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1. Product Brief

1.1 Introduction

The RV12 is a highly configurable single-issue, single-core RV32I, RV64I compliant RISC
CPU intended for the embedded market. The RV12 is a member of the Roa Logic’s
32/64bit CPU family based on the industry standard RISC-V instruction set.
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Figure 1.1: RV12 Architecture

The RV12 implements a Harvard architecture for simultaneous instruction and data
memory accesses. It features an optimizing folded 6-stage pipeline, which optimizes over-
laps between the execution and memory accesses, thereby reducing stalls and improving
efficiency.

Optional features include Branch Prediction, Instruction Cache, Data Cache, Debug
Unit and optional Multiplier/Divider Units. Parameterized and configurable features in-
clude the instruction and data interfaces, the branch-prediction-unit configuration, and
the cache size, associativity, replacement algorithms and multiplier latency. Providing the
user with trade offs between performance, power, and area to optimize the core for the
application.

RV12 is compliant with the RISC-V User Level ISA v2.2 and Privileged Architecture
v1.10 specifications published by the RISC-V Foundation (www.riscv.org).
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1.2 Features

High Performance 32/64bit CPU

• Royalty Free Industry standard instruction set (www.riscv.org)

• Parameterized 32/64bit data

• Fast, precise interrupts

• Custom instructions enable integration of proprietary hardware accelerators

• Single cycle execution

• Optimizing folded 6-stage pipeline

• Memory Protection Support

• Optional/Parameterized branch-prediction-unit

• Optional/Parameterized caches

Highly Parameterized

• User selectable 32 or 64bit data

• User selectable Branch Prediction Unit

• User selectable instruction and/or data caches

• User selectable cache size, structure, and architecture

• Hardware Multiplier/Divider Support with user defined latency

• Flexible bus architecture supporting AHB, Wishbone

Size and power optimized design

• Fully parameterized design provides power/performance tradeoffs

• Gated clock design to reduce power

• Small silicon footprint; 30kgates for full featured implementation

Industry standard software support

• Eclipse IDE for Windows/Linux

• GNU Compiler Collection, debugger, linker, assembler

• Architectural simulator

2
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2. Introduction to the RV12
The RISC-V specification provides for multi-threading and multi-core implementations.
A core is defined as an implementation with its own instruction fetch unit. A hardware
thread, or hart, is defined as a processing engine with its own state. A core may contain
multiple hardware threads. See www.riscv.org for the specifications1.

The RV12 implements a single core 32/64bit Reduced Instruction Set Computing
(RISC) Central Processing Unit (CPU) with a single hardware thread, based on the RISC-
V User Instruction Set Architecture v2.2 and Supervisor Instruction Set Architecture v1.10
specifications. The core is highly configurable, providing the user with a trade-off between
area, power, and performance, thus allowing it to be optimized for the intended task.

See Chapter 4 for a description of the configuration options and parameters.

2.1 Privilege Levels

At any time, a hardware thread (hart) is running at some privilege level. The current
privilege level is encoded in one or more Control and Status Registers (CSRs). The RISC-
V specification defines four privilege levels, where each level provides its own protection
and isolation..

Level Encoding Name Abbreviation

0 00 User/Application U
1 01 Supervisor S
2 10 Hypervisor H
3 11 Machine M

Table 2.1: RISC-V Privilege Levels

The highest privilege level is the Machine level. This is an inherent trusted level and
has access to, and can alter, the whole machine. The lowest level is the User/Application
level and is considered the least trusted level. It is used to protect the rest of the system
from malicious applications.

Supervisor mode is used to provide isolation between an operating system and the
machine and user levels. Hypervisor mode is used to virtualize operating systems.

The RV12 always implements Machine mode and optionally implements User mode
and parts of the Supervisor Mode.

2.2 Execution Pipeline

The RV12 implements an optimizing 6-stage folded pipeline. The classic RISC pipeline
consists of 5 stages; instruction fetch (IF), instruction decode (ID), execute (EX), memory
access (MEM), and register write-back (WB).

The RV12 implements a modified form of the classic RISC pipeline where the Fetch
stage takes 2 cycles to allow time to recode 16bit-compressed instructions and predict

1Full reference details of the specifications are documented in the References chapter

3

http://www.riscv.org


RV12 RISC-V CPU Core (v1.3) Roa Logic

M
e
m

o
ry

 (
M

E
M

)

E
x
e
c
u
te

 (
E

X
)

W
ri
te

 B
a
c
k
 (
W

B
)

D
e
c
o

d
e
 (
ID

)

F
e
tc

h
 (
IF

)
Figure 2.1: Classic RISC Pipeline

branches and jumps. The Memory stage is folded into the Execute and Write-Back stages.
The Decode stage optimizes the instruction stream to allow CPU stalls, instruction execu-
tion, and memory accesses to overlap, thereby effectively hiding CPU stalls and improving
the CPU’s cycles per instruction CPI.
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Figure 2.2: Modified RV12 Pipeline

The RV12 pipeline is capable of executing one instruction per clock cycle by overlapping
the execution stages. The figure below shows how 5 instructions are being operated on at
the same time; this is referred to as ‘being in flight’. Instruction A is the oldest instruction
and it’s in the Write Back (WB) stage, whereas Instruction E is the newest instruction
and it’s in the Instruction Fetch (IF) stage.

Instruction A

Instruction B

Instruction C

Instruction D

Instruction E

IF PD ID EX MEM WB

IF PD ID EX MEM WB

IF PD ID EX MEM WB

IF PD ID EX MEM WB

IF PD ID EX MEM WB

IF PD ID EX MEM WBInstruction F

Figure 2.3: Overlapping Execution Stages

2.2.1 Instruction Fetch (IF)

During the Instruction Fetch stage one instruction is read from the instruction memory
and the program counter is updated to point to the next instruction..
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2.2.2 Instruction Pre-Decode (PD)

When RVC Support is enabled, the Instruction Pre-Decode stage decodes a 16bit-compressed
instruction into a native 32bit instruction.

2.2.3 Instruction Decode (ID)

During the Instruction Decode stage the Register File is accessed and the bypass controls
are determined.

2.2.4 Execute (EX)

During the Execute stage the result is calculated for an ALU, MUL, DIV instruction, the
memory accessed for a Load/Store instruction, and branches and jumps are calculated and
checked against their predicted outcomes.

2.2.5 Memory (MEM)

During the Memory stage, memory access by the pipeline is completed. Inclusion of this
stage ensures high performance of the pipeline.

2.2.6 Write Back (WB)

During the Write Back stage the result from the Execution stage is written into the Register
File.

2.3 Branch Prediction Unit

The RV12 can execute one instruction every clock cycle. However due to the pipeline
architecture each instruction takes several clock cycles to complete. When a branch in-
struction is decoded its conditions and outcome are not known and waiting for the branch
outcome before continuing fetching new instructions would cause excessive processor stalls,
affecting the processor’s performance.

Instead of waiting the processor predicts the branch’s outcome and continues fetching
instructions from the predicted address. When a branch is predicted wrong, the processor
must flush its pipeline and restart fetching from the calculated branch address. The
processor’s state is not affected because the pipeline is flushed and therefore none of the
incorrectly fetched instructions is actually executed. However the branch prediction may
have forced the Instruction Cache to load new instructions. The Instruction Cache state
is NOT restored, meaning the predicted instructions remain in the Instruction Cache.

The RV12 has an optional Branch Prediction Unit (BPU) that stores historical data
to guide the processor in deciding if a particular branch is taken or not- taken. The BPU
data is updated as soon as the branch executes.

The BPU has a number of parameters that determine its behavior. HAS BPU determines
if a BPU is present, BPU LOCAL BITS determines how many of the program counter’s LSB
must be used and BPU GLOBAL BITS determines how many history bits must be used.

The combination of BPU GLOBAL BITS and BPU LOCAL BITS creates a vector that is
used to address the Branch-Prediction-Table. Increasing the BPU LOCAL BITS increases
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the number of program counter entries, thereby reducing aliasing of the branch predictor
at the expense of a larger Branch Prediction Table.

Setting BPU GLOBAL BITS to zero creates a local-predictor. Setting BPU GLOBAL BITS
to any non-zero value adds history (previous branch prediction results) to the vector.
This allows the branch predictor to handle nested branches. Increasing the number of
BPU GLOBAL BITS adds more history to the vector at the expense of a larger Branch Pre-
diction Table.

If no BPU is present, then all forward branches are predicted taken and all backward
branches are predicted not-taken.

2.4 Control & Status Registers (CSRs)

The Control & Status Registers, or CSRs for short, provide information about the current
state of the processor. See section “Control & Status Registers”, for a description of the
registers and their purpose.

2.5 Debug Unit

The Debug Unit allows the Debug Environment to stall and inspect the CPU. Provided
features include Single Step Tracing, Branch Tracing, and up to 8 Hardware Breakpoints.

2.6 Data Cache

The Data Cache is used to speed up data memory accesses by buffering recently accessed
memory locations. The data cache is capable of handling, byte, half-word, and word
accesses when XLEN=32, as long as they are on their respective boundaries. It is capable
of handling byte, half-word, word, and double-word accesses when XLEN=64, as long as
they are on their respective boundaries. Accessing a memory location on a non-natural
boundary (e.g. a word access on address 0x003) causes a data-load trap.

During a cache miss a complete block is written back to memory, if required, and a
new block loaded is loaded into the cache. Setting DCACHE SIZE to zero disables the Data
Cache. Memory locations are then directly access via the Data Interface.

2.7 Instruction Cache

The Instruction Cache is used to speed up instruction fetching by buffering recently fetched
instructions. The Instruction Cache is capable of fetching one parcel per cycle on any 16bit
boundary, but it cannot fetch across a block boundary. During a cache miss a complete
block is loaded from instruction memory.

The Instruction Cache can be configured according to the user’s needs. The cache size,
block length, associativity, and replacement algorithm are configurable.

Setting ICACHE SIZE to zero disables the Instruction Cache. Parcels are then directly
fetched from the memory via the Instruction Interface.
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2.8 Integer Pipeline

The RV12 has a single integer pipeline that can execute one instruction per cycle. The
pipeline handles all logical, integer arithmetic, CSR access, and PC modifying instructions.

2.9 Register File

The Register File is made up of 32 register locations (X0-X31) each XLEN bits wide.
Register X0 is always zero. The Register File has two read ports and one write port.
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3. RV12 Execution Pipeline

The RV12 implements a 32/64bit Integer modified form of the classic RISC pipeline. The
pipeline consists of the Instruction Fetch, Pre-Decode, Instruction Decode, Execution,
Memory Access, and Write Back stages as highlighted in the figure below.
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Figure 3.1: RV12 Execution Pipeline
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3.1 Instruction Fetch (IF)

The Instruction Fetch unit loads a new parcel from the program memory. A parcel is a code
field that contains one or more instructions. The address of the parcel to load is held by
the Program Counter (PC). The Program Counter is either 32 or 64bits wide, depending
on the XLEN parameter. The Program Counter is updated whenever the Instruction
Pipeline is not stalled.

If the pipeline is flushed the Program Counter is restarted from the given address.

IF

ex_nxt_pc

pc+2

st_nxt_pc

ex_nxt_pc

if_bubble

if_instr

if_pc

Flush / Stall

parcel

parcel_valid

parcel_pc

st_nxt_pc

pc+4
if_nxt_pc

pd_branch_pc

Figure 3.2: Instruction Fetch Stage Implementation

Signal Direction To/From Description

if nxt pc to Bus Interface Next address to fetch parcel from
parcel pc from Bus Interface Fetch parcel’s address
parcel valid from Bus Interface Valid indicators for parcel
parcel from Bus Interface Fetched parcel

Flush from EX/State When asserted flushes the pipe
Stall from PD When asserted stalls the pipe
pd branch pc from PD New program counter for a branch instruction
if pc to PD Instruction Fetch program counter
if instr to PD Instruction Fetch instruction
if bubble to PD Instruction Fetch bubble
if exception to PD Instruction Fetch exception status

Table 3.1: IF Signals
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3.2 Pre-Decode (PD)

The Pre-Decode unit translates 16-bit compressed instructions to the base 32bit RISC-V
instructions and then processes Program Counter modifying instructions like Jump-And-
Link and Branch. This avoids waiting for the Execution stage to trigger the update and
reduces the demand for pipeline flushes. The destination address for branches is predicted
based on the data provided by the optional Branch Prediction Unit or determined statically
based on the offset.

PD

pd_bubble

pd_instr

pd_pc

pd_predict

bu_predict

if_bubble

if_instr

if_pc

pd_branch_pc

Figure 3.3: Instruction Pre-Decode Stage

Signal Direction To/From Description

if pc from IF Instruction Fetch program counter
if instr from IF Instruction Fetch instruction
if bubble from IF Instruction Fetch bubble
if exception from IF Instruction Fetch exception status
pd branch pc to IF New PC (for a branch instruction)

bu predict from BP Branch prediction from Branch Prediction Unit
pd predict to ID Forwarded branch prediction
pd pc to ID Pre-Decode program counter
pd instr to ID Pre-Decode instruction
pd bubble to ID Pre-Decode bubble
pd exception to ID Pre-Decode exception status

Table 3.2: PD Signals
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3.3 Instruction Decode (ID)

The Instruction Decode unit ensures the operands for the execution units are available.
It accesses the Register File, calculates immediate values, sets bypasses, and checks for
illegal opcodes and opcode combinations.

