> end_of_block;
 sc_in<bool> mblock_intra;
 sc_in<sc_uint<4> > block_count;
 sc_in<sc_uint<6> > run;
 sc_in<sc_uint<12> > level;
 sc_out<sc_int<12> > f;
 sc_out<bool> f_valid;
 sc_out<sc_uint<6> > f_addr;
 sc_out<bool> iq_block_ready;
 sc_out<bool> iq_calc_ready;
 sc_in<bool> iq_write_block;
 sc_out<bool> iq_error;
 sc_in<bool> iq_skip;
 sc_in<bool> iq_clear;

 // Internal signals
 sc_signal<bool> acknowledge_data;
 sc_signal<bool> valid_data;
 sc_signal<sc_uint<8> > error;
 sc_signal<bool> skip_block_out;

 // Data members
 sc_uint<7> q_scale[32];
 sc_uint<6> scan_zigzag[64];
 sc_uint<6> scan_alternate[64];
 sc_uint<7> default_intra_quant[64];

 bool iq_sleep;
 bool eob_tmp;
 sc_uint<4> wait_for_ack;
 bool previous_tmp;

E-6

Inverse Quantization Example

 sc_uint<5> quantizer_scale_code_inp;
 sc_uint<7> current_address;
 bool macroblock_intra;
 bool q_scale_type_inp;
 bool alternate_scan_inp;
 bool reset_dct_pred_inp;
 sc_int<12> level_inp;
 sc_uint<6> run_inp;
 sc_uint<4> dct_size_inp;
 sc_uint<11> dct_diff_inp;
 sc_int<12> dc_dct_pred[3];
 sc_int<26> f_t_t;
 sc_int<12> f_t;
 sc_uint<2> corrector;
 sc_uint<3> block_count_tmp;
 sc_uint<7> quantizer_scale;
 sc_uint<7> matrix_value;
 sc_uint<2> intra_dc_precision_inp;
 sc_uint<4> block_count_inp;
 bool mismatch_control;
 sc_uint<7> intra_matrix_ram[64];
 sc_uint<7> non_intra_matrix_ram[64];
 bool next_value[64];
 sc_int<12> f_out;
 sc_uint<6> f_addr_out;
 bool use_load_intra_matrix_inp;
 bool use_load_non_intra_matrix_inp;
 sc_uint<8> offset;

 sc_int<12> f_mat[64];

 sc_signal<bool> CLK_iqgate;

 // Declare implementation functions
 void entry();
 void generate_valid();

 SC_CTOR (VD_iq) {
 SC_CTHREAD (entry, CLK.pos());
 SC_CTHREAD (generate_valid, CLK.pos());

watching(reset.delayed() == true);
 }

 // Declare member functions
 sc_uint<2> corrector_calc();
 sc_uint<7> quantizer ();
 sc_int<12> saturation ();
 sc_int<26> quantization ();

E-7

Inverse Quantization Example

 sc_int<12> mismatch ();
 sc_int<26> intra_mult ();
 sc_uint<6> inverse_scan ();
 void reset_prediction();
 void reset_action();
 sc_uint<7> W_lookup ();

}; //End of SC_MODULE

Example E-2 IQ Implementation File
// VD_iq.cc implementation file

#define MAX_WAIT_FOR_ACK 10
#define MAX_ADDRESS 64
#include <systemc.h>
#include "VD_iq.h"

void VD_iq::entry() {

 // Define local variables
 sc_uint<7> next_hit;
 bool fill;
 bool skip_inp;
 bool clear_inp;
 sc_uint<6> mblock_intra_inp;

 // Synthesis attributes
 /* synopsys resource RAM_A:
 variables = "intra_matrix_ram",
 map_to_module = "lsi_6_7"; */
 /* synopsys resource RAM_B:
 variables = "non_intra_matrix_ram",
 map_to_module = "lsi_6_7"; */

 // Reset behavior in member function
 reset_action();
 wait();

 // Main functionality
 while (true) {

 // This start signal comes from the stream parser
 iq_block_ready.write(false);
 acknowledge_data.write(false);
 wait_until(iq_start.delayed()==true);
 wait();

E-8

Inverse Quantization Example

 skip_inp = iq_skip.read();
 clear_inp = iq_clear.read();

 wait();
 if(iq_write_block.read()==true)
 offset = MAX_ADDRESS;
 else
 offset = 0;

 if (skip_inp==false) {
 // Sample data that are block constant
 mblock_intra_inp = mblock_intra.read();
 macroblock_intra = mblock_intra_inp;
 alternate_scan_inp = alternate_scan.read();
 quantizer_scale_code_inp =
 quantizer_scale_code.read();
 q_scale_type_inp = q_scale_type.read();
 intra_dc_precision_inp = intra_dc_precision.read();
 block_count_inp = block_count.read();

 // Initial values for a block
 mismatch_control = 0;

 // Special treatment for dc values in intra pictures,
 // see 7.4.1 in MPEG spec
 if (macroblock_intra==true) {

dct_diff_inp = 0;
dct_diff_inp = dct_dc_differential.read();
dct_size_inp = dct_dc_size.read();
f_t_t = intra_mult();
// Saturation
f_t = saturation();

// Mismatch control
if (f_t[0] == 1)
 mismatch_control = !mismatch_control;
f_out = f_t;

// Output assignment
f_addr_out = 0;
f_addr.write(f_addr_out);
f.write(f_out);
f_valid.write(true);
f_mat[f_addr_out+offset] = f_out;
current_address = 1;

 } else {
// If we don’t have a intra block
current_address = 0;

E-9

Inverse Quantization Example

 }
 wait();

 // Pipeline that does the main computation
 main_loop:while(1) {

f_valid.write(false);
acknowledge_data.write(false);
// Wait for a valid signal for end of the block
wait_until(valid_data.delayed()==true);
wait();
// Checking if block ends
if (end_of_block.read()==true)
 break;
acknowledge_data.write(true);

// Sample inputs of normal block behavior and compensate for run
level_inp = level.read();
run_inp = run.read();
if(run_inp!=0)
 current_address = current_address+run_inp;

next_value[current_address] = true;

// Correct the values for dequantization
corrector = corrector_calc();
quantizer_scale = quantizer();

// Memory access
matrix_value = W_lookup();

// Multiplications and correction
f_t_t = quantization();

// Saturation
f_t = saturation();

// Mismatch control
if (f_t[0] == 1)
 mismatch_control = !mismatch_control;

if(current_address==(MAX_ADDRESS - 1))
 f_out = mismatch();
else
 f_out = f_t;

// Address assignment
f_addr_out = inverse_scan();

E-10

Inverse Quantization Example

// Output assignment
f_addr.write(f_addr_out);
f.write(f_out);
f_valid.write(true);
f_mat[f_addr_out+offset] = f_out;
wait();
// Prepare for next iteration
current_address++;

 }
 } else
 wait();

 iq_calc_ready.write(true);
 wait();

 // This part isn’t necessary when skipping a
 // block and the output is already cleared.
 if ((skip_inp==false) || (clear_inp==true)) {

 acknowledge_data.write(false);
 // Fill the empty spots, otherwise
 // the positions of the second block are not
 // correct as written in the previous cycle.
 // This could be done more efficiently
 // if the RAM has a reset.
 current_address = 0;
 iq_calc_ready.write(false);
 f_out = 0;
 wait();
 do {

current_address++;
if((next_value[current_address]==true) && (clear_inp==false))
 fill = false;
else
 fill = true;
next_value[current_address]=false;

if(fill==true) {
 f_addr_out = inverse_scan();
 f_addr.write(f_addr_out);

 f_t = 0;
 if(current_address==(MAX_ADDRESS - 1))
 f_out = mismatch();
 else
 f_out = f_t;

