XStend Board V1.2 Manual

XESS Corporation
Copyright ©1998 by X Engineering Software Systems Corporation.
All XS-prefix product designations are trademarks of X Engineering Software Systems.

All XC-prefix product designations are trademarks of Xilinx

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher. Printed in the United States of America.

Limited Warranty

X Engineering Software Systems Corp. (XESS) warrants that the Product, in the course of its normal use, will be
free from defects in material and workmanship for a period of one (1) year and will conform to XESS's
specification therefor. This limited warranty shall commence on the date appearing on your purchase receipt.

XESS shall have no liability for any Product returned if XESS determines that the asserted defect @) is not present,
b) cannot reasonably be rectified because of damage occurring before XESS receives the Product, or c) is
attributable to misuse, improper installation, alteration, accident or mishandling while in your possession. Subject
to the limitations specified above, your sole and exclusive warranty shall be, during the period of warranty
specified above and at XESS's option, the repair or replacement of the product. The foregoing warranty of XESS
shall extend to repaired or replaced Products for the balance of the applicable period of the original warranty or
thirty (30) days from the date of shipment of arepaired or replaced Product, whichever is longer.

THE FOREGOING LIMITED WARRANTY IS XESS S SOLE WARRANTY AND ISAPPLICABLE ONLY TO
PRODUCTS SOLD AS NEW. THE REMEDIES PROVIDED HEREIN ARE IN LIEU OF a) ANY AND ALL
OTHER REMEDIES AND WARRANTIES, WHETHER EXPRESSED OR IMPLIED OR STATUTORY,
INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE, AND b) ANY AND ALL OBLIGATIONS AND LIABILITIES OF XESS
FOR DAMAGES INCLUDING, BUT NOT LIMITED TO ACCIDENTAL, CONSEQUENTIAL, OR SPECIAL
DAMAGES, OR ANY FINANCIAL LOSS, LOST PROFITS OR EXPENSES, OR LOST DATA ARISING OUT
OF OR IN CONNECTION WITH THE PURCHASE, USE OR PERFORMANCE OF THE PRODUCT, EVEN IF
XESSHAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

In the United States, some statutes do not alow exclusion or limitations of incidental or consequential damages,
so the limitations above may not apply to you. This warranty gives you specific legal rights, and you may aso
have other rights which vary from state to state.

Table of Contents

1 XStend OVerVi BW . ..ot 3
2 XStend Board Feat Ur es 4
2.1 XS40/ XS95 Board MUNtinNg Area. e 6
2.2 LEDs . .o 6
2.3 SWI L CheS . . 9
2.4 VGA INterface. ... 10
2.5 PS/2 Keyboard Interface....... ... 11
2.6 RAMB . . 11
2.7 Stereo CodeCt 13
2.8 XILINX Xchecker Interface. 15
2.9 Prototyping Area. 17
2.10 Daughterboard Connector e 18
3 XStend Board Progranmer’s NMNodel 18
4 Exanple Designs for the XStend Board 23
4.1 Displaying Switch Settings on the LEDs......... 23
4.2 Displaying Gaphics from RAM Through the VGA Interface.............. 27
4.2.1 VGA Color Signals....... ... 27
4.2.2 VGA Signal Tim Nng. 28
4.2.3 VGA Signhal CGenerator Algorithm........ 29
4.2.4 VGA Signhal Generator in VHDL. 31
4.3 Reading Keyboard Scan Codes Through the PS/2 Interface.............. 39
4.4 Inputing and Qutputing Stereo Signals Through the Codec............. 44

5 XStend V1.2 SChemBti CS ... oo e e 61

Getting Help!

If you follow the instructions in this manual and you encounter problems, here are some places to
get help:

If you can't get the XStend Board hardware to work, send an e-mail message describing your
problem to fpga-bugs@ess.com or check our web Ste at
[http: /77 www. xess. conl FPGA]

If you can't get your XILINX software tools installed properly, send an e-mail message
describing your problem to hotline@xilinx.com or check their web ste at
[http://ww. xilinx.conl support/searchtd. ht mj

1 XStend Overview

The X$40 and XS95 Boards offer a flexible, low-cost method of prototyping FPGA and CPLD
designs. However, their small physical size limits the amount of support circuitry they can hold.
The XStend Board removes this limitation by providing additional support circuitry that the
X$S40 and X S95 Boards can access through their breadboard interfaces.

The XStend Board contains resources that extend the range of applications of the XS Boards
into three areas:

The pushbuttons, DIP switches, LEDs, and prototyping area are useful for basic lab
experiments. These features in combination with the XS Boards replicates the functionality
of the older HW/UW FPGABOARD.

The VGA monitor interface, PS/2 keyboard/mouse interface, and static RAM let the XS
Boards be used in video and computing experiments.

The stereo codec and dual-channel analog input/output circuitry are useful for processing of
audio signals in combination with DSP circuits synthesized with XILINX's CORE generation
software.

http://www.xess.com/FPGA
http://www.xilinx.com/support/searchtd.htm

2 XStend Board Features
The XStend Board extends the capabilities of the XS40 and X S95 Boards by providing:
mounting sockets for both an XS40 and an XS95 Board;
additional bargraph LED and LED digits;
pushbutton and DIP switches,
an interface to VGA monitors,
an interface to a PS/2-style keyboard or mouse;
an additional 64 Kbytes of static RAM (optional);
a stereo codec with left/right input and output channels.
an interface to the XILINX Xchecker cable;
a2.75"x3.5" prototyping area with selectable 3.3V or 5V supply;
a42x2 header connector for add-on daughterboards.

These resources are shown in the smplified view of the XStend Board (Figure 1). Each of these
resources will be described below.

+5V +3.3V

Daughterboard

1 l Header
50| [ee
H2 J16 N4 ool Tee
O =
\ ool [ee
K ool o3
W4 oo e

QK oo 2 e s
Q‘O < ool [o RAM Sockets
Q ool [
oo [es XXSBoardJ
ool [es Sockets
lefa[elefelefe]s] u s3loc] [seluts
SRSy SY SW2 SW3 sw4
SPARE RESET PROGRA%
SODEC a5 SB5Y sanaeara
o000 0 00
routtry R T
EHENANEREE 8 8
Jo J10 ol e s W1 J6 5
2 i PSI2
I 1 Connector VGA Monitor
Stereo Stereo Connector

Input Output

Figure 1: XStend Board layout.

2.1 X$SA0/XS95 Board Mounting Area

An X$40 or XS95 Board is mounted on the XStend Board using the XS Board mounting
sockets. These sockets mate with the breadboard interface pins of the XS Boards to give them
access to all the resources of the XStend Board. To use an XS40 Board with the X Stend Board,
insert it into the right-most columns of the socket strips. When using an XS95 Board, you
should insert it into the left-most columns of the sockets. There are markings on the XStend
Board to indicate the appropriate column for each type of XS Board.

If the XS Board is connected to a power supply through jack J9, then its power regulation
circuitry will supply VCC and GND to the XStend Board through the mounting sockets. XS40
Boards with 3.3V FPGAs will supply both 3.3V and 5V to the XStend Board, while X$40
Boards with 5V FPGAs and X S95 Boards will supply only 5V.

(f\Narning: Version 1.0 of the X$40 Board with a 3.3V XC4000XL FPGA will not work with

the XStend Board because it supplies 3.3V but no 5V! You must replace the XC4000XL
FPGA with an XC4000E FPGA and remove the J8 jumper to switch the board to 5V
operation.

External voltage supplies can also be used with the XStend Board. A 5V power supply can be
connected to header J12 and a 3.3V supply can be attached to header J14 as shown in Figure 2.
These supplies will power the attached XS Board as well as the X Stend electronics.

+5 +3.3V

+5 Jleé +3.3

Figure 2: Connection of external power supplies to the XStend Board.

@™ Warning: Do not attach external voltage supplies while also supplying power to the XStend
Board with an XS Board.

@™ Warning: Never place shunts on either J12 or J14 or you will short the power supplies to
ground and damage the XStend Board and the attached XS Board..

2.2 LEDs

The XStend Board provides a bargraph LED with eight LEDs (D1—D8) and two more LED
displays (U1 and U2) for use by an XS Board. All of these LEDs are active-low meaning that an
LED segment will glow when alogic-low is applied to it.

The LEDs are enabled and disabled by setting the shunts on the 3-pin jumpers as described in
Table 1 and as shown in Figure 3.

Table 1: Jumper settings for XStend LEDs.

Jumper

Setting

Removing the shunt on this jumper disconnects the
power from bargraph LEDs D1—D8. Placing the shunt
on the lower two pins of the jJumper enables the LEDs
for use with an XS95 Board inserted in the XStend
Board. The LEDs can be used with an X$40 Board if
the shunt is placed on the upper two pins.

Removing the shunt on this jumper disconnects the
power from left LED digit U1. Placing the shunt on the
lower two pins of the jumper enables the LED digit for
use with an XS95 Board inserted in the XStend Board.
The LED digit can be used with an X340 Board if the
shunt is placed on the upper two pins.

J7

Removing the shunt on this jumper disconnects the
power from right LED digit U2. Placing the shunt on
the lower two pins of the jumper enables the LED digit
for use with an XS95 Board inserted in the XStend
Board. The LED digit can be used with an X$40 Board
if the shunt is placed on the upper two pins.

LED Jumper Settings When

Ea

7

7

A

J8 J7 J4

N

)

LED Jumper Settings When
Using An XS95 Board

/://://://:/I/I/I

Jg8 J7 J4

A
A4
il

LED Jumper Settings When
0 1]
7
/I]
J8 J7 J4

Figure 3: Shunt placement for setting the XStend Board LED supply voltages.

Listings 1 and 2 show the connections from the X$40 and XS95 Boards to the LEDs on the
XStend Board expressed as UCF constraints (for the UCF syntax and usage tips, check out
http://www.xilinx.com/techdocs/2449.htm).

Listing 1: Connections between the XStend LEDs and the X $40.

LEFT LED DIG T SEGVENT CONNECTI ONS (ACTI VE- LOW
NET LSB<0> LOC=PS;

NET LSB<1> LOC=P4,
NET LSB<2> LOC=P5;
NET LSB<3> LOC=P78;
NET LSB<4> LOC=P79;
NET LSB<5> LOC=P82;
NET LSB<6> LOC=P83;
NET LDPB LOC=P84;
#

RIGHT LED DIG T SEGVENT CONNECTI ONS (ACTI VE- LOW
NET RSB<0> LOC=P59;

NET RSB<1> LOC=P57;
NET RSB<2> LOC=P51;
NET RSB<3> LOC=P56;
NET RSB<4> LOC=P50;
NET RSB<5> LOC=P58;
NET RSB<6> LOC=P60;
NET RDPB LOC=P28;
#

1 NDI VI DUAL LED CONNECTI ONS (ACTI VE- LOW
NET DB<1> LOC=P41,;
NET DB<2> LOC=P40;
NET DB<3> LOC=P39;
NET DB<4> LOC=P38;
NET DB<5> LOC=P35;
NET DB<6> LOC=P81;
NET DB<7> LOC=P80;

NET DB<8> LOC=P10;

Listing 2: Connections between the XStend LEDs and the X S95.

LEFT LED DIG T SEGVENT CONNECTI ONS (ACTI VE- LOW

NET LSB<0> LOC=P1;
NET LSB<1> LOC=P2;

NET LSB<2> LOC=P3:

NET LSB<3> LOC=P75:

NET LSB<4> LOC=P79:

NET LSB<5> LOC=P82:

NET LSB<6> LOC=P83:

NET LDPB LOC=P84:

#

RIGHT LED DIGI T SEGVENT CONNECTI ONS (ACTI VE- LOW
NET RSB<0> LOC=P58:

NET RSB<1> LOC=P56:

NET RSB<2> LOC=P54:

NET RSB<3> LOC=P55:

NET RSB<4> LOC=P53:

NET RSB<5> LOC=P57:

NET RSB<6> LOC=P61:

NET RDPB LOC=P34:

#

1 NDI VI DUAL LED CONNECTI ONS (ACTI VE- LOW
NET DB<1> LOC=P44:

NET DB<2> LOC=P43:

NET DB<3> LOC=P41:

NET DB<4> LOC=P40:

NET DB<5> LOC=P39:

NET DB<6> LOC=P37:

NET DB<7> LOC=P36:

NET DB<8> LOC=P35:

2.3 Switches

The XStend has a bank of eight DIP switches and two pushbuttons (labeled SPARE and RESET)
that are accessible from an XS Board. (Thereis athird pushbutton labeled PROGRAM which is
used to initiate the programming of the XS40 Board. It is not intended to be a general-purpose
input.)

When closed or ON, each DIP switch pulls the connected pin of the XS Board to ground. When
the DIP switch is open or OFF, the pin is pulled high through a 10KW resistor.

@™ \When not bei ng used, the DIP switches should be left in the open or OFF configuration so

the pins of the XS Board are not tied to ground and can freely move between logic low and
high levels.

When pressed, each pushbutton pulls the connected pin of the XS Board to ground. Otherwise,
the pinis pulled high through a 10 KW resistor.

Listings 3 and 4 show the connections from the X340 and XS95 Boards to the switches on the
XStend Board expressed as UCF constraints.

Listing 3: Connections between the X Stend DIP and pushbutton switches and the X 340.

DI P SW TCH CONNECTI ONS

NET DI PSWk1> LOC=P7,
NET DI PSWk2> LOC=PS,;
NET DI PSW&3> LOC=P9;
NET DI PSW&4> LOC=Pe6;
NET DI PSW&5> LOC=P77;
NET DI PSWk6> LOC=P70;
NET DI PSW&7> LOC=P66;
NET DI PSW«8> LOC=P69;
#

PUSHBUTTON SW TCH CONNECTI ONS (ACTI VE- LOW
NET SPAREB LOC=P67;
NET RESETB LOC=P37;

Listing 4: Connections between the X Stend DIP and pushbutton switches and the X S95.

DI P SW TCH CONNECTI ONS

NET DI PSWk1> LOC=P6;
NET DI PSWk2> LOC=P7,
NET DI PSW&3> LOC=P11;
NET DI PSW&4> LOC=P5;
NET DI PSW&5> LOC=P72;
NET DI PSWk6> LOC=P71;
NET DI PSW&7> LOC=P66;
NET DI PSW«8> LOC=P70;
#

PUSHBUTTON SW TCH CONNECTI ONS (ACTI VE- LOW
NET SPAREB LOC=P67;
NET RESETB LOC=P10;

2.4 VGA Interface

The XStend Board provides an XS Board with an interface to a VGA monitor through connector
J5. (Version 1.2 and higher of the XS Boards aready have their own VGA interfaces, so the
XStend circuitry is redundant for them.) The XS Board can drive the active-low horizontal and
vertical sync signals that control the width and height of the video frame. The XS Board aso has
access to two bits each of red, green, and blue color signals so it can generate pixels in any of
2°x2°x2°=64 different colors.

Listings 5 and 6 show the connections from the XS40 and XS95 Boards to the VGA interface of
the XStend Board. (These pin assgnments are identical to the pin assignments for the XS
Boards which have their own VGA interfaces.)

Listing 5: Connections between the XStend VGA interface and the X S40.

VGA CONNECTI ONS

NET VSYNCB LOC=P67;
NET HSYNCB LOC=P19;
NET RED<1> LOC=P18;
NET RED<0O> LOC=P23;
NET GREEN<1> LOC=P20;
NET GREEN<O> LOC=P24;
NET BLUE<1> LOC=P26;
NET BLUE<O> LOC=P25;

Listing 6: Connections between the XStend VGA interface and the X S95.

VGA CONNECTI ONS

NET VSYNCB LOC=P24;
NET HSYNCB LOC=P15;
NET RED<1> LOC=P14;
NET RED<0O> LOC=P18;
NET CGREEN<1> LOC=P17;
NET GREEN<O> LOC=P19;
NET BLUE<1> LOC=P23;
NET BLUE<O> LOC=P21;

2.5 PS/2 Keyboard Interface

The XStend Board provides an XS Board with a PS/2-style interface (mini-DIN connector J6) to
either a keyboard or a mouse. The XS Board receives two signals from the PS/2 interface: a
clock signa and a seria data stream that is synchronized with the falling edges on the clock
signal.

Listings 7 and 8 show the connections from the X340 and XS95 Boards to the PS/2 interface of
the X Stend Board (expressed as UCF constraints):

Listing 7: Connections between the X Stend PS/2 interface and the X $40.

PS/ 2 KEYBOARD CONNECTI ONS
NET KB_CLK LOC=P68;
NET KB_DATA LOC=P69;

Listing 8: Connections between the X Stend PS/2 interface and the X S95.

PS/ 2 KEYBOARD CONNECTI ONS

NET KB_CLK LOC=P26;
NET KB_DATA LOC=P70;
2.6 RAMs

The XStend Board adds an additional 64 KBytes of RAM to the 32 KBytes aready on the XS
Board. The XStend RAM connects to the same pins as the XS Board RAM for the address bus,
data bus, write-enable, and output-enable. The chip-selects of the XStend Board RAMSs are
connected to different pins so al the RAMs can be individually selected.

Here are the connections from the X $40 and X S95 Boards to their own RAMs and the RAMSs of
the X Stend Board (expressed as UCF constraints):

Listing 9: Connections between the XStend RAMs and the X S40.

NET D<O0> LOC=P41; # DATA BUS

NET D<1> LOC=P40;

NET D<2> LOC=P39;

NET D<3> LOC=P38;

NET D<4> LOC=P35;

NET D<5> LOC=P81;

NET D<6> LOC=P80;

NET D<7> LOC=P10;

NET A<0> LOC=P3; # LOVWER BYTE OF ADDRESS
NET A<1> LOC=P4;

NET A<2> LOC=P5;

NET A<3> LOC=P78;

NET A<4> LOC=P79;

NET A<5> LOC=P82;

NET A<6> LOC=P83;

NET A<7> LOC=P84;

NET A<8> LOC=P59; # UPPER BYTE OF ADDRESS
NET A<9> LOC=P57;

NET A<10> LOC=P51;

NET A<11> LOC=P56;

NET A<12> LOC=P50;

NET A<13> LOC=P58;

NET A<14> LOC=P60;

NET VEB LOC=P62; # ACTI VE- LOW WRI TE- ENABLE FOR ALL RANS
NET OEB LOC=P61; # ACTI VE- LOW QUTPUT- ENABLE FOR ALL RANMB
NET CEB LOC=P65; # ACTI VE- LOWN CHI P- ENABLE FOR XS40 RAM
NET LCEB LOC=P7; # ACTI VE- LOW CHI P- ENABLE FOR LEFT XSTEND RAM
NET RCEB LOC=P8; # ACTI VE- LOWN CH P- ENABLE FOR RI GHT XSTEND RAM
Listing 10: Connections between the X Stend RAMs and the X S95.
NET D<O0> LOC=P44; # DATA BUS

NET D<1> LOC=P43;

NET D<2> LOC=P41;

NET D<3> LOC=P40;

NET D<4> LOC=P39;

NET D<5> LOC=P37;

NET D<6> LOC=P36;

NET D<7> LOC=P35;

NET A<0> LOC=P75; # LOVWER BYTE OF ADDRESS
NET A<l1> LOC=P79;

NET A<2> LOC=P82;

NET A<3> LOC=P84;

NET A<4> LOC=P1;

NET A<5> LOC=P3;

NET A<6> LOC=P83;

NET A<7> LOC=P2;

NET A<8> LOC=P58; # UPPER BYTE OF ADDRESS
NET A<9> LOC=P56;

NET A<10> LOC=P54;

NET A<11> LOC=P55;

NET A<12> LOC=P53;

NET A<13> LOC=P57;

NET A<14> LOC=P61,;

NET V\EB LOC=P63;
NET CEB LOC=P62;
NET CEB LOC=P65;
NET LCEB LOC=P6;
NET RCEB LOC=P7,

2.7 Stereo Codec

ACTI VE- LON WRI TE- ENABLE FOR ALL RAMS

ACTI VE- LON QUTPUT- ENABLE FOR ALL RAMS

ACTI VE- LON CH P- ENABLE FOR XS95 RAM

ACTI VE- LON CH P- ENABLE FOR LEFT XSTEND RAM
ACTI VE- LON CH P- ENABLE FOR RI GHT XSTEND RAM

The XStend Board has a stereo codec that accepts two analog input channels from jack JO,
digitizes the analog values, and sends the digital values to the XS Board as a seria bit stream.
The codec also accepts a serial bit stream from the XS Board and converts it into two analog
output signals which exit the X Stend Board through jack J10.