ID

pd_instr

pd_pc

src1-to-RF

src2-to-RF

id_opA

id_pc

id_opB

id_bypassA

id_bypassB

id_bubble

id_instr

pd_pc

‘0’

immU

immI

id_instr

pd_bubble

Figure 3.4: Instruction Decode Stage Implementation

Signal Direction To/From Description

pd pc from PD Pre-Decode program counter
pd instr from PD Pre-Decode instruction
pd bubble from PD Pre-Decode bubble
pd exception from PD Pre-Decode exception status

src1 to RF Source Register1 index
src2 to RF Source Register2 Index

Table 3.3 continued on next page. . .
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(Continued from previous page)
Signal Direction To/From Description

id bypassA to EX Bypass signals for srcA
id bypassB to EX Bypass signals for srcB
id opA to EX Calculated operandA
id opB to EX Calculated operandB
id pc to EX Instruction Decode program counter
id instr to EX Instruction Decode instruction
id bubble to EX Instruction Decode bubble
id exception to EX Instruction Decode exception status

Table 3.3: ID Signals
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3.4 Execute (EX)

The Execute stage performs the required operation on the data provided by the Instruction
Decode stage. The Execution stage has multiple execution units, each with a unique func-
tion. The ALU performs logical and arithmetic operations. The Multiplier unit calculates
signed/unsigned multiplications. The Divider unit calculates signed/unsigned division and
remainder. The Load-Store Unit accesses the data memory. The Branch Unit calculates
jump and branch addresses and validates the predicted branches.

Only one operation can be executed per clock cycle. Most operations complete in one
clock cycle, except for the divide instructions, which always take multiple clock cycles to
complete. The multiplier supports configurable latencies, to improve performance.

EX

ex_bubble

lsu_bubble

div_bubble

mul_bubble

alu_bubble

ex_stall

lsu_stall

div_stall

mul_stall

alu_stall

ex_r

lsu_r

div_r

mul_r

alu_r
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ex_flush

ex_nxt_pc

id_bubble

id_instr

id_opA

id_opB

wb_r

ex_r

div_r

div_stall

div_bubble

mul_r

mul_stall

mul_bubble

alu_r

alu_bubble

lsu_stall

opA-from-RF

lsu_r

lsu_bubble

opB-from-RF
OpB

OpAmem_r

Figure 3.5: Execute Stage Implementation

Signal Direction To/From Description

id pc from ID Instruction Decode program counter
id instr from ID Instruction Decode instruction
id bubble from ID Instruction Decode bubble

Table 3.4 continued on next page. . .
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(Continued from previous page)
Signal Direction To/From Description

id exception from ID Instruction Decode exception status

opA from RF Source Register1 value
opB from RF Source Register2 value

id bypassA from ID Bypass signals for srcA
id bypassB from ID Bypass signals for srcB
id opA from ID Calculated operandA
id opB from ID Calculated operandB
ex stall to ID Stall ID (and higher) stages
ex flush to ID/PD/IF Flush ID (and higher) pipe stages
ex r to MEM Result from execution units
ex pc to MEM Execute program counter
ex instr to MEM Execute instruction
ex bubble to MEM Execute bubble
ex exception to MEM Execute exception status

Table 3.4: EX Signals
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3.5 Memory-Access (MEM)

The Memory Access stage waits for a memory read access to complete. When memory
is accessed, address, data, and control signals are calculated during the Execute stage.
The memory latches these signals and then performs the actual access. This means that
read-data won’t be available until 1 clock cycle later. This would be at the end of the
Write-Back stage, and hence too late. Therefore the Memory-Access stage is added.

MEM

mem_bubble

mem_instr

mem_r

mem_pc

ex_r

ex_bubble

ex_instr

ex_pc

Figure 3.6: Memory Stage Implementation

Signal Direction To/From Description

ex r from EX Result from Execution stage
ex pc from EX Execute program counter
ex instr from EX Execute instruction
ex bubble from EX Execute bubble
ex exception from EX Execute stage exception status

mem r to WB/EX Memory Access result
mem instr to WB/ID Memory Access instruction
mem bubble to WB/ID Memory Access bubble
mem exception to WB/ID/EX Memory Access exception status

Table 3.5: MEM Signals
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3.6 Write-Back (WB)

The Write-Back stage writes the results from the Execution Units and memory-read op-
erations into the Register File.

WB

wb_dst

wb_we

wb_instr

wb_r

wb_pc

mem_r

mem_bubble

mem_instr

mem_pc

Figure 3.7: Write-back Stage Implementation

Signal Direction To/From Description

mem r from MEM Result from Memory Access stage
mem pc from MEM Memory Access program counter
mem instr from MEM Memory Access instruction
mem exception from MEM Memory Access exception status
mem bubble from MEM Memory Access bubble

dmem q from Data Memory Result from Data Memory
dmem ack from Data Memory Data Memory acknowledge

wb r to RF/ID/EX Result to be written to RF
wb dst to RF Destination register index
wb we to RF Write enable
wb pc to State WriteBack program counter
wb instr to State/ID WriteBack instruction
wb bubble to State/ID WriteBack bubble
wb exception to State/ID/EX WriteBack exception status

Table 3.6: WB Signals
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4. Configurations

4.1 Introduction

The RV12 is a highly configurable 32 or 64bit RISC CPU. The core parameters and
configuration options are described in this section.

4.2 Core Parameters

Parameter Type Default Description

Core Identification
JEDEC BANK Integer 0x0A JEDEC Bank
JEDEC MANUFACTURER ID Integer 0x6E JEDEC Manufacturer ID

Interface & Memory Parameters
XLEN Integer 32 Datapath width
PLEN Integer XLEN Physical Memory Address Size
PMP CNT Integer 16 Number of Physical Memory Pro-

tection Entries
PMA CNT Integer 16 Number of Physical Menory At-

tribute Entries
Feature Enablement

HAS USER Integer 0 User Mode Enable
HAS SUPER Integer 0 Supervisor Mode Enable
HAS HYPER Integer 0 Hypervisor Mode Enable
HAS RVM Integer 0 “M” Extension Enable
HAS RVA Integer 0 “A” Extension Enable
HAS RVC Integer 0 “C” Extension Enable
HAS BPU Integer 1 Branch Prediction Unit Control En-

able
IS RV32E Integer 0 RV32E Base Integer Instruction Set

Enable
MULT LATENCY Integer 0 Hardware Multiplier Latency (if

“M” Extension enabled)
Cache Configuration

ICACHE SIZE Integer 16 Instruction Cache size in Kbytes
ICACHE BLOCK SIZE Integer 32 Instruction Cache block length in

bytes
ICACHE WAYS Integer 2 Instruction Cache associativity
ICACHE REPLACE ALG Integer 0 Instruction Cache replacement algo-

rithm
0: Random
1: FIFO
2: LRU

DCACHE SIZE Integer 16 Data Cache size in Kbytes
DCACHE BLOCK SIZE Integer 32 Data Cache block length in bytes

Table 4.1 continued on next page. . .
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(Continued from previous page)
Parameter Type Default Description

DCACHE WAYS Integer 2 Data Cache associativity
DCACHE REPLACE ALG Integer 0 Data Cache replacement algorithm

0: Random
1: FIFO
2: LRU

Vectors & Identifiers
HARTID Integer 0 Hart Identifier
PC INIT Address h200 Program Counter Initialisation Vec-

tor
MNMIVEC DEFAULT Address PC INIT-‘h004 Machine Mode Non-Maskable Inter-

rupt vector address
MTVEC DEFAULT Address PC INIT-‘h040 Machine Mode Interrupt vector ad-

dress
HTVEC DEFAULT Address PC INIT-‘h080 Hypervisor Mode Interrupt vector

address
STVEC DEFAULT Address PC INIT-‘h0C0 Supervisor Mode Interrupt vector

address
UTVEC DEFAULT Address PC INIT-‘h100 User Mode Interrupt vector address

Branch Prediction Configuration
BP LOCAL BITS Integer 10 Number of local predictor bits
BP GLOBAL BITS Integer 2 Number of global predictor bits

Debug & Target Technolgoy
BREAKPOINTS Integer 3 Number of hardware breakpoints
TECHNOLOGY String GENERIC Target Silicon Technology

Table 4.1: IP Core Configuration

4.2.1 JEDEC BANK and JEDEC MANUFACTURER ID

The JEDEC BANK and JEDEC MANUFACTURER ID parameters together set the manufacturer
ID of the RV12 core. The official Roa Logic JEDEC ID is:

7F 7F 7F 7F 7F 7F 7F 7F 7F 6E

This ID is specified via the JEDEC BANK and JEDEC MANUFACTURER ID parameters as:

JEDEC BANK = 0x0A (Corresponding to number of bytes)

JEDEC MANUFACTURER ID = 0x6E (Single byte JEDEC ID)

These parameters are then encoded into a single value stored in the mvendorid CSR per
the RISC-V v1.10 Privileged Specification.

See section 5.6.2 Vendor ID Register (mvendorid) for more details.

4.2.2 XLEN

The XLEN parameter specifies the width of the data path. Allowed values are either 32 or
64, for a 32bit or 64bit CPU respectively.
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4.2.3 PC INIT

The PC INIT parameter specifies the initialization vector of the Program Counter; i.e. the
boot address, which by default is defined as address ‘h200

4.2.4 PLEN

The PLEN parameter specifies the physical address space the CPU can address. This
parameter must be equal or less than XLEN. Using fewer bits for the physical address
reduces internal and external resources. Internally the CPU still uses XLEN, but only the
PLEN LSBs are used to address the caches and the external buses.

4.2.5 PMP CNT

The RISC-V specification supports up to 16 Physical Memory Protection Entries which are
configured in software via the PMP CSRs. The PMP CNT parameter specifies the number
implemented in the RV12 processor, and must be set to a value of 16 or less. The default
value is 16.

4.2.6 PMA CNT

The RV12 supports an unlimited number of Physically Protected Memory regions, the
attributes for which are configured in hardware via the Physical Memory Attribute (PMA)
Configuration and Address input ports. The PMA CNT parameter specifies the number of
regions supported; the defualt value is 16

4.2.7 HAS USER

The HAS USER parameter defines if User Privilege Level is enabled (‘1’) or disabled (‘0’).
The default value is disabled (‘0’).

4.2.8 HAS SUPER

The HAS SUPER parameter defines if Supervisor Privilege Level is enabled (‘1’) or disabled
(‘0’). The default value is disabled (‘0’).

4.2.9 HAS HYPER

The HAS HYPER parameter defines if Hypervisor Privilege Level is enabled (‘1’) or disabled
(‘0’). The default value is disabled (‘0’).

4.2.10 HAS RVM

The HAS RVM parameter defines if the “M” Standard Extension for Integer Multiplication
and Division is enabled (‘1’) or disabled (‘0’). The default value is disabled (‘0’).

4.2.11 HAS RVA

The HAS RVA parameter defines if the “A” Standard Extension for Atomic Memory In-
structions is enabled (‘1’) or disabled (‘0’). The default value is disabled (‘0’).
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4.2.12 HAS RVC

The HAS RVC parameter defines if the “C” Standard Extension for Compressed Instructions
is enabled (‘1’) or disabled (‘0’). The default value is disabled (‘0’).

4.2.13 HAS BPU

The CPU has an optional Branch Prediction Unit that can reduce the branch penalty
considerably by prediction if a branch is taken or not taken. The HAS BPU parameter
specifies if the core should generate a branch- predictor. Setting this parameter to 0
prevents the core from generating a branch-predictor. Setting this parameter to 1 instructs
the core to generate a branch-predictor. The type and size of the branch-predictor is
determined by the BP GLOBAL BITS and BP LOCAL BITS parameters.

See section 2.3 Branch Prediction Unit for more details.

4.2.14 IS RV12E

RV12 supports the RV32E Base Integer Instruction Set, Version 1.9. RV32E is a reduced
version of RV32I designed for embedded systems, reducing the number of integer registers
to 16. The IS RV12E parameter determines if this feature is enabled (‘1’) or disabled (‘0’).
The default value is disabled (‘0’).

4.2.15 MULT LATENCY

If the “M” Standard Extension for Integer Multiplication and Division is enabled via the
HAS RVM parameter (HAS RVM=1 See section 4.2.7), a hardware multiplier will be generated
to support these instructions. By default (i.e. when MULT LATENCY=0) the generated
multiplier will be built as a purely combinatorial function.

The performance of the hardware multiplier may be improved at the expense of in-
creased latency of 1, 2 or 3 clock cycles by defining MULT LATENCY to 1, 2 or 3 respectively.

If the “M” Standard Extension is not enabled (HAS RVM=0) then the MULT LATENCY
parameter has no effect on the RV12 implementation.

4.2.16 BPU LOCAL BITS

The CPU has an optional Branch Prediction Unit that can reduce the branch penalty con-
siderably by prediction if a branch is taken or not taken. The BPU LOCAL BITS parameter
specifies how many bits from the program counter should be used for the prediction.

This parameter only has an effect if HAS BPU=1.

See section 2.3 Branch Prediction Unit for more details.

4.2.17 BPU GLOBAL BITS

The CPU has an optional Branch Prediction Unit that can reduce the branch penalty con-
siderably by prediction if a branch is taken or not-taken. The BPU GLOBAL BITS parameter
specifies how many history bits should be used for the prediction.

This parameter only has an effect if HAS BPU=1.

See section 2.3 Branch Prediction Unit for more details.
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4.2.18 HARTID

The RV12 is a single thread CPU, for which each instantiation requires a hart identifier
(HARTID), which must be unique within the overall system. The default HARTID is 0, but
may be set to any integer.