E-11

Inverse Quantization Example

 f.write(f_out);
 f_valid.write(true);
 f_mat[f_addr_out+offset] = f_out;
}
wait();

 } while(current_address< (MAX_ADDRESS - 1));
 } else
 wait();

 // One block is done.
 iq_block_ready.write(true);
 f_valid.write(false);
 wait();

 }
}

// Define member functions

sc_uint<2> VD_iq::corrector_calc () {
 // synopsys preserve_function
 unsigned tmp;

 if ((macroblock_intra==true) || (level_inp==0))
 tmp = 0;
 else {
 if (level_inp>0)
 tmp = 1;
 else
 tmp = 2;
 }
 return tmp;
}

sc_uint<7> VD_iq::quantizer () {
 // synopsys preserve_function
 unsigned tmp;

 if (q_scale_type_inp==true)
 tmp = q_scale[quantizer_scale_code_inp];
 else
 tmp = quantizer_scale_code_inp<<1;

 return tmp;
}

sc_int<12> VD_iq::saturation () {

E-12

Inverse Quantization Example

 // synopsys preserve_function
 int tmp;
 int divide;

 divide = f_t_t;
 if (divide<-2048)
 tmp = -2048;
 else {
 if (divide>2047)
 tmp = 2047;
 else
 tmp = divide;
 }
 return tmp;

}

sc_int<26> VD_iq::quantization () {
 // synopsys preserve_function
 int tmp1;
 sc_int<26> tmp2;
 tmp1 = (level_inp<<1) + corrector;
 tmp2 = tmp1 * matrix_value * quantizer_scale;
 // proper rounding
 if (((tmp2&0x1f) != 0) && (tmp2<0)) {
 tmp2 = (tmp2>>5) + 1;
 } else {
 tmp2 = tmp2>>5;
 }
 // cout << " test " << tmp1 << " "
 << tmp2 << endl;
 return (tmp2);
}

sc_int<12> VD_iq::mismatch () {
 // synopsys preserve_function
 int tmp;
 bool f_t_bit;

 f_t_bit = f_t[0];
 tmp = f_t;
 if (mismatch_control==false) {
 if (f_t_bit==false)
 tmp = f_t+1;
 else
 tmp = f_t-1;
 }

E-13

Inverse Quantization Example

 return tmp;
}

void VD_iq::reset_prediction() {
 dc_dct_pred[0] = 0;
 dc_dct_pred[1] = 0;
 dc_dct_pred[2] = 0;
}

void VD_iq::generate_valid() {
 bool tmp = false;

 wait();
 while(1) {
 tmp = (run_level_valid.read()) ||
 (end_of_block.read());
 eob_tmp = end_of_block.read();
 previous_tmp = tmp;
 valid_data.write(tmp);
 if ((tmp==true) && (previous_tmp!=true)) {
 wait_for_ack=0;
 }

 if (wait_for_ack<MAX_WAIT_FOR_ACK)
 wait_for_ack++;

 if (wait_for_ack==(MAX_WAIT_FOR_ACK-1)) {
 cout << "Error : VD_iq(generate_valid)"
 << " Valid without acknowledge at time "

 << sc_time_stamp() << endl;
 wait_for_ack = MAX_WAIT_FOR_ACK;
 }

 if ((acknowledge_data.read()==true) &&
 (wait_for_ack!=MAX_WAIT_FOR_ACK)) {
 wait_for_ack = MAX_WAIT_FOR_ACK;
 }
 wait();
 }
}

sc_int<26> VD_iq::intra_mult () {
 // synopsys preserve_function
 sc_int<16> tmp ;
 sc_uint<14> half_range ;
 sc_int<14> dct_diff ;

 dct_diff = 0;

E-14

Inverse Quantization Example

 tmp = 0;
 if (dct_size_inp!=0) {
 half_range = 1 << (dct_size_inp-1);

 if (dct_diff_inp>=half_range)
 dct_diff.range(10,0) = dct_diff_inp;
 else
 dct_diff = dct_diff_inp+1-(half_range<<1);
 }

 if (block_count_inp<4) {
 dc_dct_pred[0] = dc_dct_pred[0]+dct_diff;
 tmp = (int) dc_dct_pred[0];
 } else {
 if (block_count_inp==4) {
 dc_dct_pred[1] = dc_dct_pred[1]+dct_diff;
 tmp = (int) dc_dct_pred[1];
 } else {
 dc_dct_pred[2] = dc_dct_pred[2]+dct_diff;
 tmp = (int) dc_dct_pred[2];
 }
 }

 // intra multiplication
 tmp = tmp << (3-intra_dc_precision_inp);
 return(tmp);
}

sc_uint<6> VD_iq::inverse_scan() {
 unsigned tmp;

 if (alternate_scan_inp==false)
 tmp = scan_alternate[current_address];
 else
 tmp = scan_zigzag[current_address];

 return tmp;
}

void VD_iq::reset_action() {
 f_t = 0;
 f_t_t = 0;
 f_out = 0;
 level_inp = 0;
 run_inp = 0;
 corrector = 0;
 quantizer_scale = 0;
 matrix_value = 0;

E-15

Inverse Quantization Example

 iq_sleep = false;
 f_addr.write(0);
 f.write(0);
 f_valid.write(false);
 iq_calc_ready.write(false);
 acknowledge_data.write(false);
}

sc_uint<7> VD_iq::W_lookup() {
 unsigned matrix_value_tmp;

 if (macroblock_intra==false && use_load_non_intra_matrix_inp==true)
 matrix_value_tmp =
 non_intra_matrix_ram[inverse_scan()];
 else {
 if (macroblock_intra==false && use_load_non_intra_matrix_inp==false)
 matrix_value_tmp = 16;
 else {
 if (macroblock_intra==true && use_load_non_intra_matrix_inp==true)
 matrix_value_tmp =
 intra_matrix_ram[inverse_scan()];
 else
 matrix_value_tmp =
 default_intra_quant[inverse_scan()];
 }
 }
 return matrix_value_tmp;
}

E-16

Inverse Quantization Example

Example E-3 Behavioral Synthesis to Gates Script
search_path = search_path + "$SYNOPSYS/libraries/syn"
+ "./ram"
target_library = {"tc6a_cbacore.db"};
synthetic_library = {"dw01.sldb","ram.sldb"}
link_library = {"*"} + target_library + synthetic_library

bc_enable_analysis_info = "false"
effort_level = medium
io_mode = super
top_unit = "VD_iq"

sh date
define_design_lib RAMS -path ./ram
define_design_lib DBS -path ./db

compile_systemc top_unit + ".cc"

compile_preserved_functions

create_clock CLK -p 20

bc_time_design

schedule -io io_mode -effort effort_level

compile -map low

write -hier -f db -o top_unit + "_gate.db"

F-1

Expressions and Operations

F
Expressions and Operations F

This appendix provides basic information about using expressions
and operators in a SystemC behavioral description.

F-2

Expressions and Operations

Using Expressions

In C++, an expression is a combination of operators and operands
that can be evaluated according to the semantic rules of the language.
Operators specify the computation to perform. In the following code
fragment, A and B are operands, + is an operator, and A + B is an
expression. Expressions are often enclosed within parentheses, but
they do not have to be.

C = (A + B);

You can use expressions in many places in a design description. You
can

• Assign them to variables or signals or use them as initial values
of constants

• Use them as operands to other operators

• Use them for the return value of functions

• Use them as input parameters in a function call

• Use them to control the actions of statements such as if, loop, and
case

For complex expressions, enclose the expression in parentheses and
use nested parentheses to specify the order of evaluation.

F-3

Expressions and Operations

Operator Precedence

Typical operations in an expression are

• Arithmetic operations such as +, -, *, /, and %

• Equality, relational, and logic operations !, <, <=, >, >=, ==, !=, &&,
and || where the result is either a 1 (true) or a 0 (false)

• User-defined operations such as functions

SystemC Compiler evaluates expressions in the same precedence
and order of evaluation as C++. Table F-1 shows the C++ operator
precedence from highest to lowest; the nonsynthesizable operators
are excluded from this list.