The codec is configured by placing shunts on the jumpers as indicated in Table 2 and Figure 4.

Table 2: Jumper settings for X Stend codec.

Setting

Placing a shunt on this jumper disables the codec by
holding it in the reset state.

Placing shunts across two of the three pins of these
jumpers selects the digital de-emphasis for different
sampling rates.

De-emphasis for 32 KHz
De-emphasis for 44.1 KHz
De-emphasis for 48 KHz

De-emphasis of f

Removing this shunt prevents the codec’s seria data
output from reaching the XS Board.

Removing these shunts interrupts the flow of the analog
signalsinto and out of the codec.

Jumper

J11

J13, J15
0 0
0 1
1 0
1 1

J17

J20-J27

J28

This header provides access to the analog VCC and
GND signds. A shunt should never be placed on this
header!

J15=0
Jl3=1

J15=1
J13=1

Figure 4. Shunt placement for setting the codec sampling rate de-emphasis.

Listings 11 and 12 show the connections from the X$40 Board to the codec interface on the
XStend Board (expressed as UCF constraints):

Listing 11: Connections between the X Stend stereo codec and the X $40.

STEREO CODEC CONNECTI ONS

NET MCLK LOC=P9; # MASTER CLOCK TO CODEC

NET LRCK LOC=P66; # LEFT/ RI GHT CODEC CHANNEL SELECT
NET SCLK LOC=P77; # SERI AL DATA CLOCK

NET SDOUT LOC=P6; # SERI AL DATA OQUTPUT FROM CODEC
NET SDI N LOC=P70; # SERI AL DATA | NPUT TO CODEC

NET CCLK LOC=P44; # CONTROL SI GNAL CLOCK

NET CDI N LOC=P45; # SERI AL CONTROL | NPUT TO CODEC
NET CSB LOC=P46; # SERI AL CONTROL CHI P SELECT

Listing 12: Connections between the X Stend codec and the X S95.

STEREO CODEC CONNECTI ONS

NET MCLK LOC=P11; # MASTER CLOCK TO CODEC

NET LRCK LOC=P5; # LEFT/ RI GHT CODEC CHANNEL SELECT
NET SCLK LOC=P72; # SERI AL DATA CLOCK

NET SDOUT LOC=P66; # SERI AL DATA OUTPUT FROM CODEC
NET SDI N LOC=P71; # SERI AL DATA | NPUT TO CODEC

NET CCLK LOC=P46; # CONTROL SI GNAL CLOCK

NET CDI N LOC=P47; # SERI AL CONTROL | NPUT TO CODEC
NET CSB LOC=P48; # SERI AL CONTROL CHI P SELECT

The analog stereo input and output signals enter and exit the XStend Board through the 1/8”
jacks J9 and J10, respectively. The output of an audio CD player can be input through J9 and a
set of small stereo headphones can be connected to J10 for listening to the processed output.

The analog signals that go in and out of the codec chip pass through jumpers J20-J27. Shunts
should be placed on all these jumpers so that the analog signals are not interrupted. The digitized
data output from the codec passes through jumper J17 on its way to the XS Board inserted in the
XStend Board. A shunt should be placed on J17 when the codec is being used. Because the
seria data output of the codec is not tristatable and because it shares the input to the XS Board

with other resources on the XStend Board, the shunt on J17 should be removed when the codec
is not being used.

@ Never place a shunt on header J28! J28 provides access to the VCC and GND of the

analog section of the XStend Board. Placing a shunt on J28 will damage the XStend
Board.

2.8 XILINX Xchecker Interface

The XS Board inserted in the XStend Board can be configured and tested using a XILINX
Xchecker cable attached to header J19. When using the Xchecker cable, you must not connect
the cable between the XS Board and the parallel port of the PC. In addition, when using the
Xchecker cable with an X Stend/X$40 combination, you must make the following adjustments to
the XS40 Board:

Remove the shunts from jumpers M4, J6, J10 and J11 of the XS40 Board,;
Remove the serial EPROM from socket U7.

The connections between the Xchecker cable and the XS40 and XS95 Boards are listed in Table
3. The configuration and readback signals are not applicable to the XS95 Board, so only the
JTAG and VCC/GND signals are listed for it.

Table 3: Connections between the X Stend Board X checker interface and the XS40 and X S95

Boards.

Xchecker Pin XS0 Pin | XS95 Pin
1-VCC(+5V) |2 78
2-RT 32 N/A
3-GND 52 49
4 -RD 30 N/A
6—-TRIG 7 N/A
7—-CCLK 73 N/A
9-DONE 53 N/A
10-TDI 15 28
11 - DIN 71 N/A
12-TCK 16 30
13- PROGRAM | 55 N/A
14-TMS 17 29
15-INIT 41 N/A
16 — CLKI 13 N/A
17 -RST 8 N/A
18— CLKO 9 N/A

2.9 Prototyping Area

The XStend Board has a prototyping area consisting of component through-holes on an
0.1"x0.1" grid interspersed with a network of aternating VCC and GND buses as shown in
Figure 5. The buses carrying VCC run on the top side of the XStend Board while the GND
buses run on the bottom side. The VCC and GND buses have connection holes in which a small
wire can be soldered to make a connection to a nearby component through-hole.

VCC Bus @ @ @ @ @

O © 0O @
GNDBus, © © © ©O
O O O C O\ Component

VCCBUS .0 O O O ®s Through-Holes

© O © O ©C p
GNDBus/ © © o © QQ/
0O O O O

Figure5: Top-side view of the network of VCC and GND buses around the component
through-holes in the X Stend Board prototyping area.

The placement of the shunt on jumper J16 will determine whether the VCC buses in the
prototyping area carry either 5V or 3.3V (see Figure 6). Of course the jumper selection will have
no effect unless you have both these voltages supplied to the XStend Board either by the XS
Board or by connecting external power supplies.

+5 J16 +3.3 +5 Jlé +3.3

VCC Bus =5V VCC Bus =3.3V

Figure 6: Shunt placement for setting the VCC bus voltage..

Connections from the XS Board to the prototyping area are made through connector J3. The
arrangement of pins on this connector exactly matches the arrangement of pins on the X340
Board. For example, the pin at the bottom-left of J3 on the X Stend Board corresponds to pin 21
at the bottom-left of the XS40 Board.

The XS95 Board has a completely different pin arrangement than the XS40. Therefore each pin
on J3 is explicitly labelled with the corresponding pin number on the XS95 Board. For example,
the pin at the bottom-left of J3 on the XStend Board is connected to pin 68 near the top-left of
the XS95 Board.

2.10 Daughterboard Connector

Daughterboards with specialized circuitry can be connected to the XStend board through
connector J18. This 42x2 connector brings al the 1/0 and VCC/GND from the X340 or XS95
Board to the daughterboard.

3 XStend Board Programmer’s M odel

The interconnections of the XStend Board resources and an XS40 or XS95 Board are shown in
Figure 7 and Figure 8, respectively. These figures remove much of the extraneous detail of the
actual schematics, so we refer to them as programmer’ s models.

Items within the shaded area in each figure correspond to circuitry housed on the XS Board. The
remaining items are X Stend Board resources.

A cursory glance at the figures reveas that many of the resources share connections. For
example, the codec, DIP switch, and microcontroller port P1 are all connected to the same set of
pins on the FPGA or CPLD. So any design has to ensure that only one of these resources is
outputing data at any particular time. (Hence the need in some designs to place the DIP switches
in the OPEN position, or remove the shunt through which the codec SDOUT drives serial data,
or keep the microcontroller in the reset state.)

Table 4 and Table 5 list the same interconnection data for the XS40 and XS95 Boards,
respectively, in a tabular format which makes it easier to see which resources share common
connections.

Right 32K x 8 SRAM

VGA Connector SPARE RESET PROGRAM gogooaans
O O | i
lotel lof | b PS/2 Port
KB_DATA
‘ KB CLK
t
- £
3
© g :g‘ Stereo Audio Input.
Tt RS 00
<
£2 RS w00
SCLK
Om sooutr Q) i
o MoK > o Stereo Audio Output
o] noO
55
8 B z a Do
3 bl 36 RST
2 REDA % 33 | me
c REDO a2 O
= GREEN1 14 PSEN
< GREENOD « 67 2 {p17 =3
g BLUE{ . €6 Lo el
BLUE) «——4 70 P15
77 & _{pi4 v
[el wH
9 P12
8 3 1pq4q o
7 2 P10 (]
s6 19 27 1a
S5 18 18
S5/ g3 | 84 54 23 o
s3 20 16
8250 |51 52 24 &8
$1 26 5 15
s0 25 14 | p3.2 (iNTO)
69 :;* P31)
s P3.0 (RXD)
7-Segment LED 10 38 5] po.7 (A7ID7)
80 37,) po.6 (A6/D6)
81 38 5] p0.5 (AS/D5)
35 39,) pg 4 (A4/D4)
38 40 5] py_3 (A3/D3)
39 41,) py_2 (A2/D2)
40 42 5] pg 1 (A1/D1)
4 43 5] P0.0 (A0/DO)
28 M _{ p27(A15)
< 60 30| p7 6 (A14)
58 ;g P2.5(A13)
‘!) 50 P24 (A12)
12 MHz 13 56 27 { p2 3 (A1)
Osc. a s 26 | p22 (A10)
57 25 { p2 1 (A9)
W s 24 | p2 0 (AB)
11 11
“_:;-’ gz 12 gz 12 g;
13y) ps 13,] ps 13,] ps
19, pg 19, ng E 18, g
185{ p3 18] p3 18y] pa
12y p2 12y] g < 12y] g
16,] pq 16y] py 16y] py
‘g @ 155] po : E A o 155] po
a5 eco7 34 ;5 Ars ;5 a1 (fy ;5 Ata
— O PCD6 a2 250 A13 m 259 A13 255 A13
2 & pcps a9 A2 A2 a2
=3 islan f) 3») AN 3» A1
[et o 15! A10 1 pl a10 1l A10
= PC_D3 47 28 28 x 26
S8 rcp2 a5 2042 0O 243 A2 243] A8
© PC_ D1 a5 A8 AB AB
O Q4 rcoo “r 84 IoAT e a7 X A7
a 83 :“ A6 :“ AB N :1 A6
@ e w e 9 e
78 10y] A3 10] A3 10,] A3
5 5yl A2 N 5yl A2 5 gl A2
4 :‘ A1 o :‘ A1 # :‘ A1
3 AD A0 w A0
po 2 e o a1,
61 22 O_E 22 O_E 22 O_E
XS40 Board 2 -1 e F"" =
XStend Board ey M—
56
55
85, 83 S4 st
53
82[1g0 |81 52
51
S0
Left 7-Segment LED
ss DP
86
85
S5/ g3 54 sS4

s3
S2[isp |51 52
51

so

Right 7-Segment LED

Figure 7: Programmer's model of the XS40/X Stend Board combination.

Right 32K x 8 SRAM

VGA Connector SPARE RESET PROGRAM gogooaans
o o 8| e 80
o8 @ L] PS/2 Port
KB_DATA
KB CLK
t
o
4
E g e Stereo Audio Input
2 Rg 00
<
53 b s wek O @
0w SCLK "'D
(e %73 SDOUT m i
o s © |stereo Audio Output
" VSVNG =
gl 10 XTAL1
5 HSYNC < 45 10 | psT
o RED1 20 33 { ALE
c REDO a2 O
= GREEN1 13 PSEN
< GREENO < 67 2 _lp17 3
g BLUE{ Lo el
BIUE) «————§ n p1s <«
72 & _{pi4
5 513 wH
11 P12
7 Fam e o
ss O 24 8 PO _ 00
56 15 a2 1a
55 14 18
85 s3 (84 of 18 17
s3 17 33 16
szl 1 5 19 26
s1 23 68 L
S0 21 &9 145 p3.2 (INTO)
70 :3 P31)
y B P3.0 (RXD)
7-Segment LED 35 36y] po.7 (A7/D7)
36 375) P0.6 (AB/D6)
a7 385 po.5 (A5/DS5)
39 395) po.4 (Ad/D4)
10 A0y po_3 (A3/D3)
P 415 po.2 (A2/D2)
13 42,5 po.1 (A1/D1)
r 435 0.0 (A0/DO)
34 31| p2 7(A15)
0 &1 an | po'g (A14)
57 29| p25(A13)
12 MHz - s 28 | p2 4 (A12)
° 55 271 p2.3 (A1)
Osc. oa = 26| p32 (A10)
0 56 251 p2 1 (A9)
58 24 | p2.0 (A8)
> 11,1 11 11
“g 7] by 12, gz 12 gz 12 g;
a5 eco7 135] ps 13y] ps 13y] ps
3 PCl 80 18! 19 E 19
% 2 rooe 81 18)] B4 183 o4 183 ba
25 ecos 52 177 b3 123 b < 1o D3
© O PCD4 51 16 D2 E 165 02 163 b
o PC_ D3 50 15y 155 o) m 159 g
S8 ecn2 ey Do < Do DO
© PC_D1 s 4 5 A14 a1 () 4_»f A14
8 O ecpo 6.4 Fa L o 2551 A13 255) A13
A2 Al2 A12
3yl a1 o 3 a1 00 3l A1
129 at0 159 At0 x 159 a0
AS AS AZ
24, w 24 24
AB AB AB
7 23 23
2 A7 a X A7
8 77 83 2151 A6 X 215 A6 N 2151 A6
s 76 3 B 5l A5 5 pl A5 5pl A5
a 74 H 5] a1 ¥ Soas O 5l aa
o 25 84 A3 A3 A3
o 12 a2 sylaz N 24l A2 2yl A2
2 x % 23] a4 oM 9l A} 9yl A1
75 £ »l A0 ET A Q 10y] a0
- 22, e e T 2,
62 22,| 5¢ 22} 58 22y] oE
XS95 Board = = T fn' -
XStend Board B
56
85 53 //s4 55
53
s2l g0 81 52
51
S0
Left 7-Segment LED
ss DP
86
5] s3 /54 55
88—
s2l gp 81 g2 o Ynoto
81 [a]-Y-F=Tayayaya)
50

Right 7-Segment LED

Figure 8: Programmer's model of the XS95/X Stend Board combination.

Table 4:

Connections between the X S40 Board and the X Stend Board resources.

5 z g
= < S ° < =
2| G g = g g 8 5 s 5e
2| 3 H 2 g g o S |5 8 g2
o9 9] 7] < 0 = = 3 @ S = X
sl s 12| 8|8 se|gels |52 (5|3 : =3
o] & a & 4 [S=[RE| & 3 g || 8 Function 3a
2[+5V +5V power source
3| LSBO A0 Left LED segment; RAM address Tine P35
4 LSB1 Al Left LED segment; RAM address line P36
5 LSB2 A2 Left LED segment; RAM address line P29
6 DIPSW4 SDOUT P1.3 DIP switch; codec serial data output; uC 1/0 P24
7 DIPSW1 LCEB P1.0 DIP switch; left RAM chip-enable, uC 1/0 port P19
]| DIPSW?2 RCEB P1.1 DIP switch; right RAM chip-enable, uC 1/O port P20
9 DIPSW3 MCLK P1.2 DIP switch; codec master clock; uC I/0O port P23
10 DB8 D7 P0.7 LED; RAM data line; uC muxed address/data line P61
13 CLK XS Board oscillator
14 PSENB uC program store-enable
15 JTAG TDI; DIN
16 JTAG TCK; CCLK
17 JTAG TMS
18 S5 RED1 XS Board LED segment; VGA color signal
19 S6 HSYNCB XS Board LED segment; VGA horiz. sync.
20 S3 GREENT XS Board LED segment; VGA color signal
23 S4 REDO XS Board LED segment; VGA color signal
24 S2 GREENO XS Board LED segment; VGA color signal
25 SO BLUEO XS Board LED segment; VGA color signal
26 S1 BLUE1 XS Board LED segment; VGA color signal
27 P3.7 (RD_) uC read line
28 RDPB P2.7 Right LED decimal-point; uC 1/O port P41
29 ALEB uC address-latch-enable
30 Serial EEPROM chip-enable
32 PC_D6 PC parallel port data output
34 PC_D7 PC parallel port data output
35 DB5 D4 P0.4 LED; RAM data line; uC muxed address/data line P66
36 RST uC reset
37 RESETB XTAL1 Pushbutton; uC clock P56
38 DB4 D3 P0.3 LED; RAM data line; uC muxed address/data line P57
39 DB3 D2 P0.2 LED; RAM data line; uC muxed address/data line P58
40 DB2 D1 PO.1 LED; RAM data line; uC muxed address/data line P59
41 DB1 DO P0.0 LED; RAM data line; uC muxed address/data line P60
44 CCLK PC_DO Codec control line; PC parallel port data output
45 CDIN PC_D1 Codec control line; PC parallel port data output
46 CSB PC_D2 Codec control line; PC parallel port data output
47 PC_D3 PC parallel port data output
48 PC_D4 PC parallel port data output
49 PC_D5 PC parallel port data output
50 RSB4 Al2 P2.4 Right LED segment; RAM address line; uC 1/0 port P48
51 RSB2 A10 P2.2 Right LED segment; RAM address line; uC 1/0 port P45
52|GND Power supply ground
54]5.0V/3.3V 5V/3.3V power supply (4000E/4000XL)
55 PROGRAM XS40 configuration control P55
56 RSB3 All P2.3 Right LED segment; RAM address line; uC 1/0 port P51
57 RSB1 A9 P2.1 Right LED segment; RAM address line; uC 1/0 port P47
58 RSB5 Al13 P2.5 Right LED segment; RAM address line; uC 1/0 port P50
59 RSBO A8 P2.0 Right LED segment; RAM address line; uC 1/0 port P46
60 RSB6 Al4 P2.6 Right LED segment; RAM address line; uC 1/0 port P49
61 OEB RAM output-enable
62 WEB P3.6 (WR_) RAM write-enable; uC I/O port
65 CEB XS Board RAM chip-enable
66 DIPSW7 LRCK P1.6 PC_S5 DIP switch; codec left-right channel switch; uC 1/O port; P! P27
67 SPAREB VSYNCB P1.7 Pushbutton; VGA vert. sync.; uC 1/O port P18
68 KB_CLK P3.4 (TO) PS/2 keyboard clock; uC 1/0O port
69 DIPSW8 KB_DATA P3.1 (TXPC_S6 DIP switch; PS/2 keyboard serial data; uC I/O port; PC paf P28
70 DIPSW6 SDIN P15 PC_S3 DIP switch; codec serial input data; uC 1/0 port; PC parall P26
71 JTAG TDI; DIN
72 JTAG TDO; DOUT
73 JTAG TCK; CCLK
75 PC_S7 JTAG TDO; DOUT; PC parallel port status input
77 DIPSW5 SCLK P14 PC_S4 DIP switch; codec serial I/O clock; uC 1/O port; PC parallel P25
78 LSB3 A3 Left LED segment; RAM address line P44
79 LSB4 A4 Left LED segment; RAM address line P38
80 DB7 D6 P0.6 LED; RAM data line; uC muxed address/data line P62
81 DB6 D5 P0.5 LED; RAM data line; uC muxed address/data line P65
82 LSB5 A5 Left LED segment; RAM address line P40
83 LSB6 Ab Left LED segment; RAM address line P39
84 LDPB A7 Left LED decimal-point; RAM address line P37