4.2.19 ICACHE SIZE

The CPU has an optional instruction cache. The ICACHE SIZE parameter specifies the
size of the instruction cache in Kbytes. Setting this parameter to 0 prevents the core from
generating an instruction cache.

See section 2.7 Instruction Cache for more details.

4.2.20 ICACHE BLOCK LENGTH

The CPU has an optional instruction cache. The ICACHE BLOCK LENGTH parameter speci-
fies the number of bytes in one cache block.

See section 2.7 Instruction Cache for more details.

4.2.21 ICACHE WAYS

The CPU has an optional instruction cache. The ICACHE WAYS parameter specifies the
associativity of the cache. Setting this parameter to 1 generates a direct mapped cache,
setting it to 2 generates a 2-way set associative cache, setting it to 4 generates a 4-way set
associative cache, etc.

See section 2.7 Instruction Cache for more details. See section 2.7 Instruction Cache
for more details.

4.2.22 ICACHE REPLACE ALG

The CPU has an optional instruction cache. The ICACHE REPLACE ALG parameter specifies
the algorithm used to select which block will be replaced during a block-fill.

See section 2.7 Instruction Cache for more details. See section 2.7 Instruction Cache
for more details.

4.2.23 DCACHE SIZE

The CPU has an optional data cache. The DCACHE SIZE parameter specifies the size
of the instruction cache in Kbytes. Setting this parameter to ‘0’ prevents the core from
generating a data cache.

See section 2.6 Data Cache for more details.

4.2.24 DCACHE BLOCK LENGTH

The CPU has an optional data cache. The DCACHE BLOCK LENGTH parameter specifies the
number of bytes in one cache block.

See section 2.6 Data Cache for more details.
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4.2.25 DCACHE WAYS

The CPU has an optional data cache. The DCACHE WAYS parameter specifies the associativ-
ity of the cache. Setting this parameter to 1 generates a direct mapped cache, setting it to
2 generates a 2-way set associative cache, setting it to 4 generates a 4-way set associative
cache, etc.

See section 2.6 Data Cache for more details.

4.2.26 DCACHE REPLACE ALG

The CPU has an optional instruction cache. The DCACHE REPLACE ALG parameter specifies
the algorithm used to select which block will be replaced during a block-fill.

See section 2.6 Data Cache for more details.

4.2.27 BREAKPOINTS

The CPU has a debug unit that connects to an external debug controller. The BREAKPOINTS
parameter specifies the number of implemented hardware breakpoints. The maximum is
8.

4.2.28 TECHNOLOGY

The TECHNOLOGY parameter defines the target silicon technology and may be one of the
following values:

Parameter Value Description

GENERIC Behavioural Implementation
N3X eASIC Nextreme-3 Structured ASIC
N3XS eASIC Nextreme-3S Structured ASIC

Table 4.2: Supported Technology Targets

Note: the parameter value is not case-sensitive.

4.2.29 MNMIVEC DEFAULT

The MNMIVEC DEFAULT parameter defines the Machine Mode non-maskable interrupt vector
address. The default vector is defined relative to the Program Counter Initialisation vector
PC INIT as follows:

MNMIVEC DEFAULT = PC INIT - ’h004

4.2.30 MTVEC DEFAULT

The MTVEC DEFAULT parameter defines the interrupt vector address for the Machine Priv-
ilege Level. The default vector is defined relative to the Program Counter Initialisation
vector PC INIT as follows:

MTVEC DEFAULT = PC INIT - ’h040
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4.2.31 HTVEC DEFAULT

The HTVEC DEFAULT parameter defines the interrupt vector address for the Hypervisor
Privilege Level. The default vector is defined relative to the Program Counter Initialisation
vector PC INIT as follows:

HTVEC DEFAULT = PC INIT - ’h080

4.2.32 STVEC DEFAULT

The STVEC DEFAULT parameter defines the interrupt vector address for the Supervisor
Privilege Level. The default vector is defined relative to the Program Counter Initialisation
vector PC INIT as follows:

STVEC DEFAULT = PC INIT - ’h0C0

4.2.33 UTVEC DEFAULT

The UTVEC DEFAULT parameter defines the interrupt vector address for the User Privilege
Level. The default vector is defined relative to the Program Counter Initialisation vector
PC INIT as follows:

UTVEC DEFAULT = PC INIT - ’h100
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5. Control and Status Registers

5.1 Introduction

The state of the CPU is maintained by the Control & Status Registers (CSRs). They
determine the feature set, set interrupts and interrupt masks, and determine the privilege
level. The CSRs are mapped into an internal 12bit address space and are accessible using
special commands.

5.2 Accessing the CSRs

31 20 19 15 14 12 11 7 6 0

csr rs1 funct3 rd opcode
12 5 3 5 7

source/dest source CSRRW dest SYSTEM
source/dest source CSRRS dest SYSTEM
source/dest source CSRRC dest SYSTEM
source/dest zimm[4:0] CSRRWI dest SYSTEM
source/dest zimm[4:0] CSRRSI dest SYSTEM
source/dest zimm[4:0] CSRRCI dest SYSTEM

Figure 5.1: CSR Instructions

The CSRRW (Atomic Read/Write CSR) instruction atomically swaps values in the
CSRs and integer registers. CSRRW reads the old value of the CSR, zero-extends the
value to XLEN bits, and writes it to register rd. The initial value in register rs1 is written
to the CSR.

The CSRRS (Atomic Read and Set CSR) instruction reads the old value of the CSR,
zero-extends the value to XLEN bits, and writes it to register rd. The initial value in
register rs1 specifies the bit positions to be set in the CSR. Any bit that is high in rs1
will be set in the CSR, assuming that bit can be set. The effect is a logic OR between the
old value in the CSR and the new value in rs1.

If rs1=X0, then the CSR is not written to.

The CSRRC (Atomic Read and Clear CSR) instruction reads the old value of the
CSR, zero-extends the value to XLEN bits, and writes it to register rd. The initial value
in register rs1 specifies the bit positions to be cleared in the CSR. Any bit that is high
in rs1 will be cleared in the CSR, assuming that bit can be cleared. If rs1=X0, then the
CSR is not written to.

The CSRRWI, CSRRSI, and CSRRCI commands are similar in behavior. Except that
they update the CSR using an immediate value, instead of referencing a source register.
The immediate value is obtained by zero-extending the 5bit zimm field. If zimm[4:0] is
zero, then the CSR is not written to.
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31 20 19 15 14 12 11 7 6 0

csr rs1 funct3 rd opcode
12 5 3 5 7

RDCYCLE[H] 0 CSRRS dest SYSTEM
RDTIME[H] 0 CSRRS dest SYSTEM

RDINSTRET[H] 0 CSRRS dest SYSTEM

Figure 5.2: Time & Counter Instructions

5.3 Illegal CSR accesses

Depending on the privilege level some CSRs may not be accessible. Attempts to access
a non-existing CSR raise an illegal-instruction exception. Attempts to access a privileged
CSR or write a read-only CSR raise an illegal-instruction exception. Machine Mode can
access all CSRs, whereas User Mode can only access a few.

5.4 Timers and Counters

The RV12 provides a number of 64-bit read-only user-level counters, which are mapped
into the 12-bit CSR address space and accessed in 32-bit pieces using CSRRS instructions.

The RDCYCLE pseudo-instruction reads the low XLEN bits of the cycle CSR that
holds a count of the number of clock cycles executed by the processor on which the hard-
ware thread is running from an arbitrary start time in the past. RDCYCLEH is an
RV32I-only instruction that reads bits 63–32 of the same cycle counter. The rate at which
the cycle counter advances will depend on the implementation and operating environment.

The RDTIME pseudo-instruction reads the low XLEN bits of the time CSR, which
counts wall-clock real time that has passed from an arbitrary start time in the past. RD-
TIMEH is an RV32I-only instruction that reads bits 63–32 of the same real-time counter.
The underlying 64-bit counter should never overflow in practice. The execution environ-
ment should provide a means of determining the period of the real-time counter (sec-
onds/tick). The period must be constant. The real-time clocks of all hardware threads in
a single user application should be synchronized to within one tick of the real-time clock.
The environment should provide a means to determine the accuracy of the clock.

The RDINSTRET pseudo-instruction reads the low XLEN bits of the instret CSR,
which counts the number of instructions retired by this hardware thread from some arbi-
trary start point in the past. RDINSTRETH is an RV32I-only instruction that reads bits
63–32 of the same instruction counter.

In RV64I, the CSR instructions can manipulate 64-bit CSRs. In particular, the RDCY-
CLE, RDTIME, and RDINSTRET pseudo-instructions read the full 64 bits of the cycle,
time, and instret counters. Hence, the RDCYCLEH, RDTIMEH, and RDINSTRETH
instructions are not necessary and are illegal in RV64I.
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5.5 CSR Listing

The following sections describe each of the register functions as specifically implemented
in RV12.

Note: These descriptions are derived from “The RISC-V Instruction Set Manual, Vol-
ume II: Privileged Architecture, Version 1.10”, Editors Andrew Waterman and Krste
Asanović, RISC-V Foundation, May 7, 2017, and released under the Creative Commons
Attribution 4.0 International License

Address Privilege Name Description

Machine Information Registers
0xF11 MRO mvendorid Vendor ID
0xF12 MRO marchid Architecture ID
0xF13 MRO mimpid Implementation ID
0xF14 MRO mhartid Hardware thread ID

Machine Trap Setup
0x300 MRW mstatus Machine status register
0x301 MRW misa ISA and extensions
0x302 MRW medeleg Machine exception delegation register
0x303 MRW mideleg Machine interrupt delegation register
0x304 MRW mie Machine interrupt-enable register
0x305 MRW mtvec Machine trap-handler base address
0x306 MRW mcounteren Machine counter enable
0x7c0 MRW mnmivec Machine non-maskable interrupt vector

Machine Trap Handling
0x340 MRW mscratch Scratch register for machine trap handler
0x341 MRW mepc Machine exception program counter
0x342 MRW mcause Machine trap cause
0x343 MRW mtval Machine bad address or instruction
0x344 MRW mip Machine interrupt pending

Machine Counter/Timers
0xB00 MRW mcycle Machine cycle counter
0xB02 MRW minstret Machine instructions-retired counter
0xB03 MRW mhpmcounter3 Machine performance-monitoring counter
0xB04 MRW mhpmcounter4 Machine performance-monitoring counter

...
0xB1F MRW mhpmcounter31 Machine performance-monitoring counter
0xB80 MRW mcycleh Upper 32 bits of mcycle, RV32I only
0xB82 MRW minstreth Upper 32 bits of minstret, RV32I only
0xB83 MRW mhpmcounter3h Upper 32 bits of mhpmcounter3, RV32I only
0xB84 MRW mhpmcounter4h Upper 32 bits of mhpmcounter4, RV32I only

...
0xB9F MRW mhpmcounter31h Upper 32 bits of mhpmcounter31, RV32I only

Machine Counter Setup
0x323 MRW mhpevent3 Machine performance-monitoring event selector
0x324 MRW mhpevent4 Machine performance-monitoring event selector

Table 5.1 continued on next page. . .
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(Continued from previous page)
Address Privilege Name Description

...
0x33F MRW mhpevent31 Machine performance-monitoring event selector

Table 5.1: Machine Mode CSRs

Address Privilege Name Description

Supervisor Trap Handling
0x100 SRW sstatus Supervisor status register
0x102 SRW sedeleg Supervisor exception delegation register
0x103 SRW sideleg Supervisor interrupt delegation register
0x104 SRW sie Supervisor interrupt-enable register
0x105 SRW stvec Supervisor trap handler base address
0x106 SRW scounteren Supervisor counter enable

Supervisor Trap Handling
0x140 SRW sscratch Scratch register for trap handler
0x141 SRW sepc Supervisor exception program counter
0x142 SRO scause Supervisor trap cause
0x143 SRO sbadaddr Supervisor bad address
0x144 SRW sip Supervisor interrupt pending register

Table 5.2: Supervisor Mode CSRs

Address Privilege Name Description

User Trap Setup
0x000 URW ustatus User status register
0x004 URW uie User interrupt-enable register
0x005 URW utvec User trap-handler base address

User Trap Handling
0x040 URW uscratch Scratch register for User trap handler
0x041 URW uepc User exception program counter
0x042 URW ucause User trap cause
0x043 URW utval User bad address
0x044 URW uip User interrupt pending

User Counter / Timers
0xC00 URO cycle Cycle counter for RDCYCLE instruction
0xC01 URO time Timer for RDTIME instruction
0xC02 URO instret Instruction-retire counter for RDINSTRET
0xC03 URO hpmcounter3 Performance-monitoring counter
0xC04 URO hpmcounter4 Performance-monitoring counter

...
0xC1F URO hpmcounter31 Performance-monitoring counter
0xC80 URO cycleh Upper 32bits of cycle, RV32I only

Table 5.3 continued on next page. . .
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(Continued from previous page)
Address Privilege Name Description

0xC81 URO timeh Upper 32bits of time, RV32I only
0xC82 URO instreth Upper 32bit of instret, RV32I only
0xC83 URO hpmcounter3h Upper 32bit of hpmcounter3, RV32I only
0xC84 URO hpmcounter4h Upper 32bit of hpmcounter4, RV32I only

...
0xC9F URO hpmcounter31h Upper 32bit of hpmcounter31, RV32I only

Table 5.3: User Mode CSRs

Address Privilege Name Description

Memory Protection Configuration
0x3A0 MRW pmpcfg0 Physical memory protection configuration
0x3A1 MRW pmpcfg1 Physical memory protection configuration, RV32 Only
0x3A2 MRW pmpcfg2 Physical memory protection configuration
0x3A3 MRW pmpcfg3 Physical memory protection configuration,RV32 Only

Memory Protection Addressing
0x3B0 MRW pmpaddr0 Physical memory protection address register
0x3B1 MRW pmpaddr1 Physical memory protection address register

...
0x3BF MRW pmpaddr15 Physical memory protection address register

Table 5.4: Memory Protection CSRs

5.6 Machine Level CSRs

In addition to the machine-level CSRs described in this section, M-mode can access all
CSRs at lower privilege levels.