F-4

Expressions and Operations

Table F-1 Operator Precedence

Operator Function Use

:: Class scope class::name

. Member selectors object.member

[] Subscript variable[expr]

() Function all name(expr_list)

++ Postfix increment lvalue++

-- Postfix decrement lvalue--

typeid Type identification typeid(type)

const_cast Type conversion const_cast<type>(expr)

static_cast Type conversion static_cast<type>(expr)

++ Prefix increment ++lvalue

-- Prefix decrement --lvalue

~ Bitwise NOT ~expr

! Logical NOT !expr

- Unary minus -expr

+ Unary plus +expr

& Address of &expr (parameter passing only)

() Type conversion (type) expr

* Multiply expr * expr

/ Divide expr / expr

% Modulo (remainder) expr % expr

F-5

Expressions and Operations

+ Add expr + expr

- Subtract expr - expr

<< Bitwise shift left expr << expr

>> Bitwise shift right expr >> expr

< Less than expr < expr

<= Less than or equal expr <= expr

> Greater than expr > expr

>= Greater than or equal expr >= expr

== Equality expr == expr

!= Inequality expr != expr

& Bitwise AND expr & expr

^ Bitwise XOR expr ^ expr

| Bitwise OR expr | expr

&& Logical AND expr && expr

|| Logical OR expr || expr

= Assignment lvalue = expr

=, *=, /=, %=, +=,
-=, <<=, >>=, &=,
|=, ^=

Compound assignment lvalue += expr, and similar for
each operator

?: Conditional expression expr ? expr : expr

, Comma expr, expr

Table F-1 Operator Precedence (continued)

Operator Function Use

F-6

Expressions and Operations

Glossary-1

Glossary

abstract data type
An abstract data type is a data type, such as a floating-point
number, that does not readily translate to hardware.

aggregate data type
An aggregate data type contains multiple data types that are
grouped together in a C/C++ structure (struct).

allocation
Allocation means assignment of hardware resources such as
components, memory, and registers to scheduled operations and
variables.

behavioral synthesis
Behavioral synthesis is the process of transforming a behavioral
description at the unclocked algorithmic level with few or no
implementation details into a clocked netlist of components.
Behavioral synthesis automatically schedules the operations in the
behavioral description into clock cycles, allocates hardware to
execute them, and generates a state machine representing the
control logic.

Glossary-2

chained operation
A chained operation is two or more data-dependent operations
scheduled in the same clock period without the need to register the
intermediate results.

clock cycle
A clock cycle represents one clock period.

compiler directive
A compiler directive is a user-specified directive to SystemC
Compiler that is placed in the source code as a comment.

constraint
Constraint are user-specified parameters such as the clock period,
I/O timing, number and type of data path elements, and desired
number of clock cycles.

control
The control portion of the design represents the FSM or control
structure, which is implied from the conditional constructs and
loops.

cycle-accurate model
A cycle-accurate model of a design is an abstract model that
represents the cycle-to-cycle behavior of a design. It is not
necessarily the exact structure of the hardware that implements the
design.

data flow graph (DFG)
A DFG depicts the data dependencies, the inputs and outputs of a
design, the operations used in the design, and the flow of data from
the inputs to the outputs.

data path
A data path is the portion of the design that operates on data that is
flowing into the design. Typically, the data path is controlled by the
control portion of the design or FSM.

Glossary-3

enumerated data type
An enumerated data type is an abstract type with a discrete set of
values. When an enumerated type is synthesized, a unique bit
pattern is assigned to each possible value of the enumerated type.

high-level synthesis
High-level synthesis (HLS) is synthesis from a behavioral
description of the design into a clocked netlist of components. See
behavioral synthesis.

latency (delay)
Latency means the number of clock cycles for performing a
calculation.

lifetime analysis
Lifetime analysis is the process for determining how many clock
cycles need to be reserved for resources or registers to execute a
particular operation, or how many clock cycles to hold the value of a
particular variable.

memory inferencing
Memory inferencing is a synthesis technique implementing an array
in the behavioral description to a memory component, keeping the
memory technology independent from design development.

multicycle operation
Multicycle operation is a combinational operation that requires more
than one clock cycle to execute.

nonabstract data type
A nonabstract data type is a data type that can be easily translated
into hardware.

operation
An operation is an instance of an operator in a design.

Glossary-4

operator
An operator is an abstract representation of a design function, such
as + for addition.

pipelined loop
Loop pipelining is a synthesis technique for partially overlapping
loop iterations at circuit runtime to improve design performance.

pipelined component
A pipelined component is a component that executes an operation
over several clock cycles. It differs from a multicycle component in
that it is sequential. The internal registers break the logic that
implements the operation into multiple stages of combinational
logic. Each stage executes within a clock cycle. The output of a
stage is stored in a register and passed onto the next stage at the
next clock cycle.

preserved function
A preserved function is a function that is preserved as a level of
hierarchy in synthesis. A preserved function is pre-compiled into a
logic netlist prior to behavioral synthesis. Each call to the function is
treated as a single operation by behavioral synthesis. It is
scheduled and has hardware allocated for it.

register sharing
Register sharing means variables with sharing non-overlapping
lifetimes can share the same register.

resource allocation
Resource allocation is the process for deciding how many and what
kind of resources are used or needed for a given design.

resource sharing
Resource sharing is a synthesis optimization technique that allows
multiple operations to be executed on the same resource.

RTL
RTL is an acronym for register-transfer level.

Glossary-5

RTL synthesis
RTL synthesis, also known as logic synthesis, is the process of
transforming an RTL description into a gate-level,
technology-specific netlist.

scheduling
Scheduling is the synthesis process of assigning each operation to
a control step.

superstate
A superstate represents one or more clock cycles for the schedule
command in the superstate_fixed scheduling mode.

unrolled loop
Loop unrolling means the code body for each loop iteration is
replicated as many times as there are iterations.

wait statement
A wait statement causes a wait for the next active clock edge, which
defines a clock cycle in cycle-fixed scheduling mode or the
boundary of a superstate in the superstate-fixed scheduling mode.

Glossary-6

IN-1

Index

Symbols
#elif compiler directive A-9
#else compiler directive A-9
#endif compiler directive A-9
#if compiler directive A-9
#ifdef compiler directive 2-31, A-9
#ifndef compiler directive A-9
? operator 3-32

A
abstraction level

architectural 1-3, 1-4
behavioral 1-3, 1-9
choosing for synthesis 1-19
RTL 1-3, 1-14

access
memory 5-15
memory bit slice 5-19
multiple arrays 5-13
register file 5-15

aggregate data type 2-43
architectural

FIFO example B-2
model 1-4

architecture refinement 2-8
arithmetic operation F-3

array
assigning 5-5
declaring 5-2
implementation 5-7
large 5-7
mapping 5-1

memory 5-11
register file 5-9, A-6

reading 5-3
writing 5-3

atomic block 2-9
attribute

map_to_module A-6
map_to_registerfiles 5-9, A-6

B
bc_check_design command 3-31
bc_use_registerfiles variable 5-9
behavioral

coding style 1-10, 3-1
design attributes 1-19
FFT example D-9
FIFO example B-6
IQ example E-4
memory controller

example C-9
model 1-9

IN-2

refine
architectural model 1-10
for synthesis 2-1

block
atomic 2-9
hierarchical 2-9

C
C line label 3-34, A-9
C/C++

compiler directives A-9
data types 2-43
language elements 2-1
nonsynthesizable constructs 2-34
refine model 2-6
synthesizable subset 2-32

case 3-32
clock 3-2, 3-7
clocked thread

example 3-4
process 2-26

code
simulation-specific 2-30
synthesis-specific 2-30

coding rules 3-10
cycle-fixed 3-12
cycle-fixed examples 3-23
finding timing errors 3-31
general examples 3-13
pipelined loop 3-45
superstate-fixed 3-12
superstate-fixed examples 3-29
terms 3-10

coding rules, general 3-11
coding style

behavioral 1-10, 3-1
RTL 1-15

command
bc_check_design 3-31

compile_preserve_functions 4-8
compile_systemc 3-14, 5-9
ignore_array_precedences 5-15
read_preserve_function_netlist 4-8
schedule 3-8, 3-26, 3-31
set_behavioral_reset 3-48
set_cycles 6-19
set_memory_input_delay 5-17
set_memory_output_delay 5-17

compare
design attributes 1-22
I/O schedule modes 3-9

compile_preserve_functions command 4-8
compile_systemc command 3-14, 5-9
compiler directive 2-31, A-2