Table5:

Connections between the X S95 Board and the X Stend Board resources.

o 2 8
< S ° < =
2 5| g | 3 o | o S| . |% 5 st
a = H 2 8 8 " o =) 5 K a2
e | £ @ 5 & | <5 |a%| = g 2 || 3 ig
2] & g 2 4 [Q= [P B @ g |88] & Function 23
1] LSBO A4 Left LED segment; RAM address line P35
2| LSBI A7 Left LED segment; RAM address Tine P36
3 LSB2 A5 Left LED segment; RAM address line P29
7] Uncommitted X595 170 pin
5 DIPSW4 SDOUT P1.3 DIP switch; codec serial data output; uC I/0 P24
6 DIPSW1 LCEB P1.0 DIP switch; left RAM chip-enable, uC 1/0 port P19
I DIPSW?2 RCEB P1.1 DIP switch; right RAM chip-enable, uC 1/O port P20
9 CLK XS Board oscillator
10 RESETB XTAL1 Pushbutton; uC clock P56
11 DIPSW3 MCLK P1.2 DIP switch; codec master clock; uC 170 port P23
12 Uncommitted XS95 1/O pin
13 PSENB uC program store-enable
14 S5 RED1 XS Board LED segment; VGA color signal
15 S6 HSYNCB XS Board LED segment; VGA horiz. sync.
17 S3 GREEN1 XS Board LED segment; VGA color signal
18 S4 REDO XS Board LED segment; VGA color signal
19 S2 GREENO XS Board LED segment; VGA color signal
20 ALEB uC address-latch-enable
21 SO BLUEO XS Board LED segment; VGA color signal
23 S1 BLUE1 XS Board LED segment; VGA color signal
25 Uncommitted XS95 1/O pin
26 KB_CLK P3.4 (TO) PS/2 keyboard clock; uC 1/0O port
28 JTAG TDI; DIN
29 JTAG TMS
30 JTAG TCK; CCLK
31 P3.0 (RXD) UC 170 port
32 P3.7 (RD_) uC /O port
33 P3.5(T1) uC /0 port
34 RDPB P2.7 Right LED decimal-point; RAM address line; uC 1/0 port P41
35 DB8 D7 PO.7 LED; RAM data line; uC muxed address/data line P61
36 DB7 D6 P0.6 LED; RAM data line; uC muxed address/data line P62
37 DB6 D5 P0.5 LED; RAM data line; uC muxed address/data line P65
39 DB5 D4 P0.4 LED; RAM data line; uC muxed address/data line P66
40 DB4 D3 P0.3 LED; RAM data line; uC muxed address/data line P57
41 DB3 D2 P0.2 LED; RAM data line; uC muxed address/data line P58
43 DB2 D1 PO.1 LED; RAM data line; uC muxed address/data line P59
44 DB1 DO P0.0 LED; RAM data line; uC muxed address/data line P60
45 RST uC reset
46 CCLK PC_DO Codec control line; PC parallel port data output
47 CDIN PC_D1 Codec control line; PC parallel port data output
48 CSB PC_D2 Codec control line; PC parallel port data output
49|GND Power supply ground
50 PC_D3 PC parallel port data output
51 PC_D4 PC parallel port data output
52 PC_D5 PC parallel port data output
53 RSB4 Al12 P2.4 Right LED segment; RAM address line; uC 1/0 port P48
54 RSB2 A10 P2.2 Right LED segment; RAM address line; uC 1/0 port P45
55 RSB3 All P2.3 Right LED segment; RAM address line; uC 1/0 port P51
56 RSB1 A9 P2.1 Right LED segment; RAM address line; uC 1/0 port P47
57 RSB5 Al13 P2.5 Right LED segment; RAM address line; uC 1/0 port P50
58 RSB0 A8 P2.0 Right LED segment; RAM address line; uC 1/0 port P46
59 JTAG TDO; DOUT
61 RSB6 Al4 P2.6 Right LED segment; RAM address line; uC 1/0 port P49
62 OEB RAM output-enable
63 WEB P3.6 (WR_) RAM write-enable; uC I/0 port
65 CEB XS Board RAM chip-enable
66 DIPSW7 LRCK P1.6 PC_S5 DIP switch; codec left-right channel select; uC 1/O port; P! P27
53 P3.3 INTL) UC 170 port
69 P3.2 (INTO_) UC 170 port
70 DIPSW8 KB_DATA P3.1 (TXPC_S6 DIP switch; PS/2 keyboard serial data; uC I/O port; PC paf P28
71 DIPSW6 SDIN P15 PC_S3 DIP switch; codec serial input data; uC 1/0 port; PC parall P26
72 DIPSW5 SCLK P14 PC_S4 DIP switch; codec serial clock; uC I/O port; PC parallel pof P25
74 Uncommitted X595 170 pin
75 LSB3 A0 Left LED segment; RAM address line P44
76 Uncommitted X595 170 pin
77 Uncommitted X595 170 pin
78]+5V +5V power source
79 LSB4 Al Left LED segment; RAM address line P38
80 PC_D7 PC parallel port data output
81 PC_D6 PC parallel port data output
82 LSB5 A2 Left LED segment; RAM address line P40
83 LSB6 Ab Left LED segment; RAM address line P39
84 LDPB A3 Left LED decimal-point; RAM address line P37
24,67 SPAREE DP VSYNCB P1.7 Pushbutton; XS Board LED decimal-point; VGA horiz. syn] P18

4 Example Designsfor the XStend Board

With the programmer’s models in hand, severa example designs can be built using the XStend
Board coupled with an X$40 or XS95 Board.

4.1 Displaying Switch Settingson the LEDs

This example creates a circuit that displays the settings of the DIP switches on the LEDs and
LED digits of the XStend and XS Boards. The particular set of LEDs which is activated is
selected by the SPARE and RESET pushbuttons. The VHDL code for this example is shown in
Listing 13.

The steps for compiling and testing the design using an XS40 combined with an XStend Board
are asfollows:

Synthesize the VHDL code in the SWTCH40\SWITCHES.VHD file for an XC4005XL
FPGA.

Compile the synthesized netlist using the SWTCH40.UCF constraint file (Listing 14).

Mount an X$40 Board in the XStend Board and attach the downloading cable from the
XS0 to the PC parallel port. Apply 9VDC though jack J9 of the XS40. Place shunts on
jumpers M4, J7, and I8 of the XStend Board to enable the LED displays. Remove the shunt
on jumper J17 to keep the XStend codec seria output from interfering with the DIP switch
logic levels.

Download the SWTCH40.BIT file into the XS40/XStend combination with the command:
XSLOAD SWICH40. BI T.

Set the DIP switches and press the SPARE and RESET pushbuttons. Observe the results on
the LEDs.

The steps for compiling and testing the design using an XS95 combined with an XStend Board
are asfollows:

Synthesize the VHDL code in the SWTCH95\SWITCHES.VHD file for an XC95108 CPLD.

Compile the synthesized netliss using the SWTCH95.UCF congraint file (

Listing 15).
Generate an SVF file for the design.

Mount an XS95 Board in the XStend Board and attach the downloading cable from the
XS95 to the PC parallel port. Apply 9VDC though jack J9 of the XS95. Place shunts on
jumpers M4, J7, and I8 of the XStend Board to enable the LED displays. Remove the shunt
on jumper J17 to keep the XStend codec seria output from interfering with the DIP switch
logic levels.

Download the SWTCH95.SVF file into the XS95/X Stend combination with the command:
XSLOAD SWICH95. SVF.

Set the DIP switches and press the SPARE and RESET pushbuttons. Observe the results on

the LEDs.

Listing 13: VHDL code for using the X Stend LEDs and switches.

001- LI BRARY | EEE;
002- USE I EEE. STD LOG C_1164. ALL,

003-

004- ENTITY switches IS

005- PORT

006- (

007- di psw. IN STD _LOG C_VECTOR(8 DOMWTO 1); -- DIP switches

008- spareb: IN STD LOG C, -- SPARE pushbutton

009- resetb: IN STD LOd C; -- RESET pushbutton

010-

011- s: QUT STD_LOG C VECTOR(6 DOWNTO 0); -- XS Board LED digit
012- [sb: QUT STD LOQd C VECTOR(7 DOMTO 0); -- XStend left LED digit
013- rsb: QUT STD LOGd C VECTOR(7 DOMNTO 0); -- XStend right LED digit
014- db: OUT STD _LOJd C VECTOR(8 DOWNTO 1); -- XStend bargraph LED
015-

016- oeb: QUT STD LQG G -- output enable for all RAMs

017- rst: QUT STD LCGE C -- mcrocontroller reset

018- ;

019- END swi t ches;

020-

021- ARCHI TECTURE switches_arch OF switches IS

022- BEG N

023- -- this prevents accidental activation of the RAMs or mcrocontroller
024- oeb <='1"; -- disable all the RAM output drivers

025- rst <='1"; -- disable the microcontroller

026-

027- -- light the XS Board LED digit with the pattern fromthe

028- -- DIP switches if both pushbuttons are pressed.

029- -- these LED segnents are active-high.

030- s <= di psw7 DOMNTO 1) WHEN (spareb="0" AND resetb="0") ELSE
031- "0000000"; -- otherwi se keep LED digit dark

032-

033- -- light the XStend left LED digit with the pattern fromthe
034- -- DIP switches if the RESET pushbutton is pressed.

035- -- these LED segnents are active | ow

036- |sb <= NOT(di psw) WHEN (spareb="1" AND resetb="0") ELSE
037- "11111111"; -- otherwi se keep the LED digit dark

038-

039- -- light the XStend right LED digit with the pattern fromthe
040- -- DIP switches if the SPARE pushbutton is pressed.

041- -- these LED segnents are active |ow

042- rsb <= NOT(di psw) WHEN (spareb="0" AND resetb="1") ELSE
043- "11111111"; -- otherwi se keep the LED digit dark
044-

045- -- light the XStend bargraph LED with the pattern fromthe
046- -- DIP switches if neither pushbutton is pressed

047- -- these LED segnents are active |ow

048- db <= NOT(di psw) WHEN (spareb="1" AND resetb="1") ELSE
049- "11111111"; -- otherw se keep the bargraph LED dark

050- END switches_arch

Listing 14: X$40 UCF file for the LED/switch example.

001- net s<0> | oc=p25; /1l XS40 board led digit segnents
002- net s<1> | oc=p26;

003- net s<2> | oc=p24;

004- net s<3> | oc=p20;

005- net s<4> | oc=p23;

006- net s<5> | oc=p1l8;

007- net s<6> | oc=pl9;

008- net rst | oc=p36; /1 mcrocontroller reset

009- net oeb | oc=p61; /1 RAM out put enabl e

010- net di psw<1> | oc=p7, /1 DIP switch inputs

011- net dipsw<2> | oc=p8;
012- net di psw<3> | oc=p9;
013- net di psw<4> | oc=p6;
014- net di psw5> | oc=p77;
015- net di psw6> | oc=p70;
016- net di psw<7> | oc=p66;
017- net di psw8> | oc=p69;

018- net spareb | oc=p67; /1 SPARE pushbutton i nput
019- net resetb | oc=p37; /1 RESET pushbutton input
020- net | sb<0> | oc=p3; /1 XStend left led digit segnents

021- net |sb<l> | oc=p4;
022- net | sbh<2> | oc=p5;
023- net | sbh<3> | oc=p78;
024- net | sbh<4> | oc=p79;
025- net | sbh<5> | oc=p82;
026- net | sbh<6> | oc=p83;
027- net | sb<7> | oc=p84;
028- net rsh<0> | oc=p59; /1 XStend right led digit segnents
029- net rsh<l> | oc=p57;
030- net rsh<2> | oc=p51
031- net rsh<3> | oc=p56;
032- net rsh<4> | oc=p50;
033- net rsh<5> | oc=p58;
034- net rsh<6> | oc=p60;
035- net rsh<7> | oc=p28;

036- net db<1> | oc=p41; /1 XStend bargraph | ed segnents
037- net db<2> | oc=p40;
038- net db<3> | oc=p39;
039- net db<4> | oc=p38;
040- net db<5> | oc=p35;
041- net db<6> | oc=p81
042- net db<7> | oc=p80;

043- net db<8> | oc=p1l0;

Listing 15: XS95 UCF file for the LED/switch example.

001-
002-
003-
004-
005-
006-
007-
008-
009-
010-
011-
012-
013-
014-
015-
016-
017-
018-
019-
020-
021-
022-
023-
024-
025-
026-
027-
028-
029-
030-
031-
032-
033-
034-
035-
036-
037-
038-
039-
040-
041-
042-
043-

net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net
net

s<0>
s<1>
S<2>
S<3>
s<4>
s<5>
S<6>

rst

oeb

di psw<1>
di psw<2>
di psw<3>
di psw<4>
di psw<5>
di psw<6>
di psw<7>
di psw<8>
spar eb
resetb

| sb<0>

| sb<1>

| sb<2>

| sb<3>

| sb<4>

| sb<5>

| sb<6>

| sb<7>

r sb<0>
rsb<i>
rsb<2>
rsb<3>

r sb<4>

r sb<5>

r sb<6>
rsb<7>
db<1>
db<2>
db<3>
db<4>
db<5>
db<6>
db<7>
db<8>

| oc=p21;
| oc=p23;
| oc=pl9;
| oc=pl7;
| oc=p1l8;
| oc=pl4;
| oc=pl5;
| oc=p45;
| oc=p62;
| oc=p6;

| oc=p7;

| oc=pl1;
| oc=p5;

| oc=p72;
| oc=p71;
| oc=p66;
| oc=p70;
| oc=p67;
| oc=p1l0;
| oc=p1;

| oc=p2;

| oc=p3;

| oc=p75;
| oc=p79;
| oc=p82;
| oc=p83;
| oc=p84;
| oc=p58;
| oc=p56;
| oc=p54;
| oc=p55;
| oc=p53;
| oc=p57;
| oc=p61;
| oc=p34;
| oc=p44;
| oc=p43;
| oc=p41;
| oc=p40;
| oc=p39;
| oc=p37;
| oc=p36;
| oc=p35;

/1

/1
/1

/1
/1

/1

/1

XS Board LED digit segnents

m crocontrol | er reset
RAM out put enabl e
DIP switch inputs

SPARE pushbutton i nput
RESET pushbutton i nput
XStend left LED digit segnents

XStend right LED digit segnments

XSt end bar graph LED segnents

4.2 Displaying Graphicsfrom RAM Through the VGA Interface

This section discusses the timing for the signals that drive a VGA monitor and describes a VHDL
module that will let you drive a monitor with a picture stored in RAM.

4.2.1 VGA Color Signals

There are three signals -- red, green, and blue -- that send color information to a VGA monitor.
These three signals each drive an electron gun that emits electrons which paint one primary color
a a point on the monitor screen. Anaog levels between O (completely dark) and 0.7 V
(maximum brightness) on these control lines tell the monitor what intensities of these three
primary colors to combine to make the color of adot (or pixel) on the monitor’s screen.

Each analog color input can be set to one of four levels by two digital outputs using a smple
two-bit digital-to-analog converter (see Figure 9). The four possible levels on each analog input
are combined by the monitor to create a pixel withoneof 4° 4~ 4 = 64 different colors. So the
six digital control lineslet us select from a palette of 64 colors.

VGA Generator Digital-to-Analog VGA Monitor
(digital) Converter (Analog)
470Q
redl —
1000Q
red0 74\/\/\, o red
75Q
470Q
green1 —— —
1000Q
green0 7J\/\/\, . green

7592
470Q
10009
% 75Q

Figure 9: Digital-to-anaog interface to aVGA monitor.

blue1 —

blued — blue

:

4.2.2 VGA Signal Timing

A single dot of color on a video monitor doesn’t impart much information. A horizonta line of
pixels carries a bit more information. But a frame composed of multiple lines can present an
image on the monitor screen. A frame of VGA video typically has 480 lines and each line usually
contains 640 pixels. In order to paint a frame, there are deflection circuits in the monitor that
move the electrons emitted from the guns both left-to-right and top-to-bottom across the screen.
These deflection circuits require two synchronization signals in order to start and stop the
deflection circuits at the right times so that a line of pixels is painted across the monitor and the
lines stack up from the top to the bottom to form an image. The timing for the VGA
synchronization signalsis shown in Figure 10.

Negative pulses on the horizontal sync signal mark the start and end of a line and ensure that the
monitor displays the pixels between the left and right edges of the visible screen area. The actua
pixels are sent to the monitor within a 25.17 ns window. The horizontal sync signal drops low a
minimum of 0.94 s after the last pixel and stays low for 3.77 ms. A new line of pixels can begin
aminimum of 1.89 s after the horizontal sync pulse ends. So a single line occupies 25.17 ns of
a 3177 ns interval. The other 6.6 s of each line is the horizontal blanking interval during
which the screen is dark.