5.6.1 Machine ISA Register (misa)

The misa register is an XLEN-bit WARL read-write register reporting the ISA supported
by the hart.

XLEN-1 XLEN-2 XLEN-3 26 25 0
Base (WARL) WIRI Extensions (WARL)

2 XLEN-28 26

Figure 5.3: Machine ISA register (misa).

The extensions field encodes the presence of the standard extensions, with a single bit
per letter of the alphabet (bit 0 encodes the presence of extension “A”, bit 1 encodes the
presence of extension “B”, through to bit 25 that encodes the presence of extension “Z”).

The “I” bit will be set for RV32I and RV64I base ISAs, and the “E” bit will be set for
RV32E.
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The Base field encodes the native base integer ISA width as shown:

Value Description

1 32
2 64

Table 5.5: Supported misa values

5.6.2 Vendor ID Register (mvendorid)

The mvendorid read-only register is an XLEN-bit register encoding the JEDEC manufac-
turer ID of the provider of the core.

XLEN-1 7 6 0
Bank Offset

XLEN-7 7

Figure 5.4: Vendor ID register (mvendorid).

The Roa Logic JEDEC ID is:

7F 7F 7F 7F 7F 7F 7F 7F 7F 6E

This ID is specified via the JEDEC BANK and JEDEC MANUFACTURER ID configuration
parameters

mvendorid encodes the number of one-byte continuation codes of the JEDEC BANK pa-
rameter in the Bank field, and encodes the final JEDEC MANUFACTURER ID byte in the Offset
field, discarding the parity bit.

For the Roa Logic JEDEC manufacturer ID, this translates as:

mvendorid = {JEDEC BANK-1, JEDEC MANUFACTURER ID[6:0]} = 0x4EE

5.6.3 Architecture ID Register (marchid)

The marched CSR is an XLEN-bit read-only register encoding the base microarchitecture
of the hart. For the RV12 CPU this is defined as:

XLEN-1 0
Architecture ID

XLEN

Figure 5.5: Machine Architecture ID register (marchid).

The Architecture ID for the RV12 CPU is defined as 0x12.

Note: Open-source project architecture IDs are allocated globally by the RISC-V Foun-
dation, and have non-zero architecture IDs with a zero most-significant-bit (MSB). Com-
mercial architecture IDs are allocated by each commercial vendor independently and have
the MSB set.
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5.6.4 Implementation ID Register (mimpid)

mimpid is an XLEN-sized read-only register provides hardware version information for the
CPU.

XLEN-1 0
Implementation

XLEN

Figure 5.6: Machine Implementation ID register (mimpid).

The RISC-V specification calls for the contents of mimpid to be defined by the sup-
plier/developer of the CPU core. In the Roa Logic implementation, this register is used
to define the User Specification, Privilege Specification and Extension Specifications sup-
ported by that specific version of the RV12 core.

The value held within the mimpid CSR is an integer denoting Specification and Exten-
sion support as defined in the following table:

mimpid User Spec. Privilege Spec. A-Ext. C-Ext. M-Ext.

0 v2.2 v1.10 v2.0 – v2.0
1 v2.2 v1.10 v2.0 v1.7 v2.0
2 v2.2 v1.11 v2.0 v1.7 v2.0

Table 5.6: Supported mimpid values

5.6.5 Hardware Thread ID Register (mhartid)

XLEN-1 0
Hart ID
XLEN

Figure 5.7: Hart ID register (mhartid).

The mhartid read-only register indicates the hardware thread that is running the code.
The RV12 implements a single thread, therefore this register always reads zero.

5.6.6 Machine Status Register (mstatus)

The mstatus register is an XLEN-bit read/write register formatted as shown in Figure 5.8
for RV32 and Figure 5.9 for RV64. The mstatus register keeps track of and controls the
hart’s current operating state. Restricted views of the mstatus register appear as the
sstatus and ustatus registers in the S-level and U-level ISAs respectively.

5.6.7 Privilege and Global Interrupt-Enable Stack in mstatus register

Interrupt-enable bits, MIE, SIE, and UIE, are provided for each privilege mode. These bits
are primarily used to guarantee atomicity with respect to interrupt handlers at the current
privilege level. When a hart is executing in privilege mode x, interrupts are enabled when
x IE=1. Interrupts for lower privilege modes are always disabled, whereas interrupts for
higher privilege modes are always enabled. Higher-privilege-level code can use separate
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31 30 23 22 21 20 19 18 17
SD WPRI TSR TW TVM MXR SUM MPRV
1 8 1 1 1 1 1 1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
XS[1:0] FS[1:0] MPP[1:0] WPRI SPP MPIE WPRI SPIE UPIE MIE WPRI SIE UIE

2 2 2 2 1 1 1 1 1 1 1 1 1

Figure 5.8: Machine-mode status register (mstatus) for RV32.

XLEN-1 XLEN-2 36 35 34 33 32 31 23 22 21 20 19 18 17
SD WPRI SXL[1:0] UXL[1:0] WPRI TSR TW TVM MXR SUM MPRV
1 XLEN-37 2 2 9 1 1 1 1 1 1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
XS[1:0] FS[1:0] MPP[1:0] WPRI SPP MPIE WPRI SPIE UPIE MIE WPRI SIE UIE

2 2 2 2 1 1 1 1 1 1 1 1 1

Figure 5.9: Machine-mode status register (mstatus) for RV64 and RV128.

per-interrupt enable bits to disable selected interrupts before ceding control to a lower
privilege level.

To support nested traps, each privilege mode x has a two-level stack of interrupt-enable
bits and privilege modes. x PIE holds the value of the interrupt-enable bit active prior
to the trap, and x PP holds the previous privilege mode. The x PP fields can only hold
privilege modes up to x, so MPP is two bits wide, SPP is one bit wide, and UPP is
implicitly zero. When a trap is taken from privilege mode y into privilege mode x, x PIE
is set to the value of x IE; x IE is set to 0; and x PP is set to y.

The MRET, SRET, or URET instructions are used to return from traps in M-mode,
S-mode, or U-mode respectively. When executing an xRET instruction, supposing x PP
holds the value y, x IE is set to x PIE; the privilege mode is changed to y; x PIE is set to
1; and x PP is set to U (or M if user-mode is not supported).

x PP fields are WLRL fields that need only be able to store supported privilege modes,
including x and any implemented privilege mode lower than x.

User-level interrupts are an optional extension and have been allocated the ISA exten-
sion letter N. If user-level interrupts are omitted, the UIE and UPIE bits are hardwired to
zero. For all other supported privilege modes x, the x IE and x PIE must not be hardwired.

5.6.8 Base ISA Control in mstatus Register

For RV64 systems, the SXL and UXL fields are WARL fields that control the value of
XLEN for S-mode and U-mode, respectively. The encoding of these fields is the same as
the MXL field of misa. The effective XLEN in S-mode and U-mode are termed S-XLEN
and U-XLEN, respectively.

For RV32 systems, the SXL and UXL fields do not exist, and S-XLEN = 32 and
U-XLEN = 32.
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5.6.9 Memory Privilege in mstatus Register

The MPRV (Modify PRiVilege) bit modifies the privilege level at which loads and stores
execute in all privilege modes. When MPRV=0, translation and protection behave as
normal. When MPRV=1, load and store memory addresses are translated and protected
as though the current privilege mode were set to MPP. Instruction address-translation and
protection are unaffected. MPRV is hardwired to 0 if U-mode is not supported.

The MXR (Make eXecutable Readable) bit modifies the privilege with which loads ac-
cess virtual memory. When MXR=0, only loads from pages marked readable will succeed.
When MXR=1, loads from pages marked either readable or executable (R=1 or X=1) will
succeed. MXR is hardwired to 0 if S-mode is not supported.

The SUM (permit Supervisor User Memory access) bit modifies the privilege with
which S-mode loads, stores, and instruction fetches access virtual memory. When SUM=0,
S-mode memory accesses to pages that are accessible by U-mode will fault. When SUM=1,
these accesses are permitted. SUM has no effect when page-based virtual memory is not
in effect. Note that, while SUM is ordinarily ignored when not executing in S-mode, it is
in effect when MPRV=1 and MPP=S. SUM is hardwired to 0 if S-mode is not supported.

Virtualization Management & Context Extension Fields in mstatus Register

Virtualization and Context Extensions are not supported by the RV12 v1.x implementa-
tion. The value of these fields will therefore be permanently set to 0.

5.6.10 Machine Trap-Handler Base Address Register (mtvec)

The mtvec register is an XLEN-bit read/write register that holds trap vector configuration,
consisting of a vector base address (BASE) and a vector mode (MODE).

XLEN-1 2 1 0
BASE[XLEN-1:2] (WARL) MODE (WARL)

XLEN-2 2

Figure 5.10: Machine trap-vector base-address register (mtvec).

The encoding of the MODE field is shown in Table 5.7. When MODE=Direct, all
traps into machine mode cause the pc to be set to the address in the BASE field. When
MODE=Vectored, all synchronous exceptions into machine mode cause the pc to be set
to the address in the BASE field, whereas interrupts cause the pc to be set to the address
in the BASE field plus four times the interrupt cause number.

Value Name Description
0 Direct All exceptions set pc to BASE.
1 Vectored Asynchronous interrupts set pc to BASE+4×cause.
≥2 — Reserved

Table 5.7: Encoding of mtvec MODE field.

32



RV12 RISC-V CPU Core (v1.3) Roa Logic

5.6.11 Machine Delegation Registers (medeleg & mideleg)

The machine exception delegation register (medeleg) and machine interrupt delegation
register (mideleg) are XLEN-bit read/write registers used to indicate that certain excep-
tions and interrupts should be processed directly by a lower privilege level.

When a trap is delegated to a less-privileged mode x, the x cause register is written
with the trap cause; the x epc register is written with the virtual address of the instruction
that took the trap; the x PP field of mstatus is written with the active privilege mode
at the time of the trap; the x PIE field of mstatus is written with the value of the active
interrupt-enable bit at the time of the trap; and the x IE field of mstatus is cleared. The
mcause and mepc registers and the MPP and MPIE fields of mstatus are not written.

XLEN-1 0
Synchronous Exceptions

XLEN

Figure 5.11: Machine Exception Delegation Register medeleg.

medeleg has a bit position allocated for every synchronous exception with the index
of the bit position equal to the value returned in the mcause register (i.e. setting bit 8
allows user-mode environment calls to be delegated to a lower-privilege trap handler).

XLEN-1 0
Interrupts
XLEN

Figure 5.12: Machine Exception Delegation Register mideleg.

mideleg holds trap delegation bits for individual interrupts, with the layout of bits
matching those in the mip register (i.e. STIP interrupt delegation control is located in bit
5).

5.6.12 Machine Interrupt Registers (mie, mip)

The mip register is an XLEN-bit read/write register containing information on pending
interrupts, while mie is the corresponding XLEN- bit read/write register containing inter-
rupt enable bits. Only the bits corresponding to lower-privilege software interrupts (USIP,
SSIP), timer interrupts (UTIP, STIP), and external interrupts (UEIP, SEIP) in mip are
writable through this CSR address; the remaining bits are read-only.

Restricted views of the mip and mie registers appear as the sip/sie, and uip/uie
registers in S-mode and U-mode respectively. If an interrupt is delegated to privilege
mode x by setting a bit in the mideleg register, it becomes visible in the x ip register and
is maskable using the x ie register. Otherwise, the corresponding bits in x ip and x ie
appear to be hardwired to zero.

XLEN-1 12 11 10 9 8 7 6 5 4 3 2 1 0
WIRI MEIP WIRI SEIP UEIP MTIP WIRI STIP UTIP MSIP WIRI SSIP USIP

XLEN-12 1 1 1 1 1 1 1 1 1 1 1 1

Figure 5.13: Machine interrupt-pending register (mip).
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XLEN-1 12 11 10 9 8 7 6 5 4 3 2 1 0
WPRI MEIE WPRI SEIE UEIE MTIE WPRI STIE UTIE MSIE WPRI SSIE USIE

XLEN-12 1 1 1 1 1 1 1 1 1 1 1 1

Figure 5.14: Machine interrupt-enable register (mie).

The MTIP, STIP, UTIP bits correspond to timer interrupt-pending bits for machine,
supervisor, and user timer interrupts, respectively. The MTIP bit is read-only and is
cleared by writing to the memory-mapped machine-mode timer compare register. The
UTIP and STIP bits may be written by M-mode software to deliver timer interrupts to
lower privilege levels. User and supervisor software may clear the UTIP and STIP bits
with calls to the AEE and SEE respectively.

There is a separate timer interrupt-enable bit, named MTIE, STIE, and UTIE for
M-mode, S-mode, and U-mode timer interrupts respectively.