#elif, #else, #endif A-9
#if, #ifdef, #ifndef A-9
#ifdef C language 2-31
C/C++ A-9
inout_param 4-10, A-5
line_label 3-34, A-3
map_to_operator 4-11, A-3
preserve_function 4-6, A-4
resource 5-9, A-6
return_port_name 4-11, A-4
synthesis_off 2-31, A-7
synthesis_on 2-31, A-7
translate_off A-7
translate_on A-7
unroll 3-37, A-8

components, DesignWare 4-11
conditional statements 3-32
constrain cycles

handshake 6-19
constructor 2-24
control refinement 2-3, 2-47
cycle-fixed

coding rules 3-12
schedule 3-8

IN-3

D
data

aggregate type 2-43
C/C++ types 2-43
enumerated type 2-43
lifetime of value 3-54
nonsynthesizable types 2-38
recommended types 2-46
resource sharing 3-53
sc_bigint 2-42
sc_biguint 2-42
sc_bit 2-41
sc_bv 2-41
sc_int 2-42
sc_uint 2-42
synthesizable types 2-37, 2-39
SystemC

bit types 2-41
integer types 2-42

variable 2-18
data refinement 2-3, 2-30, 2-37

C/C++ 2-32
SystemC 2-32

define process 2-20
design

behavioral attributes 1-19
compare attributes 1-22
RTL attributes 1-19, 1-21

DesignWare components 4-11
do-while loop 3-33, 3-36

E
else 3-32
enumerated data type 2-43
equality operation F-3
example

architectural
FIFO 1-5, B-2

behavioral
FFT D-9

FIFO 1-11, B-6
IQ E-4
memory controller C-9

clocked thread 3-4
cycle-fixed coding rules 3-23
fast handshake 6-36
FFT D-1
FIFO B-1
functional

FFT D-4
memory controller C-5

general coding rules 3-13
IQ E-1
local memory 5-11
memory controller C-1
one-way handshake 6-4, 6-12
RTL

FIFO 1-15, B-15
superstate-fixed coding rules 3-29
testbench

FIFO B-11, B-20
two-way handshake 6-21, 6-29

expression F-2

F
fast handshake 6-36
FFT

behavioral example D-9
example D-1
functional example D-4
testbench example D-17

FIFO
architectural example 1-5, B-2
behavioral example 1-11, B-6
example B-1
RTL example 1-15, B-15
testbench example B-11

for loop 3-33, 3-36
unrolled 3-37

function
member 2-23, 4-2

IN-4

nonmember 4-4
preserve 4-4
process 2-21
using 4-1

functional model 1-4
timed 1-5
untimed 1-5

G
global reset 3-46

H
handshake

constrain cycles 6-19
fast 6-36
loop pipelining 6-40
one-way protocol 6-4
protocols 6-1, 6-3
signals 6-3
two-way protocol 6-21

hardware
allocation F-3
behavioral synthesis process 2-21

header file, module 2-13
hierarchical block 2-9

I
I/O

read and write 3-7
schedule mode 3-8
specify 3-7

if 3-32
ignore_array_precedences command 5-15
implementation file

module 2-26
infinite loop 2-26

do-while 3-4
for 3-4

SC_CTHREAD 2-26
types 3-4
while 3-4, 3-35

initialize variable 3-49
inout_param compiler directive 4-10, A-5
input 3-6

nonregistered 3-6
read 3-7

interrupt behavior 3-46
introduction 1-1
introduction to refinement 2-3
IQ

behavioral example E-4
example E-1

L
label

C line label 3-34, A-9
source code 3-34

large array 5-7
lifetime

of data value 3-54
line_label compiler directive 3-34, A-3
local memory

declaring 5-11
example 5-11

logic operation F-3
loop

conditional 3-10
continue 3-10
do-while 3-33, 3-36
for 3-33, 3-36
for unrolled 3-37
infinite while 2-26, 3-33, 3-35
iteration 3-10
label 3-34
pipelining 3-45
pipelining handshake protocol 6-40
unroll 3-37, A-8
while 2-26, 3-33, 3-35

IN-5

M
map_to_module attribute A-6
map_to_operator compiler directive 4-11, A-3
map_to_registerfiles attribute 5-9, A-6
mapping arrays 5-1
member

function 2-23, 4-2
variables 2-18

memory 5-1
access 5-15
access bit slice 5-19
access redundancy 5-18
array mapping 5-11
contention 5-18
explore types 5-14
local 5-11
multiple array access 5-13
resources 5-11
timing 5-17

memory controller
example C-1

behavioral C-9
functional C-5

method process 2-21
module 2-12

constructor 2-24
header file 2-13
implementation file 2-26
port 2-14
signal 2-16
syntax 2-13
variable 2-18

N
nonmember

function 4-4
preserve_function 4-9

nonregistered inputs 3-6
nonsynthesizable

C/C++ constructs 2-34
data types 2-38
subset 2-30
SystemC constructs 2-33

O
one-way handshake 6-4

example 6-4, 6-12
operand F-2
operation F-3

arithmetic F-3
equality F-3
logic F-3
relational F-3
user-defined F-3

operator F-2
precedence F-3
SystemC

bit types 2-41
integer types 2-42

output 3-6
registered 3-6
write 3-7

P
pipelining

handshake restrictions 6-40
loops 3-45

port 2-14, 3-6
data types 2-15
read and write 2-17
sc_in 2-14
sc_in_clk 2-14
sc_inout 2-14
sc_out 2-14
syntax 2-15

pragma
See compiler directive

precedence of operators F-3

IN-6

preserve_function
compiler directive 4-4, 4-6, A-4
nonmember 4-9
restrictions 4-5
using 4-5

process 2-12, 2-20
creating 2-22
method 2-21
refine 2-28
SC_CTHREAD 2-21, 3-2
SC_THREAD 2-21
synchronizing with clock 3-2