In an analogous fashion, negative pulses on a vertical sync signa mark the start and end of a
frame made up of video lines and ensure that the monitor displays the lines between the top and
bottom edges of the visible monitor screen. The lines are sent to the monitor within a 15.25 ms
window. The vertical sync signa drops low a minimum of 0.45 ms after the last line and stays
low for 64 ns. The first line of the next frame can begin a minimum of 1.02 ms after the vertica
sync pulse ends. So a single frame occupies 15.25 ms of a 16.784 ms interval. The other 1.534
ms of the frame interval isthe vertical blanking interval during which the screen is dark.

" Horizontal Horizontal
Video Blanking Blanking
Line Interval Interval
Horizontal
Synch

2517 us

26.11 us

29.88 us

31.77 us
Vertical o Vertical
Blanking : : Blanking
nterval nterval

= T
Frame

Vertical

Synch

15.25 ms
15.70 ms
15.764 ms
16.784 ms

Figure 10: VGA dignal timing.

4.2.3 VGA Signal Generator Algorithm

Now we have to figure out a process that will send pixels to the monitor with the correct timing
and framing. We can store a picture in the RAM of the XS Board. Then we can retrieve the
data from the RAM, format it into lines of pixels, and send the lines to the monitor with the
appropriate pulses on the horizontal and vertical sync pulses.

The pseudocode for a single frame of this process is shown in Listing 16. The pseudocode has
two outer loops. one which displays the L lines of visible pixels, and another which inserts the V
blank lines and the vertical sync pulse. Within the first loop, there are two more loops. one
which sends the P pixels of each video line to the monitor, and another which inserts the H blank
pixels and the horizonta sync pulse.

Within the pixel display loop, there are statements to get the next byte from the RAM. Each byte
contains four two-bit pixels. A small loop iteratively extracts each pixel to be displayed from the

lower two bits of the byte. Then the byte is shifted by two bits so the next pixel will be in the
right position during the next iteration of the loop. Since it has only two bits, each pixel can store
one of four colors. The mapping from the two-bit pixel value to the actual values required by the
monitor electronics is done by the COLOR_MAP() routine.

Listing 16: VGA signal generation pseudocode.

/* send L lines of video to the nmonitor */
for line cnt=1 to L
/* send P pixels for each line */
for pixel _cnt=1to P
/* get pixel data fromthe RAM */
data = RAM addr ess)
address = address + 1
/* RAM data byte contains 4 pixels */
for d=1 to 4
/* mask off pixel in the lower two bits */
pi xel = data & 00000011
/* shift next pixel into |lower two bits */
data = data>>2
/* get the color for the two-bit pixel */
col or = COLOR_MAP(pi xel)
send col or to nonitor
d=d+1
/* increnment by four pixels */
pi xel _cnt = pixel_cnt + 4
/* blank the nonitor for H pixels */
for horiz blank cnt=1 to H
col or = BLANK
send col or to nonitor
/* pul se the horizontal sync at the right tine */
if horiz_blank cnt>HBO and horiz_bl ank_cnt <HB1

hsync = 0
el se
hsync = 1
horiz_blank cnt = horiz_blank cnt + 1
line cnt =line_ cnt + 1

/* blank the nonitor for V Iines and insert vertical sync */
for vert _blank cnt=1 to V
col or = BLANK
send col or to nonitor
/* pul se the vertical sync at the right tine */
if vert_blank cnt>VBO and vert bl ank _cnt <VB1l
vsync = 0
el se
vsync = 1
vert _blank cnt = vert_blank cnt + 1
/* go back to start of picture in RAM */
address = 0

Figure 11 shows how to pipeline certain operations to account for delays in accessing data from
the RAM. The pipeline has three stages:

Stage 1: The circuit uses the horizontal and vertical counters to compute the address where the
next pixel isfound in RAM. The counters are also used to determine the firing of the sync
pulses and whether the video should be blanked. The pixel data from the RAM, blanking
signal, and sync pulses are latched at the end of this stage so they can be used in the next
stage.

Stage 2: The circuit uses the pixel data and the blanking signal to determine the binary color
outputs. These outputs are latched at the end of this stage.

Stage 3: The binary color outputs are applied to the DAC, which sets the intensity levels for the
monitor’s color guns. The actua pixel is painted on the screen during this stage.

| N | N+1 | N+2 |
petclok -/ N/ N/ _/
Compute Sync
Pulses
Compute
Blanking
Output
RAM Address
Compute
Color
Send Color
to Monitor

Latch Blankingﬁ Latch Color/
Latch RAM Data
Latch Sync Pulses

Figure 11: Pipelining of VGA signa generation tasks.

4.2.4 VGA Signal Generator in VHDL

The pseudocode and pipeline timing in the last section will help us to understand the VHDL code
for aVGA signa generator shown in Listing 17. The inputs and outputs of the circuit as defined
in the entity declaration are as follows:

clk: Theinput for the 12 MHz clock of the XS Board is declared here. This clock sets the
maximum rate at which pixels can be sent to the monitor. The time interval within each line
for transmitting viewable pixelsis 25.17 s, so this VGA generator circuit can only put a
maximum of 25.17 ms”~ 12 MHz = 302 pixels on each line. For purposes of storing images
in the RAM, it is convenient to reduce this to 256 pixels per line and blank the remaining 46
pixels. Half of these blank pixels are placed before the 256 viewable pixels and half are

placed after them on aline. This centers the viewable pixels between the left and right edges
of the monitor screen.

reset: Thisline declares an input, which will reset al the other circuitry to a known state.

hsynch, vsynch: The outputs for the horizontal and vertical sync pulses are declared. The
hsyncb output is declared as a buffer because it will also be referenced within the architecture
section as a clock for the vertical line counter.

rgb: The outputs that control the red, green, and blue color guns of the monitor are declared
here. Each gun is controlled by two bits, so there are four possible intensities for each color.
Thus, thiscircuit can produce 4™ 4~ 4 = 64 different colors.

address, data: These lines declare the outputs for driving the address lines of the RAM and the
inputs for receiving the data from the RAM.

ceb, oeb, web: These are the declarations for the outputs which drive the chip-select, output-
enable, and write-enable control lines of the RAM.

The preamble of the architecture section declares the following resources:

hent, vent: The counters that store the current horizontal position within aline of pixels and the
vertical position of the line on the screen are declared on these lines. We will call these the
horizontal or pixel counter, and the vertical or line counter, respectively. The line period is
31.77 nsthat is 381 clock cycles, so the pixel counter needs at least nine bits of resolution.
Each frame is composed of 528 video lines (only 480 are visible, the other 48 are blanked), so
aten bit counter is needed for the line counter.

pixrg: Thisisthe declaration for the eight-bit register that stores the four pixels received from
the RAM.

blank, pblank: Thisline declares the video blanking signal and its registered counterpart that is
used in the next pipeline stage.

Within the main body of the architecture section, these following processes are executed:

inc_horiz_pixel_counter: This process describes the operation of the horizontal pixel counter.
The counter is asynchronously set to zero when the reset input is high. The counter
increments on the rising edge of each pixel clock. The range for the horizontal pixel counter
is[0,380]. When the counter reaches 380, it rolls over to zero on the next cycle. Thus, the
counter has a period of 381 pixel clocks. With apixel clock of 12 MHz, thistrandatesto a
period of 31.75 ns.

inc_vert_line_counter: This process describes the operation of the vertical line counter. The
counter is asynchronously set to zero when the reset input is high. The counter increments
on the rising edge of the horizontal sync pulse after aline of pixelsis completed. The range
for the horizontal pixel counter is[0,527]. When the counter reaches 527, it rolls over to

zero on the next cycle. Thus, the counter has a period of 528 lines. Since the duration of a
line of pixelsis 31.75 ns, this makes the frame interval equal to 16.76 ms.

generate horiz_sync: This process describes the operation of the horizontal sync pulse
generator. The horizontal sync is set to itsinactive high level when the reset is activated.
During normal operations, the horizontal sync output is updated on every pixel clock. The
sync signa goes low on the cycle after the pixel counter reaches 291 and continues until the
cycle after the counter reaches 337. This gives alow horizontal sync pulse of (337-291)=46
pixel clocks. With apixel clock of 12 MHz, this trandates to alow-going horizontal sync
pulse of 3.83 ms. The sync pulse starts 292 clocks after the line of pixels begin, which
translates to 24.33 s, Thisislessthan the 26.11 s we stated before. The difference of 1.78
ms trandates to 21 pixel clocks. Thistime interva corresponds to the 23 blank pixels that are
placed before the 256 viewable pixels (minus two clock cycles for pipelining delays).

generate vert_sync: This process describes the operation of the vertical sync pulse generator.
The vertical sync is set to itsinactive high level when the reset is activated. During normal
operations, the vertical sync output is updated after every line of pixelsis completed. The
sync signa goes low on the cycle after the line counter reaches 493 and continues until the
cycle after the counter reaches 495. This givesalow vertical sync pulse of (495-493)= 2
lines. With alineinterval of 31.75 ns, this trandates to alow-going vertical sync pulse of
63.5 ms. The vertical sync pulse starts 494~ 31.75 s = 15.68 ms after the beginning of the
first video line.

Line 91: Thisline describes the computation of the combinatorial blanking signal. Thevideo is
blanked after 256 pixels on aline are displayed, or after 480 lines are displayed.

pipeline_blank: This process describes the operation of the pipelined video blanking signal.
Within the process, the blanking signal is stored in aregister so it can be used during the next
stage of the pipeline when the color is computed.

Lines 104 -- 106: On these lines, the RAM is permanently selected and writing to the RAM is
disabled. This makesthe RAM look like aROM, which stores video data. In addition, the
outputs from the RAM are disabled when the video is blanked since there is no need for
pixels during the blanking intervals. Thisisn't really necessary since no other circuit is trying
to access the RAM.

Line 113: The addressin RAM where the next four pixels are stored is calculated by
concatenating the lower nine bits of the line counter with bits 7,6,5,4,3 and 2 of the pixel
counter. With this arrangement, the line counter stores the address of one of 2° = 512 pages.
Each page contains 2° = 64 bytes. Each byte contains four pixels, so each page stores one
line of 256 pixels. The pixel counter increments through the bytes of a page to get the pixels
for the current line. (Note that we don’'t need to use bits 1 and O of the pixel counter when
computing the RAM address since each byte contains four pixels.) After thelineis displayed,
the line counter is incremented to point to the next page.

update pixel register: This process describes the operation of the register that holds the byte of
pixel dataread from RAM. Theregister isasynchronously cleared when the VGA circuit is
reset. Theregister isupdated on the rising edge of each pixel clock. The pixel register is
|loaded with data from the RAM whenever the lowest two bits of the pixel counter are both
zero. The active pixel isawaysin the lower two bits of the register. Each pixel in the RAM
data byte is shifted into the active position by right shifting the register two bits on each rising

clock edge.

map_pixel_to_rgb: this process describes the process by which the current active pixd is
mapped into the six bits that drive the red, green and blue color guns. The register is set to
zero (which displays as the color black) when the reset input is high. The color register is
clocked on the rising edge of the pixel clock since thisis the rate at which new pixel values
arrive. The value clocked into the register is afunction of the pixel value and the blanking
input. When the pipelined blanking input is low (inactive), the color displayed on the monitor
isred, green, blue, or white depending upon whether the pixel value is 00, 01, 10, or 11,
respectively. When the pipelined blanking input is high, the color register is loaded with zero

(black).

Listing 17: VHDL code for aVGA generator.

001- LI BRARY | EEE;

002- USE | EEE. STD LOG C _1164. ALL;

003- USE | EEE. std_Il ogi c_unsi gned. ALL;

004-

005- ENTITY vga_generator IS

006- PORT

007- (

008- cl k: IN STD_ LOG C -- V@A dot clock

009- reset: IN STD_LOA C -- asynchronous reset

010- hsyncb: QUT STD_LGd C -- horizontal (line) sync

011- vsynch: QUT STD_LOd G vertical (frane) sync

012- rgb: QUT STD LOdE C VECT(P(S DOMNTO 0); -- red,green, blue colors
013- address: OUT STD LOG C VECTOR(14 DOANTO 0);-- address into video RAM
014- dat a: IN STD LOA C VECTOR(7 DOMNTO 0); -- data fromvideo RAM
015- ceb: QUT STD_LOd G -- video RAM chi p enabl e

016- oeb: QUT STD _LGd C -- video RAM out put enabl e

017- web: QUT STD LOd C -- video RAMwite enable

018- ;

019- END vga_generator;

020-

021- ARCH TECTURE vga_generator_arch OF vga_generator 1S

022- SIGNAL hcnt: STD LOG C VECTOR(8 DOWNTO 0); -- horizontal pixel counter
023- SIGNAL vent: STD LOd C VECTOR(9 DOMWNTO 0); -- vertical |ine counter
024- SIGNAL pixrg: STD LOG C VECTOR(7 DOANTO 0); -- byte register for 4 pix
025- SIGNAL bl ank: STD LOGE G, -- video bl anki ng signal

026- SI GNAL pbl ank: STD LOd G -- pipelined video bl anki ng signal

027- SIGNAL int _hsyncb: STD LCG G, i nternal horizontal sync.

028- BEG N

029-

030- i nc_horiz_pixel _counter:

031- PROCESS(cl k, reset)

032- BEG N

033- IF reset="1" THEN -- reset asynchronously clears pixel counter

034- hcnt <= "000000000";

035-
036-
037-
038-
039-
040-
041-
042-
043-
044-
045-
046-
047-
048-
049-
050-
051-
052-
053-
054-
055-
056-
057-
058-
059-
060-
061-
062-
063-
064-
065-
066-
067-
068-
069-
070-
071-
072-
073-
074-
075-
076-
077-
078-
079-
080-
081-
082-
083-
084-
085-
086-
087-
088-
089-
090-
091-
092-
093-
094-

ELSI F (cl k' EVENT AND cl k="1") THEN
I F hcnt <380 THEN -- pixel counter resets after 381 pixels
hcnt <= hent + 1;
ELSE
hcnt <= "000000000";
END | F;
END | F;
END PROCESS;

inc_vert |ine_counter:
PROCESS(i nt _hsynch, reset)
BEG N
IF reset="1" THEN -- reset asynchronously clears |line counter
vcnt <= "0000000000";
ELSIF (int_hsyncb' EVENT AND i nt_hsyncbh="1") THEN

I F vent <527 THEN -- vert. line counter rolls-over after 528 |ines
vent <= vent + 1;
ELSE
vent <= "0000000000";
END | F;
END | F;
END PRCCESS;

generate_hori z_sync:
PROCESS(cl k, reset)
BEG N
IF reset="1" THEN -- reset asynchronously inactivates horiz sync
i nt_hsyncb <= "1";
ELSI F (cl k' EVENT AND cl k="1") THEN
I F (hent>=291 AND hcnt <337) THEN
-- horiz. sync is lowin this interval to signal start of new Iline
i nt_hsyncb <= "'0";

ELSE
i nt_hsyncb <= "1";
END | F;
END | F;
hsyncb <= int_hsyncb; -- output the horizontal sync signa
END PROCESS;

generate_vert_sync:
PROCESS(i nt _hsynch, reset)
BEG N
IF reset="1" THEN -- reset asynchronously inactivates vertical sync
vsynch <= '1';
-- vertical sync is reconputed at the end of every line of pixels
ELSIF (int_hsyncb' EVENT AND i nt_hsyncb="1") THEN
I F (vent>=490 AND vcnt <492) THEN
-- vert. syncis lowin this interval to signal start of new frane
vsyncb <= '0";
ELSE
vsynch <= '1";
END | F;
END | F;
END PROCESS;

-- bl ank video outside of visible region: (0,0) -> (255, 479)

bl ank <= "1'" WHEN (hcnt>=256 OR vcnt>=480) ELSE '0';

-- store the blanking signal for use in the next pipeline stage
pi pel i ne_bl ank:

PROCESS(cl k, reset)

095-
096-
097-
098-
099-
100-
101-
102-
103-
104-
105-
106-
107-
108-
109-
110-
111-
112-
113-
114-
115-
116-
117-
118-
119-
120-
121-
122-
123-
124-
125-
126-
127-
128-
129-
130-
131-
132-
133-
134-
135-
136-
137-
138-
139-
140-
141-
142-
143-
144-
145-
146-
147-
148-
149-
150-
151-
152-
153-
154-

BEG N
IF reset="1" THEN
pbl ank <= '0'";
ELSIF (cl k' EVENT AND cl k="1") THEN
pbl ank <= bl ank

END | F;
END PROCESS;
-- video RAM control signals
ceb <= '0'"; -- enabl e the RAM
web <= "'1"; -- disable witing to the RAM
oeb <= bl ank; -- enable the RAM out puts when video is not bl anked

-- The video RAM address is built fromthe lower 9 bits of the vert

-- line counter and bits 7-2 of the horizontal pixel counter

-- Each byte of the RAM contains four 2-bit pixels. As an exanple,

-- the byte at address ~h1234="pb0001, 0010, 0011, 0100 contai ns the pixls
-- at (row, col)=(~h048, ~hD0), (~h048, ~hD1), (~h048, ~hD2), (~h048, "hD3) .
address <= vcnt (8 DOANTO 0) & hcnt (7 DOANTO 2);

updat e_pi xel _regi ster
PROCESS(cl k, reset)
BEG N
IF reset="1" THEN -- clear the pixel register on reset
pi xrg <= "00000000";
-- pixel clock controls changes in pixel register
ELSI F (cl k' EVENT AND cl k="1") THEN
-- the pixel register is |oaded with the contents of the video
-- RAM [ocation when the lower two bits of the horiz. counter
-- are both zero. The active pixel is in the lower two bits
-- of the pixel register. For the next 3 clocks, the pixe
-- register is right-shifted by two bits to bring the other
-- pixels in the register into the active position
I F hent (1 DOANTO 0) ="00" THEN

pi xrg <= dat a; -- load 4 pixels from RAM
ELSE
pi xrg <= "00" & pixrg(7 DOMNTO 2); -- right-shift pixel register
END | F;
END | F;
END PROCESS;

-- the color mapper translates each 2-bit pixel into a 6-bit
-- color value. Wen the video signal is blanked, the color
-- is forced to zero (bl ack).

map_pi xel _to_rgb

PROCESS(cl k, reset)

BEG N

IF reset="1" THEN -- blank the video on reset
rgb <= "000000";

ELSIF (cl k' EVENT AND cl k="1") THEN -- update the col or every clock
-- map the pixel to a color if the video is not bl anked
| F pbl ank="' 0" THEN

CASE pi xrg(1 DOMNTO 0) IS

VWHEN " 00" => rgb <= "110000"; ~-- red
VWHEN " 01" => rgb <= "001100"; -- green
WHEN " 10" => rgb <= "000011"; -- blue
WHEN OTHERS => rgb <= "111111"; -- white
END CASE;
ELSE -- otherw se, output black if the video is bl anked

rgb <= "000000"; -- black

155- END | F;

156- END | F;
157- END PRCCESS;
158-

159- END vga_generat or _arch

Listing 18: X$40 UCF file for the VGA signal generator.