Each lower privilege level has a separate software interrupt-pending bit (SSIP, USIP),
which can be both read and written by CSR accesses from code running on the local hart
at the associated or any higher privilege level. The machine-level MSIP bits are written by
accesses to memory-mapped control registers, which are used by remote harts to provide
machine-mode interprocessor interrupts.

The MEIP field in mip is a read-only bit that indicates a machine-mode external
interrupt is pending. MEIP is set and cleared by a platform-specific interrupt controller.
The MEIE field in mie enables machine external interrupts when set.

The SEIP field in mip contains a single read-write bit. SEIP may be written by M-mode
software to indicate to S-mode that an external interrupt is pending.

The UEIP field in mip provides user-mode external interrupts when the N extension
for user-mode interrupts is implemented. It is defined analogously to SEIP.

The MEIE, SEIE, and UEIE fields in the mie CSR enable M-mode external interrupts,
S-mode external interrupts, and U-mode external interrupts, respectively.

For all the various interrupt types (software, timer, and external), if a privilege level
is not supported, the associated pending and interrupt-enable bits are hardwired to zero
in the mip and mie registers respectively.

An interrupt i will be taken if bit i is set in both mip and mie, and if interrupts are
globally enabled. By default, M-mode interrupts are globally enabled if the hart’s current
privilege mode is less than M, or if the current privilege mode is M and the MIE bit in
the mstatus register is set. If bit i in mideleg is set, however, interrupts are considered
to be globally enabled if the hart’s current privilege mode equals the delegated privilege
mode (S or U) and that mode’s interrupt enable bit (SIE or UIE in mstatus) is set, or if
the current privilege mode is less than the delegated privilege mode.

Multiple simultaneous interrupts and traps at the same privilege level are handled
in the following decreasing priority order: external interrupts, software interrupts, timer
interrupts, then finally any synchronous traps.

5.6.13 Machine Non-Maskable Interrupt Vector (mnmivec)

The mnmivec register is an XLEN-bit read/write register that holds the base address of the
non-maskable interrupt trap vector. When an exception occurs, the pc is set to mnmivec.
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XLEN-1 0
mnmivec
XLEN

Figure 5.15: Machine Non-Maskable Interrupt Vector

5.6.14 Machine Trap Handler Scratch Register (mscratch)

The mscratch register is an XLEN-bit read/write register dedicated for use by machine
mode. It is used to hold a pointer to a machine-mode hart-local context space and swapped
with a user register upon entry to an M-mode trap handler.

XLEN-1 0
mscratch
XLEN

Figure 5.16: Machine-mode scratch register.

5.6.15 Machine Exception Program Counter Register (mepc)

mepc is an XLEN-bit read/write register. The two low bits (mepc[1:0]) are always zero.

XLEN-1 0
mepc

XLEN

Figure 5.17: Machine exception program counter register.

When a trap is taken, mepc is written with the virtual address of the instruction that
encountered the exception.

5.6.16 Machine Trap Cause Register (mcause)

The mcause register is an XLEN-bit read-write register. The Interrupt bit is set if the
exception was caused by an interrupt. The Exception Code field contains a code identifying
the last exception. The remaining center bits will read zero

XLEN-1 XLEN-2 0
Interrupt Exception Code (WLRL)

1 XLEN-1

Figure 5.18: Machine Cause register mcause.

Table 5.8 below lists the possible machine-level exception codes.

Interrupt Exception Code Description

1 0 User software interrupt
1 1 Supervisor software interrupt
1 2 Reserved
1 3 Machine software interrupt

Table 5.8 continued on next page. . .
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(Continued from previous page)
Interrupt Exception Code Description

1 4 User timer interrupt
1 5 Supervisor timer interrupt
1 6 Reserved
1 7 Machine timer interrupt
1 8 User external interrupt
1 9 Supervisor external interrupt
1 10 Reserved
1 11 Machine external interrupt
1 ≥12 Reserved
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store/AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call from U-mode
0 9 Environment call from S-mode
0 10 Reserved
0 11 Environment call from M-mode
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 ≥16 Reserved

Table 5.8: Machine Cause Register Values

5.6.17 Machine Trap Value Register (mtval)

The mtval register is an XLEN-bit read-write register formatted as shown in Figure 5.19.

XLEN-1 0
mtval

XLEN

Figure 5.19: Machine trap value register.

When a trap is taken into M-mode, mtval is written with exception-specific informa-
tion to assist software in handling the trap. Otherwise, mtval is never written by the
implementation, though it may be explicitly written by software.

When a hardware breakpoint is triggered, or an instruction-fetch, load, or store address-
misaligned, access, or page-fault exception occurs, mtval is written with the faulting ef-
fective address. On an illegal instruction trap, mtval is written with the first XLEN bits
of the faulting instruction as described below. For other exceptions, mtval is set to zero,
but a future standard may redefine mtval’s setting for other exceptions.
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For instruction-fetch access faults with variable-length instructions, mtval will point to
the portion of the instruction that caused the fault while mepc will point to the beginning
of the instruction.

5.6.18 Counter-Enable Registers ([m|s]counteren)

31 30 29 28 6 5 4 3 2 1 0
HPM31 HPM30 HPM29 ... HPM5 HPM4 HPM3 IR TM CY

1 1 1 23 1 1 1 1 1 1

Figure 5.20: Counter-enable registers (mcounteren and scounteren).

Note: Machine performnce counters are currently unsupported and therefore all HPMn
bits are hardwired to ’0’.

The counter-enable registers mcounteren and scounteren control the availability of
the hardware performance monitoring counters to the next-lowest privileged mode.

When the CY, TM or IR bit in the mcounteren register is clear, attempts to read the
cycle, time, or instret register while executing in S-mode or U-mode will cause an illegal
instruction exception. When one of these bits is set, access to the corresponding register
is permitted in the next implemented privilege mode (S-mode if implemented, otherwise
U-mode).

If S-mode is implemented, the same bit positions in the scounteren register analo-
gously control access to these registers while executing in U-mode. If S-mode is permitted
to access a counter register and the corresponding bit is set in scounteren, then U-mode
is also permitted to access that register.

5.6.19 Machine Cycle Counter (mcycle, mcycleh)

The mcycle CSR holds a count of the number of cycles the hart has executed since some
arbitrary time in the past. The mcycle register has 64-bit precision on all RV32 and RV64
systems.

On RV32 only, reads of the mcycle CSR returns the low 32 bits, while reads of the
mcycleh CSR returns bits 63–32.

5.6.20 Machine Instructions-Retired counter (minstret, minstreth)

The minstret CSR holds a count of the number of instructions the hart has retired since
some arbitrary time in the past. The minstret register has 64-bit precision on all RV32
and RV64 systems.

On RV32 only, reads of the minstret CSR returns the low 32 bits, while reads of the
minstreth CSR returns bits 63–32.

5.6.21 Machine Performance counters (mhpmcounter, mhpmcounter)

The Machine High Performance counters mhpmcounter3-31, mhpmcounter3-31h are im-
plemented but unsupported in the current RV12 implementation.
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5.6.22 Machine Performance event selectors (mhpevent)

The Machine High Performance event selector CSRs mhpevent3-31 are implemented but
unsupported in the current RV12 implementation.

5.7 Supervisor Mode CSRs

5.7.1 Supervisor Status Register (sstatus)

The sstatus register is an XLEN-bit read/write register. The sstatus register keeps track
of the processor’s current operating state.

XLEN-1 XLEN-2 19 18 17 16 15 14 13 12 9 8 7 6 5 4 3 2 1 0
SD 0 PUM 0 XS[1:0] FS[1:0] 0 SPP 0 SPIE UPIE 0 SIE UIE
1 XLEN-20 1 1 2 2 4 1 2 1 1 2 1 1

Figure 5.21: Supervisor-mode status Register.

The SPP bit indicates the privilege level at which a hart was executing before entering
supervisor mode. When a trap is taken, SPP is set to 0 if the trap originated from user
mode, or 1 otherwise. When an SRET instruction is executed to return from the trap
handler, the privilege level is set to user mode if the SPP bit is 0, or supervisor mode if
the SPP bit is 1; SPP is then set to 0.

The SIE bit enables or disables all interrupts in supervisor mode. When SIE is clear,
interrupts are not taken while in supervisor mode. When the hart is running in user-mode,
the value in SIE is ignored, and supervisor-level interrupts are enabled. The supervisor
can disable indivdual interrupt sources using the sie register.

The SPIE bit indicates whether interrupts were enabled before entering supervisor
mode. When a trap is taken into supervisor mode, SPIE is set to either SIE or UIE
depending on whether the trap was taken in supervisor or user mode respectively, and SIE
is set to 0. When an SRET instruction is executed, if SPP=S, then SIE is set to SPIE; or if
SPP=U, then UIE is set to SPIE. In either case, SPIE is then set to 1.

The UIE bit enables or disables user-mode interrupts. User-level interrupts are enabled
only if UIE is set and the hart is running in user-mode. The UPIE bit indicates whether user-
level interrupts were enabled prior to taking a user-level trap. When a URET instruction is
executed, UIE is set to UPIE, and UPIE is set to 1.

Memory Privilege in sstatus Register

The PUM (Protect User Memory) bit modifies the privilege with which S-mode loads, stores,
and instruction fetches access virtual memory. When PUM=0, translation and protection
behave as normal. When PUM=1, S-mode memory accesses to pages that are accessible by
U-mode will fault. PUM has no effect when executing in U-mode.

5.7.2 Supervisor Trap Delegation Registers (sedeleg, sideleg)

The supervisor exception delegation register (sedeleg) and supervisor interrupt delegation
register (sideleg) are XLEN-bit read/write registers.
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In systems with all three privilege modes (M/S/U), setting a bit in medeleg or mideleg
will delegate the corresponding trap in S-mode or U-mode to the S-mode trap handler. If
U-mode traps are supported, S-mode may in turn set corresponding bits in the sedeleg
and sideleg registers to delegate traps that occur in U-mode to the U-mode trap handler.

5.7.3 Supervisor Interrupt Registers (sip, sie)

The sip register is an XLEN-bit read/write register containing information on pending in-
terrupts, while sie is the corresponding XLEN-bit read/write register containing interrupt
enable bits.

XLEN-1 10 9 8 7 6 5 4 3 2 1 0
WIRI SEIP UEIP WIRI STIP UTIP WIRI SSIP USIP

XLEN-10 1 1 2 1 1 2 1 1

Figure 5.22: Supervisor interrupt-pending register (sip).

XLEN-1 10 9 8 7 6 5 4 3 2 1 0
WPRI SEIE UEIE WPRI STIE UTIE WPRI SSIE USIE

XLEN-10 1 1 2 1 1 2 1 1

Figure 5.23: Supervisor interrupt-enable register (sie).

Three types of interrupts are defined: software interrupts, timer interrupts, and exter-
nal interrupts. A supervisor-level software interrupt is triggered on the current hart by
writing 1 to its supervisor software interrupt-pending (SSIP) bit in the sip register. A
pending supervisor-level software interrupt can be cleared by writing 0 to the SSIP bit
in sip. Supervisor-level software interrupts are disabled when the SSIE bit in the sie
register is clear.

Interprocessor interrupts are sent to other harts by means of SBI calls, which will
ultimately cause the SSIP bit to be set in the recipient hart’s sip register.

A user-level software interrupt is triggered on the current hart by writing 1 to its user
software interrupt-pending (USIP) bit in the sip register. A pending user-level software
interrupt can be cleared by writing 0 to the USIP bit in sip. User-level software interrupts
are disabled when the USIE bit in the sie register is clear. If user-level interrupts are not
supported, USIP and USIE are hardwired to zero.

All bits besides SSIP, USIP, and UEIP in the sip register are read-only.

A supervisor-level timer interrupt is pending if the STIP bit in the sip register is set.
Supervisor-level timer interrupts are disabled when the STIE bit in the sie register is
clear. An SBI call to the SEE may be used to clear the pending timer interrupt.

A user-level timer interrupt is pending if the UTIP bit in the sip register is set. User-
level timer interrupts are disabled when the UTIE bit in the sie register is clear. If
user-level interrupts are supported, the ABI should provide a facility for scheduling timer
interrupts in terms of real-time counter values. If user-level interrupts are not supported,
UTIP and UTIE are hardwired to zero.

A supervisor-level external interrupt is pending if the SEIP bit in the sip register is set.
Supervisor-level external interrupts are disabled when the SEIE bit in the sie register is
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clear. The SBI should provide facilities to mask, unmask, and query the cause of external
interrupts.

The UEIP field in sip contains a single read-write bit. UEIP may be written by S-
mode software to indicate to U-mode that an external interrupt is pending. Additionally,
the platform-level interrupt controller may generate user-level external interrupts. The
logical-OR of the software-writeable bit and the signal from the external interrupt con-
troller are used to generate external interrupts for user mode. When the UEIP bit is read
with a CSRRW, CSRRS, or CSRRC instruction, the value returned in the rd destina-
tion register contains the logical-OR of the software-writable bit and the interrupt signal
from the interrupt controller. However, the value used in the read-modify-write sequence
of a CSRRS or CSRRC instruction is only the software-writable UEIP bit, ignoring the
interrupt value from the external interrupt controller.

User-level external interrupts are disabled when the UEIE bit in the sie register is
clear. If the N extension for user-level interrupts is not implemented, UEIP and UEIE are
hardwired to zero.

5.7.4 Supervisor Trap Vector Register (stvec)

The stvec register is an XLEN-bit read/write register that holds the base address of the
S-mode trap vector. When an exception occurs, the pc is set to stvec. The stvec register
is always aligned to a 4-byte boundary.