R
read

array 5-3
input 3-7
port 2-17
signal 2-17

read_preserve_function_netlist command 4-8
reducing runtime 5-7
refine

advanced techniques 2-5, 2-48
behavioral from architectural 1-10
C/C++ model 2-6
control 2-3, 2-47
data 2-3, 2-30, 2-37
data type recommendation 2-46
detailed architecture 2-8
for behavioral synthesis 2-1
internal communication 2-7
internal structure 2-6
overview 2-3
process 2-28
recommended practices 2-49
RTL from behavioral 1-15, B-15
structure 2-3, 2-6
SystemC model 2-28

register file 5-1
access 5-15

array mapping 5-9, A-6
registered output 3-6
relational operation F-3
reset behavior 3-46
resource compiler directive 5-9, A-6
resource sharing 3-53
restrictions

pipeline handshake 6-40
return_port_name compiler directive 4-11, A-4
rolled and unrolled loops 3-37, A-8
RTL

coding style 1-15
design attributes 1-19, 1-21
model 1-14
synthesis process 2-21

S
sc_bigint 2-42
sc_biguint 2-42
sc_bit 2-41
sc_bv 2-41
SC_CTHREAD 2-21, 3-2

infinite loop 2-26
SC_CTHREAD process 2-21
SC_CTOR 2-24
sc_in 2-14
sc_in_clk 2-14
sc_inout port 2-14
sc_int 2-42
SC_METHOD 2-21
SC_MODULE 2-12
SC_MODULE syntax 2-13
sc_out 2-14
SC_THREAD process 2-21
sc_uint 2-42
schedule

command 3-8
compare I/O modes 3-9

IN-7

cycle-fixed 3-8
I/O mode 3-8
superstate-fixed 3-8

schedule command 3-26, 3-31
set_behavioral_reset command 3-48
set_cycles command 6-19
set_memory_input_delay command 5-17
set_memory_output_delay command 5-17
signal 3-6, 3-49

data types 2-17
internal 2-16
read and write 2-17
syntax 2-16
wait statement 3-50
writing to 5-5

simulation-specific code 2-30
snps compiler directive 2-31, A-2
struct GL-1
structure GL-1
structure refinement 2-3, 2-6
superstate-fixed

coding rules 3-12
schedule 3-8

switch 3-32
synopsys compiler directive 2-31, A-2
syntax

module 2-13
port 2-15
signal 2-16

synthesis
choosing abstraction level 1-19

synthesis_off compiler directive 2-31, A-7
synthesis_on compiler directive 2-31, A-7
synthesis-specific code 2-30
synthesizable

data types 2-37, 2-39
subset 2-30

SystemC
bit data types 2-41

bit operator types 2-41
class library 1-1
integer data types 2-42
integer operator types 2-42
language elements 2-1
nonsynthesizable constructs 2-33
refine model 2-28
synthesizable subset 2-32

T
testbench

FFT D-17
FIFO example B-20
handshake 6-1
process types 2-21

timed model 1-5
timing errors 3-31
timing of memories 5-17
translate_off compiler directive A-7
translate_on compiler directive A-7
two-way handshake

example 6-21, 6-29

U
unroll compiler directive 3-37, A-8
untimed model 1-5
user-defined operation F-3

V
variable 3-49

bc_use_registerfiles 5-9
guidelines for using 3-49
initializing 3-49
mapping to register 3-53
member 2-18
module 2-18

IN-8

W
wait statement 3-2, 3-3, 3-7
wait_until statement 3-2, 3-3
watching 3-46
while loop 2-26, 3-33, 3-35

write
array 5-3
output 3-7
port 2-17
signal 2-17

	AboutTitleTOC - Preface
	Head1TOC - What’s New in This Release xxiv
	Head1TOC - About This Guide xxvi
	Head1TOC - Customer Support xxx

	ChapTitleTOC - 1. Introduction
	Head1TOC - Defining Levels of Abstraction in System Design 1�3
	Head2TOC - Architectural Level 1�4
	Head3TOC - Untimed Functional Model 1�5
	Head3TOC - Timed Functional Model 1�5
	Head3TOC - Functional Coding Style 1�5

	Head2TOC - Behavioral Model 1�9
	Head3TOC - Behavioral Coding Style 1�10
	Head3TOC - Refining From Functional to Behavioral Model 1�10

	Head2TOC - Register Transfer Level Model 1�14
	Head3TOC - RTL Coding Style 1�15
	Head3TOC - Refining into RTL 1�15

	Head1TOC - Choosing the Right Abstraction for Synthesis 1�19
	Head2TOC - Identifying Attributes Suitable for Behavioral Synthesis 1�19
	Head2TOC - Identifying Attributes Suitable for RTL Synthesis 1�21
	Head2TOC - Comparison of Behavioral and RTL Synthesis 1�22

	ChapTitleTOC - 2. Refining for Behavioral Synthesis
	Head1TOC - Refinement Overview 2�3
	Head1TOC - Creating and Refining the Structure From a C/C++ Model 2�6
	Head2TOC - Define I/O Ports 2�6
	Head2TOC - Specify Internal Structure 2�6
	Head2TOC - Specify the Internal Communication 2�7
	Head2TOC - Specify the Detailed Architecture 2�8
	Head2TOC - Atomic and Hierarchical Blocks 2�9
	Head2TOC - Modules 2�12
	Head3TOC - Module Header File 2�13
	Head3TOC - Module Ports 2�14
	Head3TOC - Internal Signals 2�16
	Head3TOC - Reading and Writing Ports 2�17
	Head3TOC - Internal Data Variables 2�18

	Head2TOC - Processes 2�20
	Head3TOC - Types of Processes 2�21
	Head3TOC - Creating a Process in a Module 2�22

	Head2TOC - Member Functions 2�23
	Head2TOC - Module Constructor 2�24
	Head2TOC - Module Implementation File 2�26
	Head3TOC - Using an Infinite Loop 2�26

	Head1TOC - Refining the Structure From a High-Level SystemC Model 2�28
	Head1TOC - Creating and Refining Processes 2�28
	Head1TOC - Converting to a Synthesizable Subset 2�30
	Head2TOC - Excluding Simulation-Specific Code 2�31
	Head2TOC - SystemC and C++ Synthesizable Subset 2�32
	Head3TOC - Nonsynthesizable Subset of SystemC 2�33
	Head3TOC - Nonsynthesizable C/C++ Constructs 2�34

	Head1TOC - Refining Data 2�37
	Head2TOC - Synthesizable Data Types 2�37
	Head3TOC - Nonsynthesizable Data Types 2�38
	Head3TOC - Recommended Types for Synthesis 2�39

	Head2TOC - Using SystemC Types 2�41
	Head3TOC - Bit and Bit Vector Data Type Operators 2�41
	Head3TOC - Fixed and Arbitrary Precision Data Type Operators 2�42

	Head2TOC - Using Enumerated Types 2�43
	Head3TOC - Using Aggregate Data Types 2�43
	Head3TOC - Using C++ Types 2�43

	Head2TOC - Recommendations About Data Types 2�46

	Head1TOC - Refining Control 2�47
	Head1TOC - Advanced Refinement Techniques 2�48
	Head1TOC - Refinement Recommendations 2�49

	ChapTitleTOC - 3. Behavioral Coding Guidelines
	Head1TOC - Using Clocked Thread Processes 3�2
	Head2TOC - Characteristics of the Clocked Thread Process 3�2
	Head3TOC - Using the wait Statement 3�3
	Head3TOC - Using the wait_until Statement 3�3

	Head2TOC - Controlling a Clocked Thread Process 3�4
	Head2TOC - Simple Clocked Thread Example 3�4

	Head1TOC - Using Inputs and Outputs 3�6
	Head2TOC - Registered Outputs 3�6
	Head2TOC - Inputs and Outputs Within Cycles 3�6
	Head2TOC - Specifying I/O Read and Write 3�7
	Head2TOC - Specifying I/O Cycles 3�7
	Head2TOC - I/O Scheduling Modes 3�8
	Head3TOC - Cycle-Fixed Scheduling Mode 3�8
	Head3TOC - Superstate-Fixed Schedule Mode 3�8
	Head3TOC - Comparing I/O Scheduling Modes 3�9

	Head1TOC - Behavioral Coding Style Rules 3�10
	Head2TOC - Definition of Coding Rule Terms 3�10
	Head2TOC - General Coding Rules 3�11
	Head2TOC - Cycle-Fixed Mode Coding Rules 3�12
	Head2TOC - Superstate-Fixed Mode Coding Rules 3�12
	Head2TOC - General Coding Rules Examples 3�13
	Head3TOC - General Coding Rule 1 3�13
	Head3TOC - General Coding Rule 2 3�14
	Head3TOC - General Coding Rule 3 3�15
	Head3TOC - General Coding Rule 4 3�16
	Head3TOC - General Coding Rule 5 3�20