001- net clk | oc=pl3;
002- net reset | oc=p44;
003- net dat a<0> | oc=p41;
004- net data<il> | oc=p40;
005- net data<2> | oc=p39;
006- net data<3> | oc=p38;
007- net data<4> | oc=p35;
008- net data<5> | oc=p81;
009- net dat a<6> | oc=p80;
010- net data<7> | oc=p1l0;
011- net address<0> | oc=p3;

012- net address<l> | oc=p4;

013- net address<2> | oc=p5;

014- net address<3> | oc=p78;
015- net address<4> | oc=p79;
016- net address<5> | oc=p82;
017- net address<6> | oc=p83;
018- net address<7> | oc=p84;
019- net address<8> | oc=p59;
020- net address<9> | oc=p57;
021- net address<10> | oc=p51
022- net address<11> | oc=p56;
023- net address<12> | oc=p50;
024- net address<13> | oc=p58;
025- net address<14> | oc=p60;
026- net ceb | oc=p65;
027- net web | oc=p62;
028- net oeb | oc=p61
029- net rgh<0> | oc=p25;
030- net rgbh<l> | oc=p26;
031- net rgh<2> | oc=p24;
032- net rgh<3> | oc=p20;
033- net rgh<4> | oc=p23;
034- net rgh<5> | oc=p1l8;
035- net hsyncb | oc=pl9;
036- net vsyncb | oc=p67;

Listing 19: XS95 UCF file for the VGA signal generator.

001- net clk | oc=p9;

002- net reset | oc=p46;
003- net dat a<0> | oc=p44;
004- net data<l> | oc=p43;
005- net data<2> | oc=p41;
006- net data<3> | oc=p40;
007- net data<4> | oc=p39;
008- net dat a<5> | oc=p37;
009- net dat a<6> | oc=p36;
010- net data<7> | oc=p35;
011- net address<0> | oc=p75;

012- net address<l> | oc=p79;

013-
014-
015-
016-
017-
018-
019-
020-
021-
022-
023-
024-
025-
026-
027-
028-
029-
030-
031-
032-
033-
034-
035-
036-

net address<2> | oc=p82;
net address<3> | oc=p84;
net address<4> | oc=pl

net address<5> | oc=p3;

net address<6> | oc=p83;
net address<7> | oc=p2;

net address<8> | oc=p58;
net address<9> | oc=p56;
net address<10> | oc=p54;
net address<11> | oc=p55;
net address<12> | oc=p53;
net address<13> | oc=p57;
net address<14> | oc=p61
net ceb | oc=p65;
net web | oc=p63;
net oeb | oc=p62;
net rgb<0> | oc=p21
net rgbh<l> | oc=p23;
net rgh<2> | oc=pl9;
net rgh<3> | oc=pl7;
net rgh<4> | oc=p1l8;
net rgh<5> | oc=pl4;
net hsyncb | oc=pl5;
net vsynchb | oc=p24;

The steps for compiling and testing the VGA design using an XS40 combined with an XStend
Board are asfollows:

Synthesize the VHDL code in the VGA40\V GA.VHD file for an XC4005XL FPGA.
Compile the synthesized netlist using the VGA40.UCF constraint file (Listing 18).

Mount an X$40 Board in the XStend Board and attach the downloading cable from the
XS0 to the PC parallel port. Apply 9VDC though jack J9 of the XS40. Place shunts on
jumpers M4, J7, and I8 of the XStend Board to enable the LED displays. Remove the shunt
on jumper J17 to keep the XStend codec seria output from interfering with the DIP switch
logic levels. Set al the DIP switches to the OPEN position.

Attach a VGA monitor to the DB-HD15 connector (J5).

Download the VGA40.BIT file and a video test pattern into the XS40/X Stend combination
with the command: XSLOAD TESTPATT. HEX VGA40. BI T.

Release the reset to the VGA circuitry with the command: XSPORT O.

Observe the color bars on the monitor screen.

The steps for compiling and testing the design using an XS95 combined with an XStend Board

ae

asfollows:

Synthesize the VHDL code in the VGA95\VGA.VHD file for an XC95108 CPLD.

Compile the synthesized netlist using the VGA95.UCF congtraint file (Listing 19).
Generate an SVF file for the design.

Mount an XS95 Board in the XStend Board and attach the downloading cable from the
XS95 to the PC parallel port. Apply 9VDC though jack J9 of the XS40. Place shunts on
jumpers J4, J7, and J8 of the XStend Board to enable the LED displays. Remove the shunt
on jumper J17 to keep the XStend codec seria output from interfering. Set al the DIP
switches to the OPEN position.

Attach a VGA monitor to the DB-HD15 connector (J5).

Download the VGA95.SVF file and a video test pattern into the X S95/X Stend combination
with the command: XSLOAD TESTPATT. HEX VGA95. SVF.

Release the reset to the VGA circuitry with the command: XSPORT 0.
Observe the color bars on the monitor screen.

4.3 Reading Keyboard Scan Codes Through the PS/2 Interface

This example creates a circuit that accepts scan codes from a keyboard attached to the PS/2
interface of the XStend Board. The binary pattern of the scan code is displayed on the bargraph
LEDs. In addition, if a scan code for one of the keys '0—'9" arrives, then the numera will be
displayed on the right LED display of the XStend Board.

The format of the scan code transmissions from the keyboard are shown in Figure 12. The
keyboard electronics drive the clock and data lines. The start of a scan code transmission is
indicated by a low level on the data line on the falling edge of the clock. The eight bits of the
scan code follow (starting with the least-significant bit) on successive falling clock edges. These
are followed by an odd-parity bit and then a high-level stop bit.

When the clock line goes high after the stop bit, the receiver (in this case, the FPGA or CPLD on
the XS Board inserted in the XStend Board) can pull the clock line low to inhibit any further
transmissions. After the clock line is released and it returns to a high level, the keyboard can
send another scan code. If the receiver never pulls the clock line low, then the keyboard will
send scan codes whenever akey is pressed.

receiver drives clock line
low to inhibit transmitter

keyboard clock _W-_/-W-_/-_/WW / /
keyboard data | |
sfart | | | | | | stop

bit bit

Figure 12: Keyboard data transmission waveforms.

The VHDL code for this example IS shown in

Listing 20. The inputs and outputs of the circuit as defined in the entity declaration are as
follows:

rst: Thisoutput drives the reset pin of the microcontroller on the XS Board.

oeb: This output drives the output-enable pin of the RAM on the XS Board.
kb_data: The scan code bits enter through this inpuit.

kb_clk: The keyboard clock signal enters through this input.

db: These outputs drive the segments of the bargraph LED on the X Stend Board.
rsb: These outputs drive the segments of the right LED digit on the X Stend Board.
Within the main body of the architecture section, these operations occur:

Lines 22 & 23: The microcontroller reset pin and the RAM output-enable pin are driven high so
these chips cannot interfere while receiving data from the keyboard.

Lines 25 & 26: The keyboard clock passes through an input buffer and then a global clock buffer
before it reaches the rest of the circuitry. (These buffers are declared on lines 18 and 19,
respectively.) The globa clock buffer distributes the clock signal with minimal skew in the
XS0 Board FPGA. These statements are not used with the CPLD in the XS95 Board.

gather_scancode: On every falling edge of kb_clk, this process shifts the data bit on the kb_data
input into the most-significant bit of a 10-bit shift register. After 11 clock cycles, the lower 8
bits of the register will contain the scan code, the upper 2 bits will store the stop and parity
bits, and the start bit will have been shifted through the entire register and discarded.

Line 38: The value in the shift register isinverted and applied to the segments of the LED
bargraph. Since the bargraph segments are active-low, a segment will light for every ‘1’ bit
in the shift register. The LED segment drivers are not registered so there will be some
flickering as the shift register contents change.

Lines 40-51: If the scan code in the shift register matches the codes for the digits 0-9, then the
right LED digit segments will be activated to display the corresponding digit. If the scan
code does not match one of these codes, the letter ‘E’ is displayed.

The steps for compiling and testing the design using an XS40 combined with an XStend Board
are asfollows:

Synthesize the VHDL code in the KEY BRD40O\KEY BRD.VHD for an XC4005XL FPGA.

Compile the synthesized netlist using the KEYBRD40.UCF constraint file (

Listing 21).

Mount an X$40 Board in the XStend Board and attach the downloading cable from the
XS0 to the PC parallel port. Apply 9VDC though jack J9 of the XS40. Place shunts on
jumpers J4, J7, and J8 to enable the LEDs. Remove the shunt on jumper J17 to keep the
XStend codec from interfering. Set all the DIP switches to the OPEN position.

Attach a keyboard to the PS/2 connector of the X Stend Board.

Download the KEYBRD40.BIT file into the XS40/XStend combination with the command:
XSLOAD KEYBRD4O. BI T.

Press keys on the keyboard and observe the results on the LED displays.

The steps for compiling and testing the design using an XS95 combined with an XStend Board
are asfollows:

Synthesize the VHDL code in the KEYBRD95\KEYBRD.VHD for an XC95108 CPLD.
Compile the synthesized netlist using the KEY BRD95.UCF constraint file (Listing 23).
Generate an SVF file for the design.

Mount an XS95 Board in the XStend Board and attach the downloading cable from the
X895 to the PC parallel port. Apply 9VDC though jack J9 of the XS95. Place shunts on
jumpers J4, J7, and J8 to enable the LEDs. Remove the shunt on jumper J17 to keep the
XStend codec from interfering. Set all the DIP switches to the OPEN position.

Download the KEYBRD95.SVF file into the XS95/X Stend combination with the command:
XSLOAD KEYBRD95. SVF.

Press keys on the keyboard and observe the results on the LED displays.

Listing 20: VHDL code for receiving keyboard scan codes from the PS/2 interface.

001- LI BRARY | EEE;
002- USE I EEE. STD LOG C_1164. ALL,

003-

004- ENTITY kbd_read IS

005- PORT

006- (

007- rst: QUT STD LOA G -- uC reset

008- oeb: QUT STD LOG G -- RAM out put enabl e

009- kb _data: IN STD LOd C, -- serial data fromthe keyboard
010- kb _clk: IN STD LCGE C -- clock fromthe keyboard
011- db: QUT STD LOd C VECTOR(8 DOAMNTO 1); -- bargraph LED
012- rsb: QUT STD LOGE C VECTOR(6 DOMNTO 0) -- right LED digit
013-);

014- END kbd_read;

015-

016- ARCHI TECTURE kbd read_arch OF kbd read IS

017- SIGNAL scancode: STD LOG C VECTOR(9 DOWNTO 0);

018- COVPONENT i buf PORT(i: IN STD LOA C, o: QUT STD LOG C); END COVPONENT;
019- COVPONENT bufg PORT(i: IN STD LOA C, o: QUT STD LOGE C); END COVPONENT;
020- SIGNAL buf _cl kO, buf_clkl: STD LCOd C

021- BEG N

022- rst <='1'; -- keep the uCin the reset state

023- oeb <= "'1"; -- disable the RAM out put drivers

024-

025- b0O: i buf PORT MAP(i=>kb_cl k, o=>buf _cl k0); -- buffer the clock from
026- bl: bufg PORT MAP(i=>buf _cl kO, o=>buf _cl k1); -- the keyboard

027-

028- -- shift keyboard data into the Msb of the scancode register

029- -- on the falling edge of the keyboard cl ock

030- gat her _scancode:

031- PROCESS(buf _cl k1, scancode)
032- BEG N

033- | F(buf _cl k1' EVENT AND buf _cl k1="0") THEN

034- scancode <= kb_data & scancode(9 DOMNTO 1);

035- END | F;

036- END PROCESS;

037-

038- db <= NOT(scancode(7 DOMNTO 0)); -- show the scancode on the bargraph
039-

040- -- display the key that was pressed on the right LED digit

041- rsb <= "1101101" WHEN scancode(7 DOANTO 0) ="00010110" ELSE -- 1
042- "0100010" WHEN scancode(7 DOANTO 0) ="00011110" ELSE -- 2
043- "0100100" WHEN scancode(7 DOANTO 0) ="00100110" ELSE -- 3
044- “1000101" WHEN scancode(7 DOANTO 0) ="00100101" ELSE -- 4
045- "0010100" WHEN scancode(7 DOMNTO 0)="00101110" ELSE -- 5
046- "0010000" WHEN scancode(7 DOANTO 0)="00110110" ELSE -- 6
047- "0101101" WHEN scancode(7 DOANTO 0) ="00111101" ELSE -- 7
048- "0000000" WHEN scancode(7 DOANTO 0)="00111110" ELSE -- 8
049- "0000100" WHEN scancode(7 DOANTO 0) ="01000110" ELSE -- 9
050- "0001000" WHEN scancode(7 DOANTO 0) ="01000101" ELSE -- O
051- "0010010"; -- E

052- END kbd_read_arch;

Listing 21: XS40 UCF file for the PS/2 keyboard interface.

001- net rst | oc=p36;
002- net oeb | oc=p61
003- net kb_data | oc=p69;
004- net kb_clk | oc=p68;
005- net rsh<0> | oc=p59;
006- net rsh<l> | oc=p57;
007- net rsh<2> | oc=p51
008- net rsh<3> | oc=p56;
009- net rsh<4> | oc=p50;
010- net rsh<5> | oc=p58;
011- net rsh<6> | oc=p60;

012- net db<1> | oc=p41;
013- net db<2> | oc=p40;
014- net db<3> | oc=p39;
015- net db<4> | oc=p38;
016- net db<5> | oc=p35;
017- net db<6> | oc=p81
018- net db<7> | oc=p80;
019- net db<8> | oc=p1l0;

Listing 23: XS95 UCF file for the PS/2 keyboard interface.

001- net rst | oc=p45;
002- net oeb | oc=p62;
003- net kb_data | oc=p70;
004- net kb_clk | oc=p26;
005- net rsh<0> | oc=p58;
006- net rsh<l> | oc=p56;
007- net rsh<2> | oc=p54;
008- net rsh<3> | oc=p55;
009- net rsh<4> | oc=p53;
010- net rsh<5> | oc=p57;
011- net rsh<6> | oc=p61

012- net db<1> | oc=p44;
013- net db<2> | oc=p43;
014- net db<3> | oc=p41;
015- net db<4> | oc=p40;
016- net db<5> | oc=p39;
017- net db<6> | oc=p37;
018- net db<7> | oc=p36;

019- net db<8> | oc=p35;

4.4 |Inputing and Outputing Stereo Signals Through the Codec

The stereo codec on the XStend Board is capable of digitizing two analog signals to 20 bits of
resolution while ssimultaneously generating two analog signals from 20-bit values. A high-level
view of the codec chip is shown on the right-half of Figure 13. Two analog inputs (which are
tpicaly the left and right channels of a stereo audio signal) enter the codec and are digitized into
two 20-bit values by anaog-to-digital converters (ADCs). These values are loaded into shift
registers which are shifted out of a single pin of the codec under control of a shift clock and a
left/right channel selector control input. At the same time, 20-bit values are alternately shifted
into two shift registers in the codec which feed digital-to-analog converters (DACS) that drive
two analog outputs. Signals on these outputs are typicaly the left and right channels of a stereo
audio signal.

If the FPLD is handling these values in a bit-paralel manner, then the FPLD must contain a set of
shift registers which convert the serial input stream into 20-bit values and another set which
converts 20-bit values into a seria output stream. This is shown in the left-half of Figure 13.
The gating of these shift registers onto the seria input and output pins is synchronized with the
same left/right channel select signal used by the codec chip.

In addition to the shift registers, the FPLD needs circuitry to read and write them and to indicate
when they are full and empty. Since the codec ADCs and DACs generate and consume data at a
set samplerate, it is also necessary to build circuitry which detects overflow and underflow of the
FPLD shift registersif they are not read or written in time.

FPGA/CPLD CODEC
Ieﬂlright
selector “TTTTTTTITTT : right-channel
right-channel : : analog input
digitized input ﬁ ﬁ ADCV\f\/
: serial :
—F 20-bitshiftregister [<©' dataom o< 20-bit shift register <<
%F 20-bit shift register ‘H : : Oe{ 20-bit shift register {e left-channel
left-channel I /IE analag input
digitized input €7 : : —ADCA_N\ "L
right-channel
digitized output —ﬁ : : | > DAC
R R : serial R A R right-channel
%F 20-bit shift register }%O © datain H\ 20-bit shift register {e analog output
5> 20-bit shift register |0 o> 20-bit shift register <<
left-channel
digitized output ™ > DAC
left-channel

shift clock analog output

Figure 13: Connections between the X Stend codec chip and the XS Board FPGA or CPLD.
The FPLD circuitry can be decomposed into three modules:

a clock generator module which outputs the serial data shift clock and the left/right channel
select sgnals;

a channel module which contains the shift registers, buffers, read/write control, and
overflow/underflow detection circuitry for a single input/output stream of data;

a top-level module which combines the clock generator module with two channel modules to
form a complete codec interface circuit.

The VHDL code for the clock generator module is detailed in Listing 24. The inputs and outputs
of the clock generator as defined in the entity declaration are as follows:

clk: Thisisthe main clock input which istypically the 12 MHz clock from the XS Board.
reset: Thisinput synchronously resets the counter the clock generator.
mclk: This output is the master clock for the codec chip.

sclk: This output is the clock for synchronizing seria data transfers between the FPLD and the
codec.

Irck: This output controls the activation of the left and right channel circuitry in the codec and
the FPLD.

bit_cntr: These outputs indicate the current bit being transmitted and received in the serial data
streams.

subcycle_cntr: The duration of each serial data bit is divided into four phases and these outputs
indicate the current phase.

Within the main body of the clock generator architecture section, these operations occur:

gen_clock: This process increments the sequencing counter and toggles the left/right channel
selector when the count reaches the duration for which a channel is active. The codec chip
requires that the channel duration be either 128, 192, or 256 master clock periodsin length.
Thus, the total time to handle both channelsis 256, 384, or 512 clock periods. This setsthe
sampling rate. So using a channel duration of 128 with a 12 MHz clock gives a sampling rate
of 46.875 KHz that is sufficient for audio.

Lines 45-47: The various clocks are output on these lines. The master clock and left/right
selector have already been discussed. The seria data shift clock is one-quarter of the master
clock. So transmitting or receiving a 20-bit value will require 4~ 20 = 80 clock periods, and
this will fit within the shortest possible channel duration.

Line 48: The position of the current data bit in the serial stream for a channel is output here.
Since each bit has a duration of four clock periods, the position of the bit in the stream is just
the sequence counter with the two least-significant bits removed.

Line 49: The position within a bit is output on thisline. Thisis given by the two least-significant
bits of the sequence counter.

Listing 24: VHDL code for the codec clock generator module.