XLEN-1 2 1 0
Trap-Vector Base Address (WARL) 0

XLEN-2 2

Figure 5.24: Supervisor trap-vector base-address register (mtvec).

The stvec register is an XLEN-bit read/write register that holds trap vector configu-
ration, consisting of a vector base address (BASE) and a vector mode (MODE).

XLEN-1 2 1 0
BASE[XLEN-1:2] (WLRL) MODE (WARL)

XLEN-2 2

Figure 5.25: Supervisor trap vector base address register (stvec).

The BASE field in stvec is a WARL field that can hold any valid virtual or physical
address, subject to the following alignment constraints: the address must always be at
least 4-byte aligned, and the MODE setting may impose additional alignment constraints
on the value in the BASE field.

Value Name Description
0 Direct All exceptions set pc to BASE.
1 Vectored Asynchronous interrupts set pc to BASE+4×cause.
≥2 — Reserved

Table 5.9: Encoding of stvec MODE field.

The encoding of the MODE field is shown in Table 5.9. When MODE=Direct, all
traps into supervisor mode cause the pc to be set to the address in the BASE field. When
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MODE=Vectored, all synchronous exceptions into supervisor mode cause the pc to be set
to the address in the BASE field, whereas interrupts cause the pc to be set to the address
in the BASE field plus four times the interrupt cause number.

5.7.5 Supervisor Scratch Register (sscratch)

The sscratch register is an XLEN-bit read/write register, dedicated for use by the super-
visor. Typically, sscratch is used to hold a pointer to the hart-local supervisor context
while the hart is executing user code. At the beginning of a trap handler, sscratch is
swapped with a user register to provide an initial working register.

XLEN-1 0
sscratch
XLEN

Figure 5.26: Supervisor Scratch Register.

5.7.6 Supervisor Exception Program Counter (sepc)

sepc is an XLEN-bit read/write register formatted as shown in Figure 7-24. The low bit
of sepc (sepc[0]) is always zero. On implementations that do not support instruction-
set extensions with 16-bit instruction alignment, the two low bits (sepc[1:0]) are always
zero. When a trap is taken, sepc is written with the virtual address of the instruction
that encountered the exception.

XLEN-1 0
sepc

XLEN

Figure 5.27: Supervisor exception program counter register.

5.7.7 Supervisor Cause Register (scause)

The scause register is an XLEN-bit read-only register. The Interrupt bit is set if the
exception was caused by an interrupt. The Exception Code field contains a code identifying
the last exception.

XLEN-1 XLEN-2 0
Interrupt Exception Code (WLRL)

1 XLEN-1

Figure 5.28: Supervisor Cause register scause.

Table 5.10 below lists the possible exception codes for the current supervisor ISAs.

Interrupt Exception Code Description

1 0 User software interrupt
1 1 Supervisor software interrupt
1 2–3 Reserved
1 4 User timer interrupt

Table 5.10 continued on next page. . .
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(Continued from previous page)
Interrupt Exception Code Description

1 5 Supervisor timer interrupt
1 6–7 Reserved
1 8 User external interrupt
1 9 Supervisor external interrupt
1 ≥10 Reserved
0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Reserved
0 5 Load access fault
0 6 AMO address misaligned
0 7 Store/AMO access fault
0 8 Environment call
0 9–11 Reserved
0 12 Instruction page fault
0 13 Load page fault
0 14 Reserved
0 15 Store/AMO page fault
0 ≥16 Reserved

Table 5.10: Supervisor Cause Register Values

5.7.8 Supervisor Trap Value Register (stval)

The stval register is an XLEN-bit read-write register formatted as shown in Figure 5.29.
When a trap is taken into S-mode, stval is written with exception-specific information to
assist software in handling the trap. Otherwise, stval is never written by the implemen-
tation, though it may be explicitly written by software.

When a hardware breakpoint is triggered, or an instruction-fetch, load, or store access
or page-fault exception occurs, or an instruction-fetch or AMO address-misaligned excep-
tion occurs, stval is written with the faulting address. For other exceptions, stval is set
to zero, but a future standard may redefine stval’s setting for other exceptions.

XLEN-1 0
stval

XLEN

Figure 5.29: Supervisor trap value register.

For instruction-fetch access faults and page faults on RISC-V systems with variable-
length instructions, stval will point to the portion of the instruction that caused the fault
while sepc will point to the beginning of the instruction.

The stval register can optionally also be used to return the faulting instruction bits
on an illegal instruction exception (sepc points to the faulting instruction in memory).

After an illegal instruction trap, stval will contain the entire faulting instruction
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provided the instruction is no longer than XLEN bits. If the instruction is less than
XLEN bits long, the upper bits of stval are cleared to zero. If the instruction is more
than XLEN bits long, stval will contain the first XLEN bits of the instruction.

5.7.9 Counter-Enable Register (scounteren)

31 30 29 28 6 5 4 3 2 1 0
0 0 0 ... 0 0 0 IR TM CY
1 1 1 23 1 1 1 1 1 1

Figure 5.30: Counter-enable register (scounteren).

The counter-enable register scounteren controls the availability of the hardware per-
formance monitoring counters to U-mode.

When the CY, TM, or IR bit in the scounteren register is clear, attempts to read the
cycle, time or instret register while executing in U-mode will cause an illegal instruction
exception. When one of these bits is set, access to the corresponding register is permitted.

5.8 User Mode CSRs

5.8.1 User Trap Setup & Handling CSRs

The following CSRs are shadow registers of their Machine and Supervisor Mode counter-
parts, providing access only to User Mode bits where relevant. See the Machine Mode and
Supervisor Mode descriptions for more information

ustatus

uie & uip

utvec

uscratch

uepc

ucause

utval

5.8.2 Cycle counter for RDCYCLE instruction (cycle)

cycle is an XLEN-bit read-only register. The RDCYCLE pseudo-instruction reads the low
XLEN bits of the cycle CSR that holds a count of the number of clock cycles executed
by the processor on which the hardware thread is running from an arbitrary start time in
the past.

5.8.3 Time counter for RDTIME instruction (time)

time is an XLEN-bit read-only register. The RDTIME pseudo-instruction reads the time
CSR, where the underlying action causes a trap and enables the ABI return the time value.

43



RV12 RISC-V CPU Core (v1.3) Roa Logic

5.8.4 Instruction-retire counter for RDINSTRET instruction (instret)

instret is an XLEN-bit read-only register. The RDINSTRET pseudo-instruction reads
the low XLEN bits of the instret CSR, which counts the number of instructions retired
by this hardware thread from some arbitrary start point in the past.

5.8.5 High Performance Monitoring Counters (hpmcounter)

hpmcounter3 – hpmcounter31 are implemented but unsupported in RV12.

5.8.6 Upper 32bits of cycle (cycleh - RV32I only)

cycleh is a read-only register that contains bits 63-32 of the counter of the number of
clock cycles executed by the processor.

RDCYCLEH is an RV32I-only instruction providing access to this register.

5.8.7 Upper 32bits of instret (instreth - RV32I only)

instreth is a read-only register that contains bits 63-32 of the instruction counter.

RDINSTRETH is an RV32I-only instruction providing access to this register

5.8.8 Upper 32bits of hpmcounter (hpmcounterh - RV32I only)

hpmcounter3h – hpmcounter31h are implemented but unsupported in RV12.

5.9 Physical Memory Protection CSRs

PMP entries are described by an 8-bit configuration register and one XLEN-bit address
register supporting up to 16 PMP entries. PMP CSRs are only accessible to M-mode.

The PMP configuration registers are densely packed into CSRs to minimize context-
switch time. For RV32, four CSRs, pmpcfg0–pmpcfg3, hold the configurations pmp0cfg–
pmp15cfg for the 16 PMP entries, as shown in Figure 5.31. For RV64, pmpcfg0 and
pmpcfg2 hold the configurations for the 16 PMP entries, as shown in Figure 5.32; pmpcfg1
and pmpcfg3 are illegal.

31 24 23 16 15 8 7 0
pmp3cfg pmp2cfg pmp1cfg pmp0cfg pmpcfg0

8 8 8 8
31 24 23 16 15 8 7 0

pmp7cfg pmp6cfg pmp5cfg pmp4cfg pmpcfg1
8 8 8 8

31 24 23 16 15 8 7 0
pmp11cfg pmp10cfg pmp9cfg pmp8cfg pmpcfg2

8 8 8 8
31 24 23 16 15 8 7 0
pmp15cfg pmp14cfg pmp13cfg pmp12cfg pmpcfg3

8 8 8 8

Figure 5.31: RV32 PMP configuration CSR layout.
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63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
pmp7cfg pmp6cfg pmp5cfg pmp4cfg pmp3cfg pmp2cfg pmp1cfg pmp0cfg pmpcfg0

8 8 8 8 8 8 8 8
63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0
pmp15cfg pmp14cfg pmp13cfg pmp12cfg pmp11cfg pmp10cfg pmp9cfg pmp8cfg pmpcfg2

8 8 8 8 8 8 8 8

Figure 5.32: RV64 PMP configuration CSR layout.

The PMP address registers are CSRs named pmpaddr0–pmpaddr15. Each PMP address
register encodes bits 33–2 of a 34-bit physical address for RV32, as shown in Figure 5.33.
For RV64, each PMP address register encodes bits 55–2 of a 56-bit physical address, as
shown in Figure 5.34.

31 0
address[33:2] (WARL)

32

Figure 5.33: PMP address register format, RV32.

63 54 53 0
WIRI address[55:2] (WARL)

32

Figure 5.34: PMP address register format, RV64.

Figure 5.35 shows the layout of a PMP configuration register. The R, W, and X bits,
when set, indicate that the PMP entry permits read, write, and instruction execution,
respectively. When one of these bits is clear, the corresponding access type is denied. The
remaining 2 fields, A and L, are described in the following sections.

7 6 5 4 3 2 1 0
L (WARL) WIRI A (WARL) X (WARL) W (WARL) R (WARL)

1 2 2 1 1 1

Figure 5.35: PMP configuration register format.

5.9.1 Address Matching

The A field in a PMP entry’s configuration register encodes the address-matching mode
of the associated PMP address register. The encoding of this field is shown in Table 5.11.
When A=0, this PMP entry is disabled and matches no addresses. Two other address-
matching modes are supported: naturally aligned power-of-2 regions (NAPOT), including
the special case of naturally aligned four-byte regions (NA4); and the top boundary of an
arbitrary range (TOR). These modes support four-byte granularity.

NAPOT ranges make use of the low-order bits of the associated address register to
encode the size of the range, as shown in Table 5.12.

If TOR is selected, the associated address register forms the top of the address range,
and the preceding PMP address register forms the bottom of the address range. If PMP
entry i’s A field is set to TOR, the entry matches any address a such that pmpaddri−1 ≤
a < pmpaddri. If PMP entry 0’s A field is set to TOR, zero is used for the lower bound,
and so it matches any address a < pmpaddr0.
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A Name Description
0 OFF Null region (disabled)
1 TOR Top of range
2 NA4 Naturally aligned four-byte region
3 NAPOT Naturally aligned power-of-two region, ≥8 bytes

Table 5.11: Encoding of A field in PMP configuration registers.

pmpaddr pmpcfg.A Match type and size
aaaa...aaaa NA4 4-byte NAPOT range
aaaa...aaa0 NAPOT 8-byte NAPOT range
aaaa...aa01 NAPOT 16-byte NAPOT range
aaaa...a011 NAPOT 32-byte NAPOT range

. . . . . . . . .
aa01...1111 NAPOT 2XLEN -byte NAPOT range
a011...1111 NAPOT 2XLEN+1-byte NAPOT range
0111...1111 NAPOT 2XLEN+2-byte NAPOT range

Table 5.12: NAPOT range encoding in PMP address and configuration registers.

5.9.2 Locking and Privilege Mode

The L bit indicates that the PMP entry is locked, i.e., writes to the configuration register
and associated address registers are ignored. Locked PMP entries may only be unlocked
with a system reset. If PMP entry i is locked, writes to pmpicfg and pmpaddri are ignored.
Additionally, if pmpicfg.A is set to TOR, writes to pmpaddri-1 are ignored.

In addition to locking the PMP entry, the L bit indicates whether the R/W/X per-
missions are enforced on M-mode accesses. When the L bit is set, these permissions are
enforced for all privilege modes. When the L bit is clear, any M-mode access matching
the PMP entry will succeed; the R/W/X permissions apply only to S and U modes.

5.9.3 Priority and Matching Logic

PMP entries are statically prioritized. The lowest-numbered PMP entry that matches any
byte of an access determines whether that access succeeds or fails. The matching PMP
entry must match all bytes of an access, or the access fails, irrespective of the L, R, W, and
X bits. For example, if a PMP entry is configured to match the four-byte range 0xC–0xF,
then an 8-byte access to the range 0x8–0xF will fail, assuming that PMP entry is the
highest-priority entry that matches those addresses.

If a PMP entry matches all bytes of an access, then the L, R, W, and X bits determine
whether the access succeeds or fails. If the L bit is clear and the privilege mode of the
access is M, the access succeeds. Otherwise, if the L bit is set or the privilege mode of the
access is S or U, then the access succeeds only if the R, W, or X bit corresponding to the
access type is set.