	Head2TOC - Cycle-Fixed Mode Coding Rules Examples 3�23
	Head3TOC - Cycle-Fixed Coding Rule 1 3�23
	Head3TOC - Cycle-Fixed Coding Rule 2 3�26
	Head3TOC - Cycle-Fixed Coding Rule 3 3�28

	Head2TOC - Superstate-Fixed Mode Coding Rules Examples 3�29
	Head3TOC - Superstate-Fixed Coding Rule 1 3�29
	Head3TOC - Superstate-Fixed Coding Rule 2 3�30

	Head2TOC - Finding the Cause of Timing-Dependent Coding Errors 3�31

	Head1TOC - Using Conditional Statements 3�32
	Head1TOC - Using Loops 3�33
	Head2TOC - Understanding How Loops Are Scheduled 3�33
	Head2TOC - Labeling a Loop 3�34
	Head2TOC - Using while Loops 3�35
	Head3TOC - Using an Infinite while Loop 3�35
	Head3TOC - Using do...while Loops 3�36

	Head2TOC - Using for Loops 3�36
	Head3TOC - Rolled Versus Unrolled Loops 3�36
	Head3TOC - Rolled for Loops 3�37
	Head3TOC - Unrolling for Loops 3�37
	Head3TOC - Comparing Rolled and Unrolled Loops 3�39
	Head3TOC - Selectively Unrolling Loop Iterations 3�40
	Head3TOC - Ensuring a Statically Determinable Exit Condition 3�41
	Head3TOC - Consecutive Loops 3�42

	Head2TOC - Pipelining Loop Rules 3�45

	Head1TOC - Using Resets 3�46
	Head2TOC - Describing a Global Reset 3�46
	Head2TOC - Specifying the Reset Behavior 3�46
	Head2TOC - Specifying a Reset Implementation 3�48

	Head1TOC - Using Variables and Signals 3�49
	Head2TOC - Initializing Variables 3�49
	Head2TOC - Using Signals and Wait Statements 3�50
	Head2TOC - Using Variables and Wait Statements 3�52
	Head2TOC - Using Variables for Register Allocation Efficiency 3�53
	Head2TOC - Determining the Lifetime of Variables 3�54

	ChapTitleTOC - 4. Using Functions and DesignWare Components
	Head1TOC - Using Member Functions 4�2
	Head1TOC - Using Nonmember Functions 4�4
	Head1TOC - Using Preserved Functions 4�4
	Head2TOC - When to Preserve Functions 4�5
	Head2TOC - Preserved Function Restrictions 4�5
	Head2TOC - Creating Preserved Functions 4�6
	Head2TOC - Nonmember Preserved Functions 4�9
	Head2TOC - Using Reference Parameters in Preserved Functions 4�10

	Head1TOC - Using DesignWare Components 4�11
	Head2TOC - Using map_to_operator 4�11
	Head2TOC - Guidelines for Using map_to_operator 4�12

	ChapTitleTOC - 5. Using Arrays, Register Files, and Memories
	Head1TOC - Using Arrays 5�2
	Head2TOC - Declaring Arrays 5�2
	Head2TOC - Reading From and Writing to Variable Arrays 5�3
	Head2TOC - Reading From and Writing to Signal Arrays 5�4
	Head2TOC - Accessing Slices of an Array Location 5�5

	Head1TOC - Array Implementations 5�7
	Head1TOC - Mapping Arrays to Register Files 5�8
	Head2TOC - Mapping All Arrays to Register Files 5�9
	Head2TOC - Mapping Specific Arrays to Register Files 5�9

	Head1TOC - Mapping Arrays to Memories 5�11
	Head2TOC - Local Memory 5�11
	Head2TOC - Multiple Arrays Accessing One Memory 5�13
	Head2TOC - Exploring Alternative Memory Types 5�14

	Head1TOC - Accessing Register Files and Memories Efficiently 5�15
	Head2TOC - Accessing Memory 5�16
	Head2TOC - Allowing for Vendor Memory Timing 5�17
	Head2TOC - Eliminating Redundant Memory Accesses 5�18
	Head2TOC - Accessing Bit Slices of Memory Data 5�19

	ChapTitleTOC - 6. Using Handshaking in the Circuit and Testbench
	Head1TOC - Using Handshake Protocols 6�3
	Head1TOC - Using One-Way Handshake Protocols 6�4
	Head2TOC - One-Way Handshake Initiated From Behavioral Block 6�4
	Head2TOC - One-Way Handshake Initiated From Testbench 6�12
	Head2TOC - Constraining the Width of Handshake Strobes 6�19

	Head1TOC - Using Two-Way Handshake Protocols 6�21
	Head2TOC - Two-Way Handshake Initiated From Behavioral Block 6�21
	Head2TOC - Two-Way Handshake Initiated From Testbench 6�29

	Head1TOC - Fast Handshaking 6�36
	Head2TOC - Using if…else 6�37
	Head2TOC - Using wait_until 6�39

	Head1TOC - Using a Pipeline Handshake Protocol 6�40

	AppTitleTOC - Appendix A. Compiler Directives
	Head1TOC - Synthesis Compiler Directives A�2
	Head2TOC - line_label A�3
	Head2TOC - map_to_operator A�3
	Head2TOC - return_port_name A�4
	Head2TOC - preserve_function A�4
	Head2TOC - inout_param A�5
	Head2TOC - resource A�6
	Head2TOC - synthesis_off and synthesis_on A�7
	Head2TOC - translate_off and translate_on A�7
	Head2TOC - unroll A�8

	Head1TOC - C/C++ Compiler Directives A�9
	Head2TOC - C Line Label A�9
	Head2TOC - C Conditional Compilation A�9

	AppTitleTOC - Appendix B. First-In-First-Out Example
	Head1TOC - FIFO Description B�2
	Head1TOC - Architectural Model B�2
	Head1TOC - Behavioral Model B�6
	Head2TOC - Ports and Signals B�6
	Head2TOC - Behavioral Description B�8
	Head2TOC - Behavioral Testbench B�11

	Head1TOC - RTL Model B�15
	Head2TOC - RTL Description B�16
	Head2TOC - RTL Testbench B�20

	AppTitleTOC - Appendix C. Memory Controller Example
	Head1TOC - Memory Controller Description C�2
	Head2TOC - Commands C�2
	Head2TOC - Ports C�3
	Head2TOC - Communication Protocol C�4

	Head1TOC - Functional Simulation Model C�5
	Head1TOC - Refined Behavioral Model C�9
	Head2TOC - Data Types C�9
	Head2TOC - Communication Protocol C�9
	Head2TOC - Clock Placement C�10
	Head2TOC - Behavioral Model C�10

	AppTitleTOC - Appendix D. Fast Fourier Transform Example
	Head1TOC - FFT Description D�2
	Head2TOC - FFT Computation D�2
	Head2TOC - Refining From Functional to Behavioral D�3
	Head2TOC - Data Read Two-Way Handshake D�3
	Head2TOC - Data Write Two-Way Handshake D�3

	Head1TOC - FFT Functional Model D�4
	Head1TOC - FFT Behavioral Model D�9
	Head1TOC - FFT Testbench D�17

	AppTitleTOC - Appendix E. Inverse Quantization Example
	Head1TOC - IQ Description E�2
	Head2TOC - IQ Data Flow E�3
	Head2TOC - IQ Block Diagram E�4

	Head1TOC - IQ Behavioral Model E�4

	AppTitleTOC - Appendix F. Expressions and Operations
	Head1TOC - Using Expressions F�2
	Head1TOC - Operator Precedence F�3