001- LI BRARY | EEE, codec;

002- USE | EEE. STD LCd C 1164. ALL;
003- USE I EEE. std_Il ogi c_unsi gned. ALL;
004- USE codec. codec. ALL;

005-

006- ENTITY clkgen IS

007- GENERI C

008- (

009- channel duration: PCSITIVE := 128 -- nust be 128, 192, or 256
010-);

011- PORT

012- (

013- -- interface 1/0O signals

014- clk: I'N STD LOG C; -- clock input

015- reset: IN STD LOA C, -- synchronous active-high reset

016- -- codec chip clock signals

017- ncl k: QUT STD LOA C, -- master clock output to codec

018- sclk: QUT STD LOA C, -- serial data clock to codec

019- l[rck: QUT STD LOGA C, -- left/right codec channel select

020- bit_cntr: OQUT STD _LOG C_VECTOR(5 DOANTO 0);

021- subcycl e_cntr: OUT STD LOG C VECTOR(1 DOANTO 0)

022-);

023- END cl kgen;

024-

025- ARCHI TECTURE cl kgen_arch OF cl kgen IS

026- SIGNAL Irck_int: STD LCOA C

027- SIGNAL seq: STD _LOG C VECTOR(7 DOWNTO 0);

028- BEG N

029- gen_cl ock:

030- PROCESS(cl k, seq, | rck_i nt)

031- BEG N

032- I F (cl k' EVENT AND cl k="1") THEN

033- | F(reset =yes) THEN -- synchronous reset

034- seq <= (OTHERS=>'0');

035- Irck_int <= left; -- start with left channel of codec
036- ELSI F(seg=channel _duration-1) THEN

037- seq <= (OTHERS=>'0"); -- reset seq every channel period
038- I[rck_int <= NOI(lrck_int); -- toggle chan select every period
039- ELSE

040- seq <= seq+l; -- normally, just inc the sequencer

041- I[rck_int <= Ilrck_int; -- don’t change channel selector
042- END | F;

043- END | F;

044- END PROCESS;

045- Irck <= 1Irck_int; -- output the channel selector to the codec
046- ncl k <= cl k; -- codec nmaster clock equals input clock
047- sclk <= seq(1); -- serial shift clock is 1/4 of the master clock
048- bit_cntr <= seq(7 DOMTO 2); -- which bit period is being processed
049- subcycle_cntr <= seq(1 DOMTO 0); -- position within bit

050- END cl kgen_ar ch;

The VHDL code for the channel module is shown in Listing 25. The inputs and outputs of the
clock generator as defined in the entity declaration are as follows:

clk: Thisisthe main clock input which istypically the 12 MHz clock from the XS Board.
reset: Thisinput synchronoudly resets the channel.

chan_on: A high level on thisinput activates the channel. Thisinput is usually controlled by the
left/right channel selector.

bit_cntr: These inputs inform the channel of the index of the serial data bit currently being
transmitted and received.

chan_sel: A high level on this input enables the interface that |ets the shift registers be read and
written. (Note that despite its name, thisinput is not controlled by the left/right channel
selector.)

rd: A high level on thisinput outputs the value stored in the shift register connected to the ADC.
wr: A high level on thisinput writes a new value into the shift register connected to the DAC.
adc_out: The bits stored in the ADC shift register are read out in parallel through these outputs..
dac_in: The DAC shift register is loaded in parallel with bits passed through these inputs.

adc_out_rdy: Thisoutput goes high after all the bits have been shifted from the codec into the
ADC shift register.

adc_overrun: Thisoutput goes high if new serial datais shifted into the ADC shift register
before the old contents have been read out through the parallel outputs.

dac_in_rdy: This output goes high after all the bitsin the DAC shift register have been shifted
over to the codec.

dac_underrun: This output goes high if the DAC shift register starts shifting data over to the
codec before it has been written through the parallel inputs.

sdin: The serial data stream for the codec DAC is shifted out through this output. (Note that
this output takes its name from the pin it is connected to on the codec chip; it is not an input.)

sdout: The seria data stream from the codec ADC is shifted in through thisinput. (Note that
thisinput takes its name from the pin it is connected to on the codec chip; it is not an output.)

Within the main body of the channel module architecture section, these operations occur:

rcv_adc: This process receives seria datafrom the ADC in the codec. The ADC shift register is
cleared upon reset and aflag is set which indicates the shift register does not contain all the
bits from the ADC. Once the reset is removed and the channel is active, bits are shifted into

the register during the second subcycle of each bit period (the subcycles are numbered O, 1, 2
and 3). Accepting data on the second subcycle gives the serial data bit plenty of timeto
stabilize. Thefirst bit of the serial data (when the bit counter equals 0) contains no data and
isdiscarded. Then bits 1,2,..., up to the width of the ADC data value are pushed into the shift
register. Then the shifting stops. The shift register is marked as ‘not full’ as soon asasingle
bit is shifted in so that the value will not be inadvertently read. The shift register status
changes to full as soon as the last bit enters the shift register.

Line 66: The contents of the shift register are output in a parallel format on thisline. These
outputs are not latched and will change as bits are shifted into the register.

Line 69: A flag is maintained that indicates whether the contents of the ADC shift register have
beenread. Theflagis set when the ADC register for the channel isfull and it is selected for a
read operation. The flag will stay set after the read operation is complete. Reading the
register does not empty it. The shift register isno longer full only when the first bit of the
next sampleis shifted into it. Thiswill reset the read flag.

read_adc: This process updates the flag that indicates whether the ADC shift register has been
read.

Lines 84—85: A status output is asserted when the datain the ADC shift register is ready for
reading. Reads are permitted when the register isfull and has not yet been read. This output
is cleared as soon as aread occurs or new datais shifted into the register.

detect_adc_overrun: This process monitors the ADC shift register and flags an error condition
if the register begins accepting bits from the current sample period but the data from the
previous period has not yet been read.

tx_dac: This process transmits serial datato the DAC in the codec. The DAC shift register is
cleared upon reset and aflag is set which indicates the shift register contains no bits for the
DAC. After thereset isremoved, the register can be loaded in paralél if the channdl is
selected for awrite operation. If no write operation isin process but the channel is active,
then data is shifted out to the codec on the second subcycle. (This gives the data some hold
time so the codec chip can clock it in reliably.) No datais output during the first bit period
because the codec discards this bit, but aflag is set which indicates the register is no longer
empty and a seria transmissionisin process. Then bits 1,2,..., up to the width of the DAC
data value are shifted out. Asthe last bit is output, the flag is set to show the shift register is
now empty.

Line 124: The DAC serial datainput of the codec chip is driven by the most-significant bit of the
DAC shift register.

Line 127: A flag is maintained that indicates whether the DAC shift register has been written.
Theflag is set when the DAC register for the channel is empty and it is selected for awrite
operation. The flag will stay set after the write operation is complete. Writing the register

does not fill it. The shift register isfull only when the first bit of the next sample period is
shifted out of it. Thiswill reset the write flag.

write_dac: This process updates the flag that indicates whether the DA C shift register has been
written.

Lines 142—143: A status output is asserted when the DA C shift register is ready to be written
with new input data. Writes are permitted when the register is empty and has not yet been
written. This output is cleared as soon as awrite occurs or when data bits start shifting out
of the register.

detect_dac_underrun: This process monitors the DAC shift register and flags an error condition
if the register starts shifting out data but has not yet been written with a new data value for
the current sample period.

Listing 25: VHDL code for the codec channel module.

001- LI BRARY | EEE, codec;

002- USE | EEE. STD LOGQ C 1164. ALL;
003- USE | EEE. std_Il ogi c_unsi gned. ALL;
004- USE codec. codec. ALL;

005-

006- ENTITY channel IS

007- GENERI C

008- (

009- dac_wi dt h: PGCSITIVE : = 20;

010- adc_wi dth: PCSITIVE := 20

011-);

012- PORT

013- (

014- -- interface 1/0O signals

015- clk: I'N STD LOG C; -- clock input

016- reset: IN STD LOGA C, -- synchronous active-high reset

017- chan_on: IN STD LCG C

018- bit_cntr: IN STD LOA C VECTOR(5 DOMNTO 0);

019- subcycle_cntr: I N STD_LOd C_ VECTOR(1 DOWNTO 0);

020- chan_sel: IN STD LOA C; -- select left/right codec chan for rd/w
021- rd: IN STD LCGA G -- read fromthe codec ADC

022- wr: IN STD LCGE C; -- wite to the codec DAC

023- adc_out: OUT STD LOd C VECTOR(adc_w dt h-1 DOANTO 0);-- frm codec ADC
024- dac_in: IN STD L C VECTOR(dac_w dth-1 DOANTO 0); -- to codec DAC
025- adc_out _rdy: QUT STD LOG C, ~-- ADC output is ready to be read

026- adc_overrun: QUT STD LOA C, -- output from ADC channel overwitten
027- dac_in_rdy: QUT STD LQOd C; -- DACinput is ready to be witten
028- dac_underrun: OQUT STD LOA C; -- input to DAC did not arrive in tinme
029- -- codec chip I/O signals

030- sdin: QUT STD LOAd C, -- serial output to codec DAC

031- sdout: IN STD LOAC -- serial input from codec ADC

032-);

033- END channel ;

034-

035- ARCHI TECTURE channel _arch OF channel 1S

036- SIGNAL dac_shfreg: STD LOd C VECTOR(dac_wi dth-1 DOANTO 0);
037- SIGNAL dac_enpty: STD LOA C, -- DAC shift register is enpty
038- SIGNAL dac_w: STD LCGE C -- DAC channel has been written

039-
040-
041-
042-
043-
044-
045-
046-
047-
048-
049-
050-
051-
052-
053-
054-
055-
056-
057-
058-
059-
060-
061-
062-
063-
064-
065-
066-
067-
068-
069-
070-
071-
072-
073-
074-
075-
076-
077-
078-
079-
080-
081-
082-
083-
084-
085-
086-
087-
088-
089-
090-
091-
092-
093-
094-
095-
096-
097-
098-

SIGNAL dac_w _nxt: STD LOA C, -- DAC channel has been witten

SIGNAL dac_in_rdy_int: STDLOAC, -- int. ver. DACis ready for input
SIGNAL adc_shfreg: STD LOGE C VECTOR(adc_wi dt h-1 DOANTO 0) ;

SIGNAL adc_full: STD LOQd C, -- ADC shift register is ful

SIGNAL adc_rd: STD LOd G, -- ADC channel has been read

SIGNAL adc_rd nxt: STD LOA C, -- the ADC channel has been read
SIGNAL adc_out _rdy_int: STD LOAC, -- int. ver. ADC ready for output
BEG N

-- receives data from codec ADC
rcv_adc:
PROCESS(cl k, chan_on, subcycle_cntr, bit_cntr, adc_shfreg, sdout)
BEG N
| F(cl k' EVENT AND (cl k=yes)) THEN
| F(reset="1") THEN
adc_shfreg <= (OTHERS=>'0");
adc_full <= no;
ELSI F((chan_on=yes) AND (subcycle_cntr=1)) THEN
I F((bit_cntr>=1) AND (bit_cntr<adc_w dth)) THEN
adc_full <= no;
adc_shfreg <= adc_shfreg(adc_w dt h-2 DOANTO 0) & sdout;
ELSI F(bit_cntr=adc_w dt h) THEN
adc_full <= yes;
adc_shfreg <= adc_shfreg(adc_w dt h-2 DOANTO 0) & sdout;
END | F;
END | F;
END | F;
END PROCESS;
adc_out <= adc_shfreg;

-- handl e readi ng of ADC data from codec interface
adc_rd_nxt <= yes WHEN (adc_full =yes AND chan_sel =yes AND rd=yes) OR
(adc_ful Il =yes AND adc_rd=yes)

ELSE no;
read_adc:
PROCESS(cl k, adc_rd_nxt)
BEG N

| F(cl k' EVENT AND cl k="1") THEN
| F(reset =yes) THEN
adc_rd <= no;
ELSE
adc_rd <= adc_rd_nxt;
END | F;
END | F;
END PRCCESS;
-- ADC data is ready for reading if reg is full and not read yet
adc_out _rdy_int <= yes WHEN adc_ful |l =yes AND adc_rd=no ELSE no;
adc_out _rdy <= adc_out_rdy_int;

-- detect and signal overwiting of data fromthe codec ADC channel s
det ect _adc_overrun
PROCESS(cl k, reset, bit_cntr, chan_on, adc_out _rdy_int)
BEG N
| F(cl k" EVENT AND cl k="1") THEN
| F(reset =yes) THEN
adc_overrun <= no;
ELSI F(bit_cntr=1 AND chan_on=yes AND adc_out _rdy_i nt=yes) THEN
adc_overrun <= yes;
END | F;
END | F;
END PROCESS;

099-

100- -- transmts data to codec DAC

101- t x_dac:

102- PROCESS(cl k, reset, chan_on, subcycl e_cntr, bit_cntr, dac_shfreg)
103- BEG N

104- | F(cl k" EVENT AND cl k="1") THEN

105- | F(reset =yes) THEN

106- dac_shfreg <= (OTHERS=>'0");

107- dac_empty <= yes;

108- ELSI F(chan_sel =yes AND wr =yes) THEN

109- dac_shfreg <= dac_in;

110- ELSI F(chan_on=yes AND subcycl e_cntr=1) THEN

111- | F(bit_cntr=0) THEN

112- dac_enmpty <= no;

113- ELSI F(bit_cntr<dac_wi dth) THEN

114- dac_shfreg <= dac_shfreg(dac_w dth-2 DOANTO 0) & '0';
115- ELSI F(bit_cntr=dac_w dt h) THEN

116- dac_enmpty <= yes;

117- dac_shfreg <= dac_shfreg(dac_w dth-2 DOANTO 0) & '0';
118- END | F;

119- END | F;

120- END | F;

121- END PROCESS;

122-

123- -- output the serial data to the SDIN pin of the codec DAC

124- sdi n <= dac_shfreg(dac_w dt h-1) WHEN chan_on=yes ELSE ' 0';
125-

126- -- handle witing of DAC data from codec interface

127- dac_w _nxt <= yes WHEN (dac_enpty=yes AND chan_sel =yes AND wr =yes) OR
128- (dac_enpty=yes AND dac_wr =yes)

129- ELSE no;

130- write dac:
131- PROCESS(cl k, reset, dac_w _nxt)

132- BEG N

133- | F(cl k' EVENT AND cl k="1") THEN

134- | F(reset =yes) THEN

135- dac_wr <= no;

136- ELSE

137- dac_w <= dac_wr _nxt;

138- END | F;

139- END | F;

140- END PROCESS;

141- -- DACis ready for witing if reg is enpty and not witten yet

142- dac_in_rdy_int <= yes WHEN dac_enpty=yes AND dac_wr =no ELSE no;
143- dac_in_rdy <= dac_in_rdy_int;

144-

145- -- detect and signal underflow of data to the codec DAC channel s
146- det ect _dac_underrun:

147- PROCESS(cl k, reset, bit_cntr, chan_on, dac_i n_rdy_int)

148- BEG N

149- | F(cl k" EVENT AND cl k="1") THEN

150- | F(reset =yes) THEN

151- dac_underrun <= no;

152- ELSI F(bit_cntr=1 AND chan_on=yes AND dac_i n_rdy_i nt =yes) THEN
153- dac_underrun <= yes;

154- END | F;

155- END | F;

156- END PRCCESS;
157- END channel _arch;

The VHDL code for the top-level module that combines the clock generator module with two
channel modules is detailed in Listing 26. The inputs and outputs of the top-level module as
defined in the entity declaration are as follows:

clk: Thisisthe main clock input which istypically the 12 MHz clock from the XS Board.
reset: Thisinput synchronously resets the two channel modules and the clock generator.
Irsal: Thisinput selects either the right or left channel for parallel read or write operations.

rd: A high level on thisinput outputs the value stored in the selected shift register connected to
the ADC.

wr: A high level on thisinput writes a new vaue into the selected shift register connected to the
DAC.

ladc_out, radc_out: The bits stored in the left and right ADC shift registers are read out in
parallel through these outputs..

Idac_in, rdac_in: The DAC shift registers are loaded in parallel with bits passed through these
inputs.

ladc_out_rdy, rdac_out_rdy: These outputs go high after all the bits have been shifted from the
codec into the left or right ADC shift register, respectively.

adc_overrun: Thisoutput goes high if new seria datais shifted into either the left or right ADC
shift register before the old contents have been read out through the parallel outputs.

Idac _in_rdy, rdac_in_rdy: These outputs go high after al the bitsin the left or right DAC shift
register have been shifted over to the codec, respectively.

dac_underrun: This output goes high if either the left or right DAC shift register starts shifting
data over to the codec before it has been written through the parallel inputs.

mclk: This output is the master clock for the codec chip.

sclk: This output is the clock for synchronizing seria data transfers between the FPLD and the
codec.

Irck: This output controls the activation of the left and right channel circuitry in the codec.
sdin: The serial data stream for the codec DAC is shifted out through this output.
sdout: The serial data stream from the codec ADC is shifted in through this input.

Within the main body of the top-level module architecture section, the following modules are
instantiated:

u0: One clock generator module is instantiated. It receives the 12 MHz clock as an input and
generates the master clock, left/right clock, and serial shift clock for the codec. It aso
outputs the position of the current bit in the serial stream and the current cycle within each bit
period.

u_left: The module which handles the left channel of the codec is instantiated. This module is
activated during one half of the left/right clock period. It is selected for reading or writing by
the left/right selection input.

u_right: The module which handles the right channel of the codec isinstantiated. This moduleis
activated during the other half of the left/right clock period. It is selected for reading and
writing by the opposite polarity of the left/right selection inpuit.

Lines 129—130: The overrun and underrun error indicators for the total codec interface are
formed by the logica-OR of the associated error outputs of the left and right channel
modules. Thusan error isreported if either channel reports an error.

Line 134: The serial data stream that is transmitted to the codec chip is selected from the output
data stream of the currently-active channel module.

Listing 26: VHDL code for the top-level codec interface module.