If no PMP entry matches an M-mode access, the access succeeds. If no PMP entry
matches an S-mode or U-mode access, but at least one PMP entry is implemented, the
access fails.
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Failed accesses generate a load, store, or instruction access exception. Note that a
single instruction may generate multiple accesses, which may not be mutually atomic. An
access exception is generated if at least one access generated by an instruction fails, though
other accesses generated by that instruction may succeed with visible side effects. Notably,
instructions that reference virtual memory are decomposed into multiple accesses.
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6. External Interfaces
The RV12 CPU is designed to support a variety of external bus interfaces. The following
sections define the default AMBA3 AHB-Lite and Interrupt Interfaces.

6.1 AMBA3 AHB-Lite

Port Size Direction Description

HRESETn 1 Input Asynchronous active low reset
HCLK 1 Input System clock input

IHSEL 1 Output Provided for AHB-Lite compatibility – tied high (‘1’)
IHADDR XLEN Output Instruction address
IHRDATA 32 Input Instruction data
IHWRITE 1 Output Instruction write
IHSIZE 3 Output Transfer size
IHBURST 3 Output Transfer burst size
IHPROT 4 Output Transfer protection level
IHTRANS 2 Output Transfer type
IHMASTLOCK 1 Output Transfer master lock
IHREADY 1 Input Slave Ready Indicator
IHRESP 1 Input Instruction Transfer Response

DHSEL 1 Output Provided for AHB-Lite compatibility – tied high (‘1’)
DHADDR XLEN Output Data address
DHRDATA XLEN Input Data read data
DHWDATA XLEN Output Data write data
DHWRITE 1 Output Data write
DHSIZE 3 Output Transfer size
DHBURST 3 Output Transfer burst size
DHPROT 4 Output Transfer protection level
DHTRANS 2 Output Transfer type
DHMASTLOCK 1 Output Transfer master lock
DHREADY 1 Input Slave Ready Indicator
DHRESP 1 Input Data Transfer Response

Table 6.1: AMBA3 AHB-Lite Ports

6.1.1 HRESETn

When the active low asynchronous HRESETn input is asserted (‘0’), the core is put into its
initial reset state.

6.1.2 HCLK

HCLK is the system clock. All internal logic operates at the rising edge of the system clock.
All AHB bus timings are related to the rising edge of HCLK.
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6.1.3 IHSEL

IHSEL is a slave selection signal and therefore provided for AHB-Lite completeness. This
signal is tied permanently high (‘1’)

6.1.4 IHADDR

IHADDR is the instruction address bus. Its size is determined by PHYS ADDR SIZE.

6.1.5 IHRDATA

IHRDATA transfers the instruction from memory to the CPU. Its size is determined by
XLEN.

6.1.6 IHWRITE

IHWRITE indicates whether the current transfer is a read or a write transfer. The instruction
write is always negated (‘0’).

6.1.7 IHSIZE

The instruction transfer size is indicated by IHSIZE. Its value depends on the XLEN pa-
rameter and if the current transfer is a cache-line fill or non-cacheable instruction read.

IHSIZE Type Description

010 Word Non-cacheable instruction read. XLEN=32
011 Dword Non-cacheable instruction read. XLEN=64
1-- Cache line fill. The actual size depends

on the Instruction cache parameters and
XLEN

Table 6.2: Supported IHSIZE Values

6.1.8 IHBURST

The instruction burst type indicates if the transfer is a single transfer or part of a burst.

IHBURST Type Description

000 Single Not used
001 INCR Non-cacheable instruction reads
010 WRAP4 4-beat wrapping burst
011 INCR4 Not used
100 WRAP8 8-beat wrapping burst
101 INCR8 Not used
110 WRAP16 16-bear wrapping burst
111 INCR16 Not used

Table 6.3: Supported IHBURST Values
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6.1.9 IHPROT

The instruction protection signals provide information about the bus transfer. They are
intended to implement some level of protection.

Bit# Value Description

3 1 Cacheable region addressed
0 Non-cacheable region addressed

2 1 Bufferable
0 Non-bufferable

1 1 Privileged access. CPU is not in User Mode
0 User access. CPU is in User Mode

0 0 Opcode fetch, always ‘0’

Table 6.4: Supported IHPROT Values

6.1.10 IHTRANS

IHTRANS indicates the type of the current instruction transfer.

IHTRANS Type Description

00 IDLE No transfer required
01 BUSY CPU inserts wait states during instruction burst read
10 NONSEQ First transfer of an instruction read burst
11 SEQ Remaining transfers of an instruction readburst

Table 6.5: Supported IHTRANS Values

6.1.11 IHMASTLOCK

The instruction master lock signal indicates if the current transfer is part of a locked
sequence, commonly used for Read-Modify-Write cycles. The instruction master lock is
always negated (‘0’).

6.1.12 IHREADY

IHREADY indicates whether the addressed slave is ready to transfer data or not. When
IHREADY is negated (‘0’) the slave is not ready, forcing wait states. When IHREADY is
asserted (‘0’) the slave is ready and the transfer completed.

6.1.13 IHRESP

IHRESP is the instruction transfer response; it can either be OKAY (‘0’) or ERROR (‘1’). An
error response causes a Bus Error exception.

6.1.14 DHSEL

DHSEL is a slave selection signal and therefore provided for AHB-Lite completeness. This
signal is tied permanently high (‘1’)
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6.1.15 DHADDR

DHADDR is the data address bus. Its size is determined by PHYS ADDR SIZE.

6.1.16 DHRDATA

DHRDATA transfers the data from memory to the CPU. Its size is determined by XLEN.

6.1.17 DHWDATA

DHWDATA transfers the data from the CPU to memory. Its size is determined by XLEN.

6.1.18 DHWRITE

DHWRITE indicates whether the current transfer is a read or a write transfer. It is asserted
(‘1’) during a write and negated (‘0’) during a read transfer.

6.1.19 DHSIZE

The data transfer size is indicated by DHSIZE. Its value depends on the XLEN parameter
and if the current transfer is a cache-line fill/write-back or a non-cacheable data transfer.

DHSIZE Type Description

000 Byte Non-cacheable data transfer
001 Halfword Non-cacheable data transfer
010 Word Non-cacheable data transfer
011 Dword Non-cacheable data transfer
1-- Cache line fill. The actual size depends on

the Instruction cache parameters and XLEN

Table 6.6: Supported DHSIZE Values

6.1.20 DHBURST

The instruction burst type indicates if the transfer is a single transfer or part of a burst.

DHBURST Type Description

000 Single Single transfer. E.g. non-cacheable read/write
001 INCR Not used
010 WRAP4 4-beat wrapping burst
011 INCR4 Not used
100 WRAP8 8-beat wrapping burst
101 INCR8 Not used
110 WRAP16 16-bear wrapping burst
111 INCR16 Not used

Table 6.7: Supported DHBURST Values
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6.1.21 DHPROT

The data protection signals provide information about the bus transfer. They are intended
to implement some level of protection.

Bit# Value Description

3 1 Cacheable region addressed
0 Non-cacheable region addressed

2 1 Bufferable
0 Non-bufferable

1 1 Privileged access. CPU is not in User Mode
0 User access. CPU is in User Mode

0 1 Data transfer, always ‘1’

Table 6.8: Supported DHPROT Values

6.1.22 DHTRANS

DHTRANS indicates the type of the current data transfer.

DHTRANS Type Description

00 IDLE No transfer required
01 BUSY Not used
10 NONSEQ First transfer of an data burst
11 SEQ Remaining transfers of an data burst

Table 6.9: Supported DHTRANS Values

6.1.23 DHMASTLOCK

The data master lock signal indicates if the current transfer is part of a locked sequence,
commonly used for Read-Modify-Write cycles. The data master lock is always negated
(‘0’).

6.1.24 DHREADY

DHREADY indicates whether the addressed slave is ready to transfer data or not. When
DHREADY is negated (‘0’) the slave is not ready, forcing wait states. When DHREADY is
asserted (‘0’) the slave is ready and the transfer completed.

6.1.25 DHRESP

DHRESP is the data transfer response; it can either be OKAY (‘0’) or ERROR (‘1’). An error
response causes a Bus Error exception.
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6.2 Interrupts

The RV12 supports multiple external interrupts and is designed to operate in conjunction
with an external Platform Level Interrupt Controller (PLIC) as defined in Chapter 7 of
the RISC-V Privilege Level specification v1.10.

Dedicated pins on the RV12 core present the interrupt to the CPU which then expects
the Identifier of the Source Interrupt to be presented by the PLIC at the appropriate
interrupt vector upon a claim of the interrupt.

Port Size Direction Description

EXT NMI 1 Input Non-Maskable Interrupt
EXT TINT 1 Input Timer Interrupt
EXT SINT 1 Input Software Interrupt
EXT INT 4 Input External Interrupts

Table 6.10: Interrupts Supported

6.2.1 EXT NMI

The RV12 supports a single external non-maskable interrupt, accessible in Machine Mode
only. The interrupt vector for EXT NMI is defined as an RV12 core parameter MNMIVEC DEFAULT
(see section 4.2 )

6.2.2 EXT TINT

The RV12 supports a single Machine-Mode timer interrupt EXT TINT.

The interrupt may be delegated to other operating modes via software manipulation
of mip and sip registers. Alternatively, higher performance interrupt redirection may be
implemented via use of the mideleg and sideleg configuration registers

(See sections 5.6.11 and 5.7.2 ).

The interrupt vector used to service the interrupt is determined based on the mode
the interrupt is delegated to via the MTVEC DEFAULT, STVEC DEFAULT and UTVEC DEFAULT
parameters.

6.2.3 EXT SINT

The RV12 supports a single Machine-Mode timer interrupt EXT SINT.

The interrupt may be delegated to other operating modes via software manipulation
of mip and sip registers. Alternatively, higher performance interrupt redirection may be
implemented via use of the mideleg and sideleg configuration registers

(See sections 5.6.11 and 5.7.2 ).

The interrupt vector used to service the interrupt is determined based on the mode
the interrupt is delegated to via the MTVEC DEFAULT, STVEC DEFAULT and UTVEC DEFAULT
parameters.
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6.2.4 EXT INT

RV12 supports one general-purpose external interrupt input per operating mode, as defined
in Table 6.11:

Interrupt Priority Mode Supported

EXT INT[3] 3 Machine Mode
EXT INT[2] 2 Reserved
EXT INT[1] 1 Supervisor Mode
EXT INT[0] 0 User Mode

Table 6.11: External Interrupt Inputs

Each interrupt will be serviced by the operating mode it corresponds to, or alterna-
tively a higher priority mode depending on the system configuration and specific operating
conditions at the time the interrupt is handled. This includes if interrupt delegation is
enabled, if a specific is implemented, or the specific operating mode at the time of servicing
for example.

Notes:

1. An external interrupt will never be serviced by a lower priority mode than that
corresponding to the input pin. For example, an interrupt presented to EXT INT[1]
– corresponding to supervisor mode – cannot be serviced by a user mode ISR.

2. Conversely, Machine Mode may service interrupts arriving on any of the interrupt
inputs due to it have the highest priority.

6.3 Physical Memory Protection

The RISC-V specification defines up to 16 Physical Memory Protection entries that are
controled through Software via the PMP Configuration Status Registers. In addition to
this software based memory protection, the RV12 adds support for an unlimited number
of hardware protected physical memory regions.

The number of these Physically Memory Protected regions is defined by the core pa-
rameter PMA CNT. The physical areas and the associated attributes are defined via the
pma cfg i[] and pma adr i[] ports.

Port Size Direction Description

pma cfg i[PMA CNT-1..0] 14 Input PMP Configuration Attributes
pma adr i[PMA CNT-1..0] XLEN Input PMP Address Register

Table 6.12: Physical Memory Protection Attribute Ports
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6.3.1 pma cfg i

Each pma cfg i port is a 14 bit input used to set specific attributes for the associated
Protected Memory region as defined in Figure 6.1 and Table 6.13:

13 12 11 10 9 8 7 6 5 4 3 2 1 0
A AMO r w x c cc ri wi m Mem Type
2 2 1 1 1 1 1 1 1 1 2

Figure 6.1: PMA configuration register format.

Bits Name Description
13..12 A Address Mapping

0 = Off: Null region (disabled)
1 = TOR: Top of range
2 = NA4: Naturally aligned four-byte region
3 = NAPOT: Naturally aligned power-of-two region, ≥8 bytes

11..10 AMO Atomicity
0 = None
1 = SWAP
2 = LOGICAL
3 = ARITHMETIC

9..2 Access Access Capability
9 r Readable
8 w Writeable
7 x Executable
6 c Cacheable
5 cc Cache Coherent
4 ri Read Idempotent
3 wi Write Idempotent
2 m Misaligned Access Support

1..0 Type Memory Type
0 = Empty
1 = Main
2 = IO
3 = TCM

Table 6.13: Encoding of PMA Configuration fields.

6.3.2 pma adr i

The PMA address registers are CSRs named pmpaddrn , when n is an integer between 0
and PMA CNT-1. Each PMA address register encodes bits 33–2 of a 34-bit physical address
for RV32, as shown in Figure 6.2. For RV64, each PMP address register encodes bits 55–2
of a 56-bit physical address, as shown in Figure 6.3.
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31 0
address[33:2] (WARL)

32

Figure 6.2: PMA address register format, RV32.

63 54 53 0
WIRI address[55:2] (WARL)

32

Figure 6.3: PMA address register format, RV64.

Address matching is implemented in the same manner as PMP Configuration Status
Register Address Mapping, full details of which are documented in Section 5.9.1
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7. Debug Unit

7.1 Introduction

The Debug Unit is a separate unit in the CPU. It’s not directly related to any instruction
execution or support functions, like Cache or Branch Prediction. Instead it provides a
means to halt the CPU and inspect its internal registers and state as a means of debugging
the execution program.