	FigureTitleLOF - Figure 1�1 System Design Levels of Abstraction 1�3
	FigureTitleLOF - Figure 1�2 Architectural Model 1�4
	FigureTitleLOF - Figure 1�3 Behavioral Model 1�9
	FigureTitleLOF - Figure 1�4 RTL Model 1�14
	FigureTitleLOF - Figure 2�1 Refinement Stages and Activities 2�4
	FigureTitleLOF - Figure 2�2 MPEG Decoder Functional Structure 2�7
	FigureTitleLOF - Figure 2�3 MPEG Decoder Top-Level Architecture 2�8
	FigureTitleLOF - Figure 2�4 MPEG Decoder Detailed Architecture 2�9
	FigureTitleLOF - Figure 2�5 Module 2�12
	FigureTitleLOF - Figure 2�6 Module Ports 2�14
	FigureTitleLOF - Figure 2�7 Processes and Signals 2�16
	FigureTitleLOF - Figure 3�1 Simple Multiplier I/O Protocol 3�7
	FigureTitleLOF - Figure 3�2 Rolled and Unrolled for Loops 3�39
	FigureTitleLOF - Figure 3�3 Loop Latency and Initiation Interval 3�45
	FigureTitleLOF - Figure 3�4 Loop Exit 3�45
	FigureTitleLOF - Figure 3�5 Comparing Signal Use and Data Flow 3�51
	FigureTitleLOF - Figure 3�6 Variable Use and Data Flow 3�52
	FigureTitleLOF - Figure 5�1 Register File Architecture 5�8
	FigureTitleLOF - Figure 5�2 Multiple Array Address Space Mapping 5�13
	FigureTitleLOF - Figure 5�3 Memory Access Time Specification 5�17
	FigureTitleLOF - Figure 5�4 Bit Slice Accesses 5�20
	FigureTitleLOF - Figure 6�1 One-Way Handshake Protocol 6�5
	FigureTitleLOF - Figure 6�2 Testbench-Initiated One-Way Handshake 6�12
	FigureTitleLOF - Figure 6�3 Constraining Input Handshake Signals 6�19
	FigureTitleLOF - Figure 6�4 Constraining Output Handshake Signals 6�20
	FigureTitleLOF - Figure 6�5 Two-Way Handshake Protocol 6�22
	FigureTitleLOF - Figure 6�6 Two-Way Handshake Protocol 6�29
	FigureTitleLOF - Figure 6�7 Timing Diagram of while Loop 6�37
	FigureTitleLOF - Figure 6�8 Timing Diagram Using if…else 6�38
	FigureTitleLOF - Figure 6�9 Timing Diagram Using wait_until 6�39
	FigureTitleLOF - Figure 6�10 Incorrect Loop Pipeline With Handshake 6�41
	FigureTitleLOF - Figure 6�11 Correct Loop Pipeline With Extended Initiation
	FigureTitleLOF - Interval 6�42
	FigureTitleLOF - Figure 6�12 Correct Loop Pipeline Without Handshake Signal
	FigureTitleLOF - De-assertion 6�44
	AppFigureTitleLOF - Figure C�1 Behavioral Input Data Flow C�10
	AppFigureTitleLOF - Figure D�1 FFT Ports and Data Types D�2
	AppFigureTitleLOF - Figure E�1 IQ Blocks E�2
	AppFigureTitleLOF - Figure E�2 IQ Data Flow E�3
	AppFigureTitleLOF - Figure E�3 IQ Block Diagram E�4
	TableTitleLOT - Table 2-1 Nonsynthesizable SystemC Classes 2�33
	TableTitleLOT - Table 2-2 Nonsynthesizable C/C++ Constructs 2�34
	TableTitleLOT - Table 2-3 Synthesizable Data Types 2�39
	TableTitleLOT - Table 2-4 SystemC Bit and Bit Vector Data Type Operators 2�41
	TableTitleLOT - Table 2-5 SystemC Integer Data Type Operators 2�42
	AppTableTitleLOT - Table A�1 SystemC Compiler Compiler Directives A�2
	AppTableTitleLOT - Table F�1 Operator Precedence F�4
	ExampleTitleLOP - Example 1�1 FIFO Functional Model 1�6
	ExampleTitleLOP - Example 1�2 FIFO Behavioral Coding 1�12
	ExampleTitleLOP - Example 1�3 RTL Coding 1�16
	ExampleTitleLOP - Example 2�1 Using read() and write() Methods 2�18
	ExampleTitleLOP - Example 2�2 Creating a Clocked Thread Process in a Module 2�22
	ExampleTitleLOP - Example 2�3 Module Constructor 2�25
	ExampleTitleLOP - Example 2�4 Module Behavior 2�27
	ExampleTitleLOP - Example 2�5 Basic Reset Action and Main Loop 2�29
	ExampleTitleLOP - Example 2�6 Excluding Simulation-Only Code 2�31
	ExampleTitleLOP - Example 2�7 Aggregate Data Type 2�43
	ExampleTitleLOP - Example 2�8 Implicit Bit Size Restriction 2�44
	ExampleTitleLOP - Example 2�9 Unknown Variable Bit Size 2�44
	ExampleTitleLOP - Example 2�10 Incorrectly Using a Data Member as a Variable 2�45
	ExampleTitleLOP - Example 2�11 Correct Use of Local Variables 2�45
	ExampleTitleLOP - Example 3�1 Infinite Loops 3�4
	ExampleTitleLOP - Example 3�2 Simple Clocked Thread Multiplier 3�5
	ExampleTitleLOP - Example 3�3 Error in Use of General Coding Rule 1 3�13
	ExampleTitleLOP - Example 3�4 Correct General Coding Rule 1 3�13
	ExampleTitleLOP - Example 3�5 Error in Use of General Coding Rule 2 3�14
	ExampleTitleLOP - Example 3�6 Correct General Coding Rule 2 3�14
	ExampleTitleLOP - Example 3�7 Error in Use of General Coding Rule 3 3�15
	ExampleTitleLOP - Example 3�8 Correct General Coding Rule 3 3�15
	ExampleTitleLOP - Example 3�9 Error in Use of General Coding Rule 4, If
	ExampleTitleLOP - Conditional 3�17
	ExampleTitleLOP - Example 3�10 Correct General Coding Rule 4, If Conditional 3�17
	ExampleTitleLOP - Example 3�11 Error in Use of General Coding Rule 4, If
	ExampleTitleLOP - Conditional With Implied Else 3�18
	ExampleTitleLOP - Example 3�12 Correct General Coding Rule 4, If Conditional 3�18
	ExampleTitleLOP - Example 3�13 Error in Use of General Coding Rule 4, Switch
	ExampleTitleLOP - Conditional 3�19
	ExampleTitleLOP - Example 3�14 Correct General Coding Rule 4, Switch Conditional 3�19
	ExampleTitleLOP - Example 3�15 Error in Use of General Coding Rule 5 3�21
	ExampleTitleLOP - Example 3�16 Correct General Coding Rule 5 3�22
	ExampleTitleLOP - Example 3�17 Error in Use of Cycle-Fixed Mode Coding Rule 1, for Loop 3�23
	ExampleTitleLOP - Example 3�18 Correct Cycle�-Fixed Mode Coding Rule 1, for Loop 3�23
	ExampleTitleLOP - Example 3�19 Error in Use of Cycle-Fixed Mode Coding Rule 1, while Loop 3�24
	ExampleTitleLOP - Example 3�20 Correct Cycle-Fixed Mode Coding Rule 1, while
	ExampleTitleLOP - loop 3�24
	ExampleTitleLOP - Example 3�21 Error in Use of Cycle-Fixed Mode Coding Rule 1, do-while Loop 3�25
	ExampleTitleLOP - Example 3�22 Correct Cycle-Fixed Mode Coding Rule 1,
	ExampleTitleLOP - do-while loop 3�25
	ExampleTitleLOP - Example 3�23 Error in Use of Cycle-Fixed Mode Coding Rule 2 3�26
	ExampleTitleLOP - Example 3�24 Correct Cycle-Fixed Mode Coding Rule 2 3�27