001- LI BRARY | EEE, codec;

002- USE | EEE. STD LOG C 1164. ALL;
003- USE I EEE. std_Il ogi c_unsi gned. ALL;
004- USE codec. codec. ALL;

005-

006- ENTITY codec_intfc IS

007- GENERI C

008- (

009- dac_wi dt h: PCSI Tl VE : = 20;

010- adc_wi dt h: PCSITI VE : = 20;

011- channel duration: PCSITIVE := 128 -- mnust be 128, 192, or 256

012-);

013- PORT

014- (

015- -- interface 1/0O signals

016- clk: I'N STD LOd C; -- clock input

017- reset: IN STD LOGA C, -- synchronous active-high reset

018- Irsel: INSID LOAC, -- select the left/right chan for rd/w

019- rd: IN STD LCGE C -- read fromthe codec ADC

020- wr: IN STD LCG G -- wite to the codec DAC

021- | adc_out: QUT STD LOG C_VECTOR(adc_wi dth-1 DOANTO 0); -- left ADC
022- radc_out: OUT STD LOG C VECTOR(adc_wi dth-1 DOANTO 0); -- right ADC
023- [dac_in: IN STD LOG C_VECTOR(dac_wi dt h-1 DOANTO 0) ; -- left DAC
024- rdac_in: IN STD LOG C VECTOR(dac_wi dt h-1 DOANTO 0); -- right DAC
025- ladc_out _rdy: OUT STD LOA C, -- left ADC output is ready to be read
026- radc_out _rdy: OUT STD LOA C, -- right ADC output is ready to be read
027- adc_overrun: OUT STD LOA C, -- ADC data overwritten before read
028- dac_in_rdy: QUT STD LOG C, -- left DAC input ready to be witten
029- rdac_in_rdy: QUT STD LOG C, -- right DAC input ready to be witten
030- dac_underrun: OQUT STD LOG C, -- DAC not witten to in tinme

031- -- codec chip I/O signals

032- ncl k: QUT STD LOA C, -- master clock output to codec

033- sclk: QUT STD LOAC, -- serial data clock to codec
034- Irck: QUT STD LOGA C, ~-- left/right codec channel sel ect
LOGE C
LOGE C

035- sdin: QUT STD_ » -- serial output to codec DAC

036- sdout: I N STD_ -- serial input fromcodec ADC

037-);

038- END codec_intfc;

039-

040- ARCHI TECTURE codec_intfc_arch OF codec_intfc IS

041- SIGNAL Irck_int: STD LOGC, -- internal left/right codec channel sel ect

042- SIGNAL bit_cntr: STD LOG C VECTOR(5 DOANTO 0);
043- SIGNAL subcycle_cntr: STD LOG C VECTOR(1 DOANTO 0);
044- SIGNAL |sdin: STD LOGE G

045- SIGNAL rsdin: STD LOGE G

046- SIGNAL | adc_overrun: STD LOd C;

047- SIGNAL radc_overrun: STD LOd C;

048- SI GNAL | dac_underrun: STD LOd C,

049- SI GNAL rdac_underrun: STD LOd C,

050- SIGNAL | chan_sel: STD LOA G

051- SIGNAL rchan_sel: STD LOd C,

052- SIGNAL | chan_on: STD LOGE G

053- SIGNAL rchan_on: STD LCGE G

054- BEG N

055-

056- u0: cl kgen

057- GENERI C MAP

058-

059- channel _durati on=>channel duration
060-)

061- PORT MAP

062- (

063- cl k=>cl k,

064- reset =>reset,

065- ncl k=>ntl k,

066- scl k=>scl k,

067- I rck=>lrck_int,

068- bit cntr=>bit _cntr,

069- subcycl e_cntr=>subcycl e_cntr
070-);

071- lrck <= lrck_int;

072-

073- | chan_sel <= yes WHEN Irsel =l eft ELSE no;
074- | chan_on <= yes WHEN I rck_int=left ELSE no;
075- u left: channe

076- GENERI C MAP

077- (

078- dac_wi dt h=>dac_wi dt h,

079- adc_wi dt h=>adc_wi dth

080-)

081- PORT MAP

082- (

083- cl k=>cl k,

084- reset =>reset,

085- chan_on=>| chan_on,

086- bit cntr=>bit _cntr,

087- subcycl e_cntr=>subcycl e_cntr
088- chan_sel =>| chan_sel

089- rd=>rd,

090- W =>Wr

091- adc_out =>| adc_out,

092- dac_i n=>l dac_i n,

093-
094-
095-
096-
097-
098-
099-
100-
101-
102-
103-
104-
105-
106-
107-
108-
109-
110-
111-
112-
113-
114-
115-
116-
117-
118-
119-
120-
121-
122-
123-
124-
125-
126-
127-
128-
129-
130-
131-
132-
133-
134-
135-
136-

The

)

adc_out _rdy=>l adc_out _rdy,
adc_overrun=>| adc_overrun
dac_i n_rdy=>l dac_i n_rdy,
dac_under run=>| dac_underrun
sdi n=>| sdi n,

sdout =>sdout

rchan_sel <= yes WHEN I rsel =ri ght ELSE no;
rchan_on <= yes WHEN I rck_int=right ELSE no;
u_right: channel

GENERI C MAP

dac_underrun <=
adc_overrun <=

dac_wi dt h=>dac_wi dt h,
adc_wi dt h=>adc_wi dth

)
PORT MAP

(

)

generates the serial
codec DAC dependi ng on whi ch channe
sdin <= Isdin WHEN | rck_int=left

cl k=>cl k,

reset =>reset,

chan_on=>r chan_on,

bit cntr=>bit _cntr,

subcycl e_cntr=>subcycl e_cntr,
chan_sel =>rchan_sel

rd=>rd,

W =>Wr

adc_out =>radc_out,

dac_i n=>rdac_in,

adc_out _rdy=>radc_out _rdy,
adc_overrun=>radc_overrun
dac_i n_rdy=>rdac_i n_rdy,
dac_under run=>rdac_underrun
sdi n=>r sdi n,

sdout =>sdout

END codec_intfc_arch;

interfaces to these three modules are placed

data output to the SDIN pin of the

is active

ELSE r sdi n;

into the package shown

yes WHEN | dac_underrun=yes OR rdac_underrun=yes ELSE no;
yes WHEN | adc_overrun=yes OR radc_overrun=yes ELSE no;

in

Listing 27. (The 1/O declarations in the COMPONENT constructs have been removed for the
sake of brevity.) The declarations for the constants used in these modules are also included in the
package.

Listing 27 : VHDL code for the codec package.

001-
002-
003-
004-
005-
006-
007-
008-
009-
010-
011-
012-
013-
014-
015-
016-
017-
018-
019-
020-
021-
022-
023-
024-
025-
026-
027-
028-
029-
030-
031-
032-
033-
034-
035-
036-
037-
038-
039-
040-
041-
042-
043-
044-
045-
046-

LI BRARY | EEE;
USE | EEE. STD LOd C 1164. ALL;
USE | EEE. std_I ogi c_unsi gned. ALL;

PACKAGE codec | S
CONSTANT yes: STD LOFC :='1';
CONSTANT no: STD LOAdC :="'0";
CONSTANT ready: STD LOCAdC :="'1";
CONSTANT overrun: STDLOAJC :="1";
CONSTANT underrun: STD LOEC :="'1";
CONSTANT left: SIDLOAC :="'0";
CONSTANT right: STD LOCAdC :="'1";

COVPONENT cl kgen
GENERI C

);...
END COVPONENT;

COVPONENT channel
GENERI C

);...
END COVPONENT;

COVPONENT codec_intfc
GENERI C

);...
END COVPONENT;
END PACKAGE,

Once the codec interface module is completed and packaged, we can use it in an application.
The smplest use is to have the FPLD accept the left and right stereo inputs from the codec
ADCs and loop these back to the codec DACs so they can output the stereo signals.

The VHDL code for the loopback application is detailed in Listing 29. The inputs and outputs
of the loopback design are as follows:

clk: Thisisthe 12 MHz clock from the XS Board.

reset: A high level on thisinput synchronously resets the codec interface module. The reset
input is driven from the parallel port of the PC.

mclk: This output is the master clock for the codec chip.

Irck: This output controls the activation of the left and right channel circuitry in the codec and
the codec interface.

sclk: This output is the clock for synchronizing seria data transfers between the FPLD and the
codec.

sdout: The serial data stream from the codec ADCs are shifted in through this inpuit.
sdin: The serial data stream for the codec DACs are shifted out through this outpui.

The following modules and processes are placed within the main body of the loopback
application:

u0: This is the instantiation of the codec interface module. Note that the ADC output buses of
this modul e are connected back to the DAC input buses on lines 43—46.

loop: This process controls the reading of each ADC and the writing of the value back to the
associated DAC. For example, if the output of the left channel ADC is ready to be read and
the left channel DAC is ready to be written, then the left channel is selected and the read and
write control lines are asserted. This reads the data from the ADC shift register and writes it
into the DAC shift register during a single clock cycle. Then the ADC and DAC registers
will no longer be ready for reading or writing so the read and write signals will be deasserted.

Listing 29: VHDL code for a design that uses the codec interface module to do loopback.

001- LI BRARY | EEE, codec;
002- USE | EEE. STD LOGQ C 1164. ALL;
003- USE codec. codec. ALL;

004-

005- ENTITY | oopback IS

006- PORT

007- (

008- clk: IN STD_LOG G - 12 MHz cl ock

009- rst: IN STD LOA G - active-high reset

010- ncl k: OUT STD LOA C, -- master clock to codec
011- Irck: QUT STD LOA C, -- left/right clock to codec

012-
013-
014-
015-
016-
017-
018-
019-
020-
021-
022-
023-
024-
025-
026-
027-
028-
029-
030-
031-
032-
033-
034-
035-
036-
037-
038-
039-
040-
041-
042-
043-
044-
045-
046-
047-
048-
049-
050-
051-
052-
053-
054-
055-
056-
057-
058-
059-
060-
061-
062-
063-
064-
065-
066-
067-
068-
069-
070-
071-

sclk: QUT STD LOA C, -- serial data shift clock to codec
sdout: IN STD LOA C, -- serial data from codec ADCs
sdin: QUT STD LOGA C, -- serial data to codec DACs

s: QUT STD LOA C VECTOR(1 DOMTO 0) — LED segnents

);
END | oopback;

ARCHI TECTURE | oopback_arch OF | oopback IS
SIGNAL Irsel,rd,w: STD LCGQ C

SIGNAL | eft_channel ,right_channel: STD LOG C VECTOR(7 DOANTO 0);

SIGNAL I dac_in_rdy,rdac_in_rdy: STD LCGE C,
SIGNAL | adc_out _rdy, radc_out _rdy: STD LOd C;
BEG N
uO0: codec_intfc
GENERI C MAP

adc_wi dt h=>20,
dac_wi dt h=>20

)

PORT MAP

(
cl k=>cl k,
reset =>rst,
ncl k=>ntl k,
scl k=>scl k,
| rck=>lrck,
sdout =>sdout ,
sdi n=>sdi n,
| rsel =>| rsel,

rd=>rd,

W =>Wr

| adc_out =>| eft _channel , -- loop the left channel
| dac_i n=>| eft _channel , -- to the left channel
radc_out =>ri ght _channel, -- loop the right channel
rdac_i n=>ri ght _channel, -- to the right channel

| adc_out _rdy=>| adc_out _rdy,
radc_out _rdy=>radc_out _rdy,
| dac_i n_rdy=>l dac_i n_rdy,
rdac_i n_rdy=>rdac_i n_rdy,

dac_underrun=>s(0), -- connect underrun and overrun
adc_overrun=>s(1) -- error indicators to LEDs

)

| oop: PROCESS(!dac_in_rdy,ladc_out_rdy,rdac_in_rdy, radc_out _rdy)

BEG N
| F(I adc_out _rdy=yes AND | dac_i n_rdy=yes) THEN
[rsel<=left; -- |oopback the |eft channe
rd<=yes; -- assert the read and
wr <=yes; -- wite control signals
ELSI F(radc_out _rdy=yes AND rdac_i n_rdy=yes) THEN
I rsel<=right; -- |oopback the right channe
rd<=yes; -- assert the read and
wr <=yes; -- wite control signals
ELSE
Irsel<=left; -- default channel selection
r d<=no; -- but don't read or
W <=no; -- wite the registers
END | F;
END PROCESS;

END | oopback_ar ch;

Listing 30: XS$40 UCF file for the stereo signal loopback application.

001-
002-
003-
004-
005-
006-
007-
008-
009-

net clk | oc=pl3;
net rst | oc=p44;
net sdout | oc=p6;

net nctlk | oc=p9;

net |rck | oc=p66;
net sdin | oc=p70;
net sclk | oc=p77;
net s<0> | oc=p25;
net s<1> | oc=p26;

Listing 31: XS95 UCF file for the stereo signal loopback application.

001-
002-
003-
004-
005-
006-
007-
008-
009-

net clk loc = p9

net rst | oc = p46
net sdout loc = p5

net nctlk loc = pl1
net |rck | oc = p66
net sdin loc = p71
net sclk loc = p72
net s<0> loc = p21
net s<1> loc = p23

The steps for compiling and testing the design using an XS40 combined with an XStend Board

ae

asfollows:
Synthesize the VHDL code in the LOOP40\L OOPBACK.VHD for an XC4005XL FPGA.
Compile the synthesized netlist using the LOOP40.UCF constraint file (Listing 30).

Mount an X$40 Board in the XStend Board and attach the downloading cable from the
XS0 to the PC parald port. Apply 9VDC though jack J9 of the X$40. Remove the shunts
from jumpers J4, J7, and J8 to disable the LEDs. Place a shunt on jumper J17 so the codec
serial output data stream can reach the FPLD. Set al the DIP switches to the OPEN
position.

Connect a stereo audio source (such as a CD player) to jack J9. Then plug a set of stereo
mini-headphones into jack J10.

Download the LOOP40.BIT file into the XS40/XStend combination with the command:
XSLOAD LOOP40. BI T.

Release the reset on the loopback circuit with the command XSPORT 0.

Start the CD player and listen to the result with the headphones.

The steps for compiling and testing the design using an XS95 combined with an XStend Board

ae

asfollows:

Synthesize the VHDL code in the LOOPI95\LOOP.VHD for an XC95108 CPLD.

Compile the synthesized netlist using the LOOP95.UCF constraint file (Listing 31).
Generate an SVF file for the design.

Mount an XS95 Board in the XStend Board and attach the downloading cable from the
X895 to the PC parald port. Apply 9VDC though jack J9 of the XS95. Remove the shunts
from jumpers J4, J7, and J8 to disable the LEDs. Place a shunt on jumper J17 so the codec
serial output data stream can reach the FPLD. Set al the DIP switches to the OPEN
position.

Connect a stereo audio source (such as a CD player) to jack J9. Then plug a set of stereo
mini-headphones into jack J10.

Download the LOOP95.BIT file into the XS95/XStend combination with the command:
XSLOAD LOOP95. BI T.

Release the reset on the loopback circuit with the command XSPORT 0.

Start the CD player and listen to the result with the headphones.

5 XStend V1.2 Schematics

The detailed schematics for the X Stend Board are on the following pages.