The Debug Unit has its own interfaces and must be connected to an external debug
controller that provides the actual interfacing to the external Debug Tools. The Debug
Unit does not stall the CPU, instead it relies on the external debug controller to stall the
CPU when the Debug Unit requests it.

7.2 Debug Controller Interface

The Debug Unit has two interfaces; one to communicate with the CPU and one to com-
municate with the external debug controller. The CPU interface is an internal interface
and therefore not described here.

The Debug Controller Interface is an SRAM like synchronous interface. The connected
Debug Controller must use the same clock as the CPU.

Port Size Direction Description

dbg stall 1 Input Stall CPU
dbg strb 1 Input Access Request/Strobe
dbg we 1 Input Write Enable
dbg addr 13 Input Address Bus
dbg dati XLEN Input Write Data Bus
dbg dato XLEN Output Read Data Bus
dbg ack 1 Output Access Acknowledge
dbg bp 1 Output BreakPoint

Table 7.1: Debug Interface Signals

7.2.1 dbg stall

The CPU is halted when dbg stall is asserted (‘1’). No new instructions are fed into the
execution units. Any instructions already issued are finished.

The Debug Unit can use this signal to pause program execution and inspect the CPU’s
state and registers. The Debug Controller must assert dbg stall immediate (combinato-
rial) when the Debug Unit asserts dbg bp.

7.2.2 dbg strb

The Debug Controller asserts (‘1’) the Access Strobe signal when it wants to read from or
write to the Debug Unit or the CPU’s registers. It must remain asserted until the Debug
Unit acknowledges completion of the access by asserting (‘1’) dbg ack.
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7.2.3 dbg we

The Debug Controller asserts (‘1’) the Write Enable signal when it wants to write to
the Debug Unit or the CPU’s registers. It must remain asserted until the Debug Unit
acknowledges completion of the access by asserting (‘1’) dbg ack. It is valid only when
dbg strb is asserted as well.

7.2.4 dbg addr

The address bus carries the register-address that is is read from or written to. See Register
Map for the details.

7.2.5 dbg dati

The write data bus carries the data to be written to the Debug Unit’s or CPU’s registers.

7.2.6 dbg dato

The read data bus carries the data read from the Debug Unit’s or CPU’s registers.

7.2.7 dbg bp

The Debug Unit asserts (‘1’) BreakPoint when a hardware breakpoint, single-step, branch-
trace, or exception hit occurred. This is the CPU stall request from the Debug Unit to the
external debug controller. The Debug Controller must assert (‘1’) dbg stall immediately
(combinatorial) upon detecting dbg bp asserted.

7.3 Register Map

The Debug Unit’s address map provides access to the Debug Unit’s internal registers, the
Register Files, and the Control-and-Status-Registers.

The internal registers can be always accessed, whereas the Register Files and the CSRs
can only be access when the CPU is stalled.

addr[12:0] Register Description

0x0000 DBG CTRL Debug Control
0x0001 DBG HIT Debug Hit
0x0002 DBG IE Debug Interrupt Enable
0x0003 DBG CAUSE Debug Interrupt Cause
0x0004-0x000F Reserved
0x0010 DBG BPCTRL0 Hardware Breakpoint0 Control
0x0011 DBG BPDATA0 Hardware Breakpoint0 Data
0x0012 DBG BPCTRL1 Hardware Breakpoint1 Control
0x0013 DBG BPDATA1 Hardware Breakpoint1 Data
0x0014 DBG BPCTRL2 Hardware Breakpoint2 Control
0x0015 DBG BPDATA2 Hardware Breakpoint2 Data
0x0016 DBG BPCTRL3 Hardware Breakpoint3 Control

Table 7.2 continued on next page. . .
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(Continued from previous page)
addr[12:0] Register Description

0x0017 DBG BPDATA3 Hardware Breakpoint3 Data
0x0018 DBG BPCTRL4 Hardware Breakpoint4 Control
0x0019 DBG BPDATA4 Hardware Breakpoint4 Data
0x001A DBG BPCTRL5 Hardware Breakpoint5 Control
0x001B DBG BPDATA5 Hardware Breakpoint5 Data
0x001C DBG BPCTRL6 Hardware Breakpoint6 Control
0x001D DBG BPDATA6 Hardware Breakpoint6 Data
0x001E DBG BPCTRL7 Hardware Breakpoint7 Control
0x001F DBG BPDATA7 Hardware Breakpoint7 Data
0x0020-0x00FF Reserved
0x0100-0x011F RF Integer Register File
0x0120-0x03FF Reserved
0x0140-0x051F FRF Floating Point Register File
0x0160-0x071F FRF (MSBs) MSBs of the Floating Point Regis-

ter, for 64bit FRF with 32bit XLEN
0x0180-0x07FF Reserved
0x0800 NPC Next Program Counter
0x0801 PPC Current Program Counter
0x0802-0x0FFF Reserved
0x1000-0x1FFF CSR CPU Control and Status

Table 7.2: Debug Unit Register Map

7.4 Internal Register Map

The Debug Unit’s internal register map can be accessed when the CPU is stalled or
running. These registers control the hardware breakpoints and conditions and report the
reason why the Debug Unit stalled the CPU.

7.4.1 Debug Control Register DBG CTRL

The XLEN size DBG CTRL controls the single-step and branch-tracing functions.

XLEN-1 2 1 0
Reserved bte sste
XLEN-2 1 1

Figure 7.1: Debug Control Register DBG CTRL.

When the Single-Step-Trace-Enable bit is ‘1’ the Single-Step-Trace function is enabled.
The CPU will assert (‘1’) dbg bp each time a non-NOP instruction is about to be executed.

sste Description

0 Single-Step-Trace disabled
1 Single-Step-Trace enabled

Table 7.3: Single Step Trace Enable Settings

59



RV12 RISC-V CPU Core (v1.3) Roa Logic

When the Branch-Trace-Enable bit is ‘1’ the Branch-Step-Trace function is enabled.
The CPU will assert dbg bp each time a branch instruction is about to be executed.

bte Description

0 Branch-Step-Trace disabled
1 Branch-Step-Trace enabled

Table 7.4: Branch Trace Enable Settings

7.4.2 Debug Breakpoint Hit Register DBG HIT

XLEN-1 16 15 14 13 12 11 10 9 8 7 2 1 0
Reserved bp7h bp7h bp7h bp7h bp7h bp7h bp7h bp7h 6‘h0 bth sste

XLEN-16 1 1 1 1 1 1 1 1 6 1 1

Figure 7.2: Debug Breakpoint Hit Register

The Debug Breakpoint Hit register contains the reason(s) why the Debug Unit re-
quested to stall the CPU.

The Single-Step-Trace-Hit field is asserted (‘1’) when the Single-Step-Trace function
requests to stall the CPU. This is a sticky bit. It is set by the Debug Unit, but must be
cleared by the Debug Environment.

The Branch-Trace-Hit field is asserted (‘1’) when the Branch-Trace function requests
to stall the CPU. This is a sticky bit. It is set by the Debug Unit, but must be cleared by
the Debug Environment.

The Breakpoint-Hit fields are asserted (‘1’) when the respective hardware breakpoint
triggered and requests to stall the CPU. There is one bit for each implemented hardware
breakpoint. These are sticky bits. They are set by the Debug Unit, but must be cleared
by the Debug Environment.

7.4.3 Debug Interrupt Enable Register DBG IE

31 0
ie

Figure 7.3: Debug Interrupt Enable Register DBGIE.

Bit# Description

31-18 External Interrupts
17 Timer Interrupt
16 Software Interrupt
11 Environment call from Machine Mode
10 Environment call from Hypervisor Mode
9 Environment call from Supervisor Mode
8 Environment call from User Mode
7 Store Access Fault

Table 7.5 continued on next page. . .
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(Continued from previous page)
Bit# Description

6 Store Address Misaligned
5 Load Access Fault
4 Load Address Misaligned
3 Breakpoint
2 Illegal Instruction
1 Instruction Access Fault
0 Instruction Address Misaligned

Table 7.5: DBG IE Register Bit Descriptions

The dbg ie register determines what exceptions cause the Debug Unit to assert dbg bp.
Normally an exception causes the CPU to load the trap-vector and enter the trap routine,
but if the applicable bit in the dbg ie bit is set, then the CPU does not load the trap-
vector, does not change mcause and mepc, and does not enter the trap vector routine when
that exception is triggered. Instead the CPU sets DBG CAUSE and asserts dbg bp, thereby
handing over control to the external debug controller.

The lower 16bits of the register represent the trap causes as defined in the mcause
register. The upper 16bits represent the interrupt causes as defined in the mcause register.

Logic ‘1’ indicates the CPU hands over execution to the debug controller when the cor-
responding exception is triggered. For example setting bit-2 to ‘1’ causes the BREAKPOINT
trap to assert dbg bp and hand over control to the debug controller. At least the BREAKPOINT
exception must be set in the dbg ie register.

7.4.4 Debug Exception Cause Register DBG CAUSE

31 0
cause

Figure 7.4: Debug Exception Cause Register DBG CAUSE.

The DBG CAUSE register contains the exception number that caused the CPU to hand
over control to the external Debug Controller. See the mcause register description for a
description of all exceptions.

DBG CAUSE Description GDB Sigval

>15 Interrupts INT
Timer Interrupt ALRM

11 ECALL from Machine Mode TRAP
10 ECALL from Hypervisor Mode TRAP
9 ECALL from Supervisor Mode TRAP
8 ECALL from User Mode TRAP
7 Store Access Fault SEGV
6 Store Address Misaligned BUS
5 Load Access Fault SEGV
4 Load Address Misaligned BUS

Table 7.6 continued on next page. . .
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(Continued from previous page)
DBG CAUSE Description GDB Sigval

3 Breakpoint TRAP
2 Illegal Instruction ILL
1 Instruction Access Fault SEGV
0 Instruction Address Misaligned BUS

Table 7.6: DBG CAUSE Register Values

Because the RISC-V defines the cause register as an integer value, there is no easy way
to detect if there was no cause. It’s recommended that the Debug Environment writes
‘-1’ into the dbg cause register upon starting the debug session and after handling each
exception.

The debug controller’s software layer must translate the value in the DBG CAUSE reg-
ister to the debugger’s control signal. The table below shows the basic mapping of the
DBG CAUSE register to GDB Signals.

7.4.5 Debug Breakpoint Control Registers DBG CTRLx

31 7 6 4 3 2 1 0
reserved cc 00 ena impl

25 3 2 1 1

Figure 7.5: Debug Breakpoint Control Registers DBG CTRLx.

The DBG BPCTRL registers control the functionality of the hardware breakpoints. There
is a Breakpoint Control Register for each implemented hardware breakpoint. The BREAKPOINTS
parameter defines the amount of hardware breakpoints that are implemented.

The Breakpoint Implemented field informs the Debug Environment if the hardware
breakpoint is implemented. The bit is set (‘1’) when the hardware breakpoint is imple-
mented and (‘0’) when it is not. The Debug Environment should read the DBG BPCTRL
registers and examine the Breakpoint Implemented fields to determine the amount of
hardware breakpoints implemented.

impl Description

0 Hardware Breakpoint not implemented
1 Hardware Breakpoint implemented

Table 7.7: DBG CTRLx Implementation Field Values

The Breakpoint Enable bit enables or disables the breakpoint. The hardware break-
point is enabled when the bit is set (‘1’) and disabled when the bit is cleared (‘0’). When
the hardware breakpoint is disabled it will not generate a breakpoint hit, even if the break-
point conditions are met. Clearing the breakpoint enable bit does not clear any pending
hits. These must be cleared in the DBG HIT register.
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ena Description

0 Hardware Breakpoint is disabled
1 Hardware Breakpoint is enabled

Table 7.8: DBG CTRLx Enable Field Values

The Breakpoint Condition Code bits determine what condition triggers the hardware
breakpoint.

cc Description

3’b000 Instruction Fetch
3’b001 Data Load
3’b010 Data Store
3’b011 Data Access
3’b1-- Reserved

Table 7.9: DBG CTRLx Breakpoint Condition Codes

Instruction Fetch

The hardware breakpoint will trigger a breakpoint exception when the CPU is about to
execute the instruction at the address specified in the DBG DATA register.

Data Load

The hardware breakpoint will trigger a breakpoint exception when the CPU reads from
the address specified in the DBG DATA register.

Data Store

The hardware breakpoint will trigger a breakpoint exception when the CPU writes to the
address specified in the DBG DATA register.

Data Access

The hardware breakpoint will trigger a breakpoint exception when the CPU accesses (ei-
ther reads from or writes to) the address specified in the DBG DATA register.

7.4.6 Debug Breakpoint Data Registers DBG DATAx

XLEN-1 0
Data

Figure 7.6: Debug Breakpoint Data Registers DBG DATA.

The DBG DATA registers contain the data/value that trigger a breakpoint hit. There
is a Breakpoint Data Register for each implemented hardware breakpoint. The meaning
of the DBG DATA register depends on the condition code set in the associated DBG BPCTRL
register. See the DBG CTRL register for the meaning of the DBG DATA register.
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8. Resources
Below are some example implementations for various platforms. All implementations are
push button, no effort has been undertaken to reduce area or improve performance.

Platform DFF Logic Cells Memory Performance (MHz)

lfxp3c-5 51 85 0 235MHz

Table 8.1: Examples of RV12 Resource Utilisation
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