	ExampleTitleLOP - Example 3�25 Error in Use of Cycle-Fixed Mode Coding Rule 2,
	ExampleTitleLOP - Write 3�27
	ExampleTitleLOP - Example 3�26 Correct Cycle-Fixed Mode Coding Rule 2, Write 3�28
	ExampleTitleLOP - Example 3�27 Error in Use of Cycle-Fixed Mode Coding Rule 3 3�29
	ExampleTitleLOP - Example 3�28 Correct Cycle-Fixed Mode Coding Rule 3 3�29
	ExampleTitleLOP - Example 3�29 Error in Use of Superstate-Fixed Mode Coding
	ExampleTitleLOP - Rule 1 3�30
	ExampleTitleLOP - Example 3�30 Correct Superstate-Fixed Mode Coding Rule 1 3�30
	ExampleTitleLOP - Example 3�31 Error in Use of Superstate-Fixed Mode Coding
	ExampleTitleLOP - Rule 2 3�31
	ExampleTitleLOP - Example 3�32 Correct Superstate-Fixed Mode Coding Rule 2 3�31
	ExampleTitleLOP - Example 3�33 Operations That Are Not Mutually Exclusive 3�32
	ExampleTitleLOP - Example 3�34 Mutually Exclusive Operations 3�32
	ExampleTitleLOP - Example 3�35 Labeling a Loop 3�34
	ExampleTitleLOP - Example 3�36 Structure of a while Loop 3�35
	ExampleTitleLOP - Example 3�37 Infinite while Loop 3�35
	ExampleTitleLOP - Example 3�38 Structure of do...while Loop 3�36
	ExampleTitleLOP - Example 3�39 for Loop 3�36
	ExampleTitleLOP - Example 3�40 Unrolled for Loop Compiler Directive 3�37
	ExampleTitleLOP - Example 3�41 Unrolled for Loop and Its Execution 3�38
	ExampleTitleLOP - Example 3�42 When to Use unroll 3�40
	ExampleTitleLOP - Example 3�43 Selective Unrolling of a for Loop 3�41
	ExampleTitleLOP - Example 3�44 for Loop Without Static Exit Condition 3�42
	ExampleTitleLOP - Example 3�45 Consecutive Loops With Overhead 3�43
	ExampleTitleLOP - Example 3�46 Collapsed Consecutive Loops 3�44
	ExampleTitleLOP - Example 3�47 Global Reset Watching 3�47
	ExampleTitleLOP - Example 4�1 Member Function 4�3
	ExampleTitleLOP - Example 4�2 Creating Preserved Functions 4�7
	ExampleTitleLOP - Example 4�3 Nonmember Preserved Function Declaration 4�9
	ExampleTitleLOP - Example 4�4 Preserved Function With Reference Parameter 4�10
	ExampleTitleLOP - Example 4�5 Using DesignWare Parts 4�11
	ExampleTitleLOP - Example 5�1 Data Member Array 5�2
	ExampleTitleLOP - Example 5�2 Array Local to a Process 5�2
	ExampleTitleLOP - Example 5�3 Reading From a Variable Array 5�3
	ExampleTitleLOP - Example 5�4 Writing to a Variable Array 5�3
	ExampleTitleLOP - Example 5�5 Reading From a Signal Array 5�4
	ExampleTitleLOP - Example 5�6 Writing to a Signal Array 5�4
	ExampleTitleLOP - Example 5�7 Multiple Accesses to Slices in the Same Array 5�5
	ExampleTitleLOP - Example 5�8 Multiple Array Accesses Using a Variable 5�6
	ExampleTitleLOP - Example 5�9 Accessing Slices of a Signal Array Location 5�6
	ExampleTitleLOP - Example 5�10 Mapping Specific Arrays to Register Files 5�10
	ExampleTitleLOP - Example 5�11 Declaring Local Memory Resources 5�12
	ExampleTitleLOP - Example 5�12 Multiple Arrays Accessing One Memory 5�13
	ExampleTitleLOP - Example 5�13 Changing Memory Types 5�14
	ExampleTitleLOP - Example 5�14 Incorrect Memory Read Timing for Cycle-Fixed 5�16
	ExampleTitleLOP - Example 5�15 Correct Memory Read Timing for Cycle-Fixed 5�16
	ExampleTitleLOP - Example 5�16 Redundant Memory Read 5�18
	ExampleTitleLOP - Example 5�17 Array Location Assigned to Temporary Variable 5�18
	ExampleTitleLOP - Example 6�1 One-Way Handshake Protocol Behavioral Block 6�6
	ExampleTitleLOP - Example 6�2 Behavioral Block Responding to One-Way Handshake 6�13
	ExampleTitleLOP - Example 6�3 Two-Way Handshake Protocol From GCD Block 6�23
	ExampleTitleLOP - Example 6�4 Two-Way Handshake Protocol From Testbench 6�30
	ExampleTitleLOP - Example 6�5 Two-Way Handshake Using a while Loop 6�36
	ExampleTitleLOP - Example 6�6 Fast Two-Way Handshake Using while Loop 6�37
	ExampleTitleLOP - Example 6�7 Fast Two-Way Handshake Using wait_until 6�39
	ExampleTitleLOP - Example 6�8 Incorrect Loop Pipeline With Handshake 6�40
	ExampleTitleLOP - Example 6�9 Correct Handshake in a Pipelined Loop 6�43
	AppExampleTitleLOP - Example B�1 Architectural Simulation Model B�3
	AppExampleTitleLOP - Example B�2 Behavioral Header File B�8
	AppExampleTitleLOP - Example B�3 Behavioral Implementation File B�9
	AppExampleTitleLOP - Example B�4 Behavioral Synthesis to Gates Script B�10
	AppExampleTitleLOP - Example B�5 Behavioral Testbench Header File B�11
	AppExampleTitleLOP - Example B�6 Behavioral Testbench Implementation File B�11
	AppExampleTitleLOP - Example B�7 Behavioral Top-Level Simulation File B�14
	AppExampleTitleLOP - Example B�8 RTL Header File B�16
	AppExampleTitleLOP - Example B�9 RTL Implementation File B�17
	AppExampleTitleLOP - Example B�10 RTL Top-Level Simulation File B�20
	AppExampleTitleLOP - Example C�1 Memory Controller Header File C�6
	AppExampleTitleLOP - Example C�2 Memory Controller Implementation File C�7
	AppExampleTitleLOP - Example C�3 Token Header File C�8
	AppExampleTitleLOP - Example C�4 Memory Controller Command Types C�8
	AppExampleTitleLOP - Example C�5 Behavioral Header File C�11
	AppExampleTitleLOP - Example C�6 Behavioral Implementation File C�12
	AppExampleTitleLOP - Example C�7 Behavioral Synthesis to Gates Script C�13
	AppExampleTitleLOP - Example D�1 FFT Functional Header File D�4
	AppExampleTitleLOP - Example D�2 FFT Functional Description File D�5
	AppExampleTitleLOP - Example D�3 FFT Header File D�9
	AppExampleTitleLOP - Example D�4 FFT Implementation File D�10
	AppExampleTitleLOP - Example D�5 Behavioral Synthesis to Gates Script D�16
	AppExampleTitleLOP - Example D�6 FFT Testbench Source D�18
	AppExampleTitleLOP - Example D�7 FFT Testbench Sink D�20
	AppExampleTitleLOP - Example D�8 FFT Testbench Top-Level Model D�21
	AppExampleTitleLOP - Example E�1 IQ Header File E�5
	AppExampleTitleLOP - Example E�2 IQ Implementation File E�7
	AppExampleTitleLOP - Example E�3 Behavioral Synthesis to Gates Script E�16