xstnd1l 2.sch-1 - Thu Oct 15wQO:58:19 1998

ire—Wrap Daughterboard XS40 Board XS95 Board
Connector Connector Connector Connector
XS4 1
sig-1 [—XS40BUSOL__ 531 O 5408US0 XS40BUSO1 O XS40BUSO1 (4 1y o
XS408US03 XS40BUS03 XS40BUS03 X
18-3 [F——or o583 4 -3 O—— T A\ XS40BUSOS XS40BUSO3 5
jlg_f XS40BUS04 j:_i’ XS40BUS04 XS40BUS04 o ::I_i' XS40BUSQS _':22_2
B ss08usos = XS40BUS05 XS40BUS05 X
Jg-5 ——————— B3-5 ——————f—> 22— y1-5 XS40BUSOS (7 ,_5
I XS40BUS06 e XS40BUS06 XS40BUSQ6 O s XSA0BUSOS (7 5 o
B seopusar g XS40BUS07 XS40BUS07
Jg-7 ——>——>"— B3-71 O——] n-7 XS40BUSO7 1 5 5
ios XS40BUS08 s X540BUS08 XS40BUS08 s XS40BUSOB (7 1y,
s B ssoBusas oo g XS40BUS09 XS40BUS09 0 s XS40BUSOS (7 gy
B seoBusio g XS40BUST0 XS40BUS10 X 1
s1g-10 ——2208051 3310 OF—— o = XS40BUSI 7y XS40BUSI0 1 5 55
XS40BUSTT XS40BUST! XS40BUSTH
sg-n [J—23408UST 4 - O—— o RSM0BUSL Ay —XS40BUSIL 7 j5_5
XS40BUS12 XS40BUS12 XS40BUS12 XS40BUS
sg—1z O——222082 -z O—— o ==\ XS40BUSIZ (A, J2-69
s8-13 [—X408US1S__, 1313 [——o40BUSIS { XS40BUSI3 513 X5408US1 12-9
sB-t4 [—XS408USIE 314 C—o40BUSIE L XS40BUSH4 s-14 X5408USI4 12-13
XS40BUS1S XS40BUST5 XS40BUS15 XS40BUS
sg-15 CF——222250 0i-ts —— 2 ==\ XS40BUSS (g5 42-28
J1B-16 [J—2S40BUSIE J3-16 Dﬂ XS40BUS16 =16 XS40BUSIE M1 ;535
Sty [J—XS408USI7 J3-17 [—2S4QBUSI7 L XS40BUSTZ 17 XS40BUSIZ (4)y »g
s8-1g [J—X40BUSIE__, 13-18 [——40BUSI8 { X5408USIB n-18 XS40BUSH J2-14
sg-1g —XS408US1S 3ty [—40BUSI9 L XS40BUST 31-19 XS408USI 12-15
J18-20 [C—2S408US20 4 43-20 DMMD 1=20 XS40BUS20 M 45 47
XS40BUS21 XS40BUS21 XS40BUS21
sig-21 [—22400052L -t O—— o o XS40BUS2L (A, —XS40BUS2L {7 5 _¢g
XS40BUS22 XS40BUS22 XS40BUS22 XS4
JiB-22 [F—— o022 y3-22 F—— 22 |\ XS40BUSZZ My 5 92-33
JiB-23 [}—XS40BUS23 J3-23 [J—JS40BUS23 L XS40BUS23 N-23 XS4 1218
Sg-24 [}—X5408US24 J3-g4 [J—JS40BUS24 L XS40BUS24 N-24 XS4 4 J2-19
Na-25 [—XS408US25 4 J3-25 [—XS40BUS25 L XS540BUS25 J1-25 XS4 J2-21
J1B-26 [—X3408US26 43-26 DM XS40BUS26 11-26 XS40BUS26 4 ;5,5
XS40BUS27 XS40BUS27 XS40BUS27
s1B-27 [F—— 22082 43-27 OF—— o |\ XS40BUSZT 5 —XS408US27 {7 ,_3p
Jig-28 [}—XS40BUS28 J3-28 [J—JS40BUS28 L XS40BUS28 N-28 XS4 12-34
XS40BUS29 XS40BUS29 XS40BUS29 XS4
J1B-29 [F——22000588 4 U3-29 O—— o2 A\ XS40BUSZS [1 pq 42-20
B30 XS40BUS30 a0 XS40BUS30 XS40BUS30 0 30
B svonusst = XS40BUS31 XS40BUS31 XS4 1
s18-31 [F—— 0= 0331 O—— o XSA0BUSSL (7 g, 12-12
XS40BUS32 XS40BUS32 XS40BUS32 XS4
sB-32 [F—— 22 43-32 F—— ot |\ XS408US32 5, 2-81
XS40BUS33 XS40BUS33 XS40BUS33
J1B-33 [F—— 2208833 0333 OF—— === |\ XS40BUS33 My 55 XS40BUS33 (7 5 55
s1g-34 [J—23408US34 1334 [J—S40BUSSE L XS40BUS34 S1-34 X5408US34 42-80
Ne-35 [—X340BUS35 J3-35 [—XS40BUS35 A XS540BUS3S N-35 _XS40BUS35 M jp 39
JiB-36 [—XS40BUS3E J3-36 [J—XS40BUS36 L X540BUS36 1-36 A54 92-45
XS40BUS37 XS40BUS37 XS40BUS37
s1B-37 [F—— 22088 4337 OF—— o\ X340BUSST 5 XS40BUSST {7 j5_19
1538 [J—XS40BUS38 13-38 [J—XS40BUS38 1 XS408US38 N-38 AS4 9240
JiB-39 [}—XS408US38 4 J3-30 [—1S40BUS39 R XS40BUS39 1139 _XS40BUS3S M yy_4
st8-40 [J—SS408US40__, 340 [J—S408USA0 L XS40BUS40 Jt-40 XS5408US4 12-43
Jg-41 [J—XS40BUSH__ 13-4t O—A0BUSAL R XS40BUSA1 -1 XS40BUSEL 1 5 4y
-4y [—X340BUSE2 J3-42 Dﬂ XS40BUS42 SN-42 XS40BUS2 (5,
Ng-43 [—XS408USES U3-43 Dﬂ XS40BUS43 =43
NB—4q [—XS400USEE s34t —iS40BUSE4 L XS40BUS4 J1-44 X5408US44 12-46
Jg-45 [J—XS408US45 J3-45 [—XS40BUS45 L XS40BUS4S =45 _XS40BUSE5 4 547
JB-4p [—2S408USE6 U3-46 Dﬂ _XS40BUS46 = 40 XS40BUS4! J2-48
XS40BUS47 XS40BUS47 XS40BUS47
Ne-47 F—— 2208 U347 OF—— o\ XS40BUSET 7y, —XS40BUSE7 {7, 50
1848 [—22408USE8 1348 [J——SA08US4E_ L XS40BUS48 Js1-48 XSA0BUSE 12-51
s1B-4g [J—2S408US49 1349 [J—S408USS L XS40BUS49 Ji-49 X5408US4: J12-52
S-50 [}—XS40BUS50 J3-50 [J—JS40BUSS0 L XS40BUS50 N-50 XS4 12-53
sB-51 —XS408USST 4 1351 [—S40BUSST L XS408USS1 S-51 X5408US51 J2-54
XS4
ig-53 [XS40BUS53 353 O 540BUS53 XS40BUS53 O s-s3
XS40BUS55 XS40BUS55 XS40BUS55
t5-55 [J—Xs40mUss__J 55 [—JSAOBUSSS L xsa0eusss
‘j;_iz XS40BUS56 j;_:: XS40BUS56 XS40BUS56 o ‘.lu-zz XS4 12-55
B seonussy g XS40BUS57 XS40BUS57 XS4
n8-57 CF—— =20 03-57 OF—— 2 2\ XS408USST 59 XS40BUSST 1y 5
1858 [J—XS40BUSS8 1358 [J—XS40BUSS8 L XS408US58 N-58 A58 92-57
J1B-59 [—XS408US59 4 J3-59 [J—2S40BUS5S L XS40BUS59 N-58 \XS40BUSSS M o 58
Jig-g0 [J—XS40BUS60 J3-60 [—S40BUSB0 L XS40BUS60 11-60 XS40BUS6 1261
Jg-g1 [J—XS40BUS61 J3-p1 [J—XS40BUS6L & XS40BUS61 =61 _XS40BUSET M jp_¢o
i85 [—XS40BUSE2 13-62 [J—XS408US62__L X540BUS62 11-62 A54 92-63
XS40BUS63 XS40BUS63 XS40BUS63
1863 [F——22 00883 0363 F——2 = X3408US83 7y g5 —XS40BUS67 {7 5524
oes XS40BUS64 s XS40BUS64 XS40BUS64 ee
O s+08uses o XS40BUS65 XS40BUS65 g XS4
J1B-65 [F——2200U589 4 93-65 O——— = |\ XS408US6S)y 4 92-65
J8-66 [J—XS40BUSEE J3-66 [—S40BUSEE L XS40BUS6E 1166 __XS40BUS66) 1, o
XS40BUS67 XS40BUS67 XS40BUS67 XS4
s18-67 F—— = 0367 F—— -2\ XSH0BUSST 7 ¢y XS40BUSET 1)y g7
11B-58 [—XS40BUSEB 1368 [—XS40BUS68 L ¥s408US68 11-68 AS4 92-26
Ji8-69 [J—XS408US69 4 J3-69 [——40BUSEY L XS40BUS6S 1168 \XS40BUSES M 1 7o
XS40BUS70 XS40BUS70 XS40BUS70 XS4
J1B-70 [F——22700570 43-70 O——> = |\ X340BUST0 7 4 92-71
a7t XS40BUS71 ot XS40BUS71 XS40BUS71 0 ot
72 B seosus7z Ter g XS40BUS72 XS40BUS72 0 nr2
B suopus73 o XS40BUS73 XS40BUS73
s1B-73 [F—— 22080 0373 OF—— s |\ XS40BUSTS o5
XS40BUS74 XS40BUS74 XS40BUS74 XS4 4
n8-74 F—— 2o lt U374 OF—— 22\ XS40BUSTE 7y 4, 92-74
N1-75 [J—XS40BUS7S J3-75 [J—JS40BUS7S L XS40BUS75 2-75 __XS40BUST5] o sq
J8-76 [}—XS40BUS76 J3-76 [—S40BUSTE R XS40BUS76 1-76 __XS40BUST6 M jp_7¢
8-77 [—XS408US77 13-77 [—XS40BUS77 L XS408US77 =77 XS4 12-72
J1B-78 [—X340BUS78 43-78 DM XS40BUS78 1-78 XS40BUS78 (4 ,, ;5
XS40BUS79 XS40BUS79 XS40BUS79
J1B-79 [F—— 22088 0379 O—— = XS408USTS 7y 4 XS40BUS7S (7 p_7q
1880 [J—XS40BUSBO 13-80 [J—XS40BUSBO 1 XS408US80 21-80 AS4 92-36
Jsig-g1 [J—2S408USe1 4 1381 [——40BUSBL L XS40BUSEI 5181 XS5408US81 12-37
Jig-g2 [}—XS40BUSB2 J3-g2 [J—JS40BUSB2 L XS40BUSB2 N-82 XS4 12-82
XS40BUS83 XS40BUSB3 XS40BUSB3 XS4
J18-83 Dw’ J3-83 DW Wﬂ J1-83 J2-83
N8-84 [F— oot s3-84 [—ror |\ XS40BUSBE 7y g, XS40BUSB4 1 5 g4
J 1 8 XS40BUSL01:84) J 3 XS40BUSL01:84] J 1 XS40BUSLO1:84] J 2
24
FERRITE-BEAD
31-54
+5v
22 y 5\ VCC-PROTO
FERRITE-BEAD
1 2
n-2 6
123
v2-78 O— Q02— b
FERRITE B A a2 s
ERRITE-BEAD O sz Alternate Power
R Terminals
— J43-52
— s18-52
| ono N0 | GND

xstnd1l_2.sch-2 - Thu Oct 15 00:58:22 1998

+5V +5V
~| M)
< 4 o 4
P P
o A s A
-~ o~
N
XS40BUS07 20 [mm XS40BUS08 20 [=
XS40BUS6] pr [XS40BUS61 2775 U6
XS40BUS62 2719E X540BUS62 2710E
WE WE
XS40BUS78 10 XS40BUS7 10
XS40BUS79 9|4 XS40BUS i
XS40BUS82 8 1AY== o1 L S40BUS10 | XS40BUS8 A = ol XS40BUS10]
XS40BUSS A< Ol S40BUSBO XS40BUSBA A< 0 XS40BUSB0
XS40BUS03 61h7 & |192[13 40BUSB1 XS40BUS03 515y & 19213 XS40BUSB1)
XS40BUS05 5{AE 11935 S40BUSAT XS408US05 5AE 1935 XS40BUS41
XS40BUS60 A2 2 lot 40BUS40/ XS40BUS60 A% % 10t 6 XS40BUS40)
XS40BUS56 TIAS ¥ 195 S40BUS39 XS40BUS5 3RS % 1057 XS40BUS39
XS40BUS58 75 A7 ™ 1088 40BUS38 | X540BUS5 75 A7 & 196 B XS40BUS38)
XS540BUS59 24]h8 1079 S40BUS35 XS40BUS5 24738 107 X540BUS35
XS40BUS83 AN XS40BUS8 7 [A%)
XS40BUS04 23 XS40BUSO 33
XS40BUS50 Z AN XS40BUS50 2 A1
XS40BUS57 76 |12 XS408US57 76 |12
XS40BUS5] 1Al XS40BUSS51 |13

XS40BUSL01:84] XS40BUS[01:84] XS40BUS[01:84] XS40BUSL01:84]

0.1uF 0.1uF

xstnd1l_2.sch-3 - Thu Oct 15 00:58:24 1998

ut6D
* [AINL-
150
UIBH A
AVAAY L ocos
oK 1ok 2200pF
cs5
178 LM324M
| 2 3 9|
E= AN 8 0 A% Az 13 [NM324M utéc
10uF 22 + 10K 14 SAANE [AL+
usc b 150
U9
2
\/—
JACK3.5
Ve U T UtBA
1 LAANE [AINR-
9 150
utsB u18D
2 15 4 /\/\/\113
L c24
GND 0k ok -
- cs
ui7A LM324M
| 1 4 6 [U18C
F AAAY 7 16 AANS 2 [NLM324M U168
10uF 22K N 10K 1 ZAAN-L [AINRF
U9B b 150
U9A
+5V
T +5V
UIBA
Analog Input T T NV
0K
g p I~ c18 C19 4
228 10uF /I\ T 0.1uF b
©
M324M
0
veE
LGND ok GND
u20H o ;p U20E
AouTL- [O—EAAN, VA2
10K 10K
el
« 2 ca
= oy —L Cc10 | [
- — 2200pF o 220pF +
£3 220uF
1 oc22
— 0.047uF
U206 U20F
AouTL [DO—TAAAL ILAANE
10K 10K
8=
| om0
- 2
—\/
JACK3.5
3 N
J10
GND
20 20 Analog Output
AQUTR- [ZAANAS 14 3
10K 10K
. 2 co
- —L_c8 —L_cn | [
< 2200pF 2o el
g 220uF
U204 200
AOUTR+ [O—LAAAL 13 4
10K 10K -

5
l Cc23
0.047uf
B>e
@
GND

xstnd1l_2.sch-4 - Thu Oct 15 00:58:26 1998

XS40BUSI01:841

J7 UI5A 510
XS40BUS06 50 LAAAE
XS40BUS09 o
U15B 510
XS40BUS66 2A AN
U15C 510 +5V
XS40BUS77 IAANE
U15D 510 J28
XS40BUS70 EAANS O O
GND
XS40BUS44 —
XS40BUS45
J20 J24
XS40BUS46 AINL- v AOUTL-
AINL+ J21 19 26 I25 1 pouTL+
+5V AINL- AQUTL-
AINR— 422 20 JAINL+ AOUTL+ (23 426 7 pouTR-
J23 17 |AINR— AQUTR= 97 427
AINR+ £ AINR+ AOUTR+ |5 AOUTR+
2-MCLK ~ SDOUT
#LRCK
" 2SCLK
o To|SDIN
its o 1SCL/CCLK
5{SDA/CDIN
R ADO/CS
o DEMO
13 DEM
) SMUTE
- RST
+5V VA
VD
AGND
DGND
NCO
o) NC
NC2
U4D§10K NC3
GND Ccs4222
— <
+
o C3 A~ WF
GND This is actually AVDD

but we need to name it
+5V so we can fake—out
the PCB layout sfw.
+5v +5V DVDD

u13
FERRITE-BEAD

o

c

sl
c29

|

J+
10uF

XS40BUS[01:84]

xstnd1l_2.sch-5 - Thu Oct 15 00:58:27 1998

DIP Switches

GND

reset

program

GND

VSYNC
HSYNC

RED
GREEN

BLUE

VGA Connector

DATA
CLOCK

+5V
3 @ o o w w [T
)] n] 5]) I 5
5 8 3 8 8 3 8 §
b= Q) 3 el o = = o)
x x X X X X x x
PGS RIS RS- IRE- R
3 g 9 9 &9 9 3 4
1 SW1A 1
XS40BUSO7 o/c
2 SWiB 15
XS40BUSOB o/c
3 SWIC 14
XS40BUSQO9 0/0
4 SwW1D 13
XS40BUSQO6 O/c
5 SWIE 12
XS40BUS77 o/c
6 SWIF "
XS40BUS70 0/0
7 SWIG 10
XS40BUS66 O/G
8 SWIH 9
XS40BUS69 o/c
P +5V |
o N -
Sw2
(N " spare
XS40BUS67 1 5
SW-PUSH-NO
SW3
—r
XS40BUS37 1 T T 5
SW-PUSH-NO
SW4
—r
XS40BUS55 1 T T 3
SW-PUSH-NO
XS40BUSL01:84] .
Pushbutton Switches -
\XS40BUSET ey,
Y \xsaomuste 45
UBA 330
se-1 - VCC . s ot
U14A 680
| XS40BUSTS 10 s ooLK e
usB
XSA0BUSIS___quig-9 DONE XS40BUS20 2 7 52
XS40BUS71 _ A A
HSHOBUSSS o3 PROGRAM o AL
XS40BUS41 15-3
—————ui9-15 INIT <C AR
_XSHBUSOB 0 r RGT w 4 ,
I
UBD 330 _
_XSW0BUS32 0 s RT , S o
J5-5
XS40BUS30 (D
mq s1o-+ - RD) U14D 680 J5-6
ISHOBSOT___ 96 TRIG o 4 5 o
_XSHBUSIS o OLKI o o
GND
_XSHBUSOY 01 oKD a
_XSKBUSIS 010 Tp) <
_XSWOBUSIE e ToK =
XSHOBUSTZ_ qy9-14 TMS I XS40BUSE9 6t
x XS40BUSEB J6=5
sa9-3 GND
GND +5V
—<Jd19-5 NC L< ot
—<d9-8 NC s

XS40BUSL01:84)

PS/2 Connector

[CASN
©
<
N
Left LED 73
ut
X$40BUS83 1 - 1
XS40BUS82 72738 10
Z1ss st
- s3D
4 . . S117
—&—|LDP RDP
XS40BUS0S 5 $2 S0 6
-
MAN72-1
X$40BUS03
XS40BUS04
XS40BUS78
X540BUS79
+5V
1,703
~
m§
e
5
.
Right LED ;
u2
XS40BUS60 1 @ 1
XS40BUS58 g S5 . .54 10
- 3|2
4 . . S
—&—|LDP RDP
X540BUS51 50 % Is
-

XS40BUS[01:84]

MAN72-1
XS40BUS59
28
X540BUS57
XS40BUS56
XS40BUS50
+5V
R
.
Single LEDs
wx D9A
XS40BUS41 20 ‘1 LEDBAR
wx 098
XS40BUS40 19 ‘ 2 LEDBAR
wx DIC
XS40BUS39 18 3 LEDBAR
wx 09D
XS40BUS38 17 ‘ 4 LEDBAR
wx DIE
XS40BUS35 16 ‘ 5 LEDBAR
wx D9F
XS40BUSB1 15 ‘ 6 LEDBAR
wx D96
XS40BUSBO 14 ‘ 7 LEDBAR
wx D9H
XS40BUS10 13 ‘ 8 |FDRAR
wx 09l
WQI‘_S LEDBAR
wx 09J

Wu,‘ﬂ LEDBAR

10

10

u70

10

	XStend Board V1.2 Manual
	Limited Warranty
	Table of Contents
	Getting Help!
	1 XStend Overview
	2 XStend Board Features
	Figure 1: XStend Board layout.
	2.1 XS40/XS95 Board Mounting Area
	Figure 2: Connection of external power supplies to the XStend Board.

	2.2 LEDs
	Table 1: Jumper settings for XStend LEDs.
	Figure 3: Shunt placement for setting the XStend Board LED supply voltages.
	Listing 1: Connections between the XStend LEDs and the XS40.
	Listing 2: Connections between the XStend LEDs and the XS95.

	2.3 Switches
	Listing 3: Connections between the XStend DIP and pushbutton switches and the XS40.
	Listing 4: Connections between the XStend DIP and pushbutton switches and the XS95.

	2.4 VGA Interface
	Listing 5: Connections between the XStend VGA interface and the XS40.
	Listing 6: Connections between the XStend VGA interface and the XS95.

	2.5 PS/2 Keyboard Interface
	Listing 7: Connections between the XStend PS/2 interface and the XS40.
	Listing 8: Connections between the XStend PS/2 interface and the XS95.

	2.6 RAMs
	Listing 9: Connections between the XStend RAMs and the XS40.
	Listing 10: Connections between the XStend RAMs and the XS95.

	2.7 Stereo Codec
	Table 2: Jumper settings for XStend codec.
	Figure 4: Shunt placement for setting the codec sampling rate de-emphasis.
	Listing 11: Connections between the XStend stereo codec and the XS40.
	Listing 12: Connections between the XStend codec and the XS95.

	2.8 XILINX Xchecker Interface
	Table 3: Connections between the XStend Board Xchecker interface and the XS40 and XS95

	2.9 Prototyping Area
	Figure 5: Top-side view of the network of VCC and GND buses around the component
	Figure 6: Shunt placement for setting the VCC bus voltage..

	2.10 Daughterboard Connector

	3 XStend Board Programmer’s Model
	Figure 7: Programmer's model of the XS40/XStend Board combination.
	Figure 8: Programmer's model of the XS95/XStend Board combination.
	Table 4: Connections between the XS40 Board and the XStend Board resources.
	Table 5: Connections between the XS95 Board and the XStend Board resources.

	4 Example Designs for the XStend Board
	4.1 Displaying Switch Settings on the LEDs
	Listing 13: VHDL code for using the XStend LEDs and switches.
	Listing 14: XS40 UCF file for the LED/switch example.
	Listing 15: XS95 UCF file for the LED/switch example.

	4.2 Displaying Graphics from RAM Through the VGA Interface
	4.2.1 VGA Color Signals
	Figure 9: Digital-to-analog interface to a VGA monitor.

	4.2.2 VGA Signal Timing
	Figure 10: VGA signal timing.

	4.2.3 VGA Signal Generator Algorithm
	Listing 16: VGA signal generation pseudocode.
	Figure 11: Pipelining of VGA signal generation tasks.

	4.2.4 VGA Signal Generator in VHDL
	Listing 17: VHDL code for a VGA generator.
	Listing 18: XS40 UCF file for the VGA signal generator.
	Listing 19: XS95 UCF file for the VGA signal generator.

	4.3 Reading Keyboard Scan Codes Through the PS/2 Interface
	Figure 12: Keyboard data transmission waveforms.
	Listing 20: VHDL code for receiving keyboard scan codes from the PS/2 interface.
	Listing 21: XS40 UCF file for the PS/2 keyboard interface.
	Listing 23: XS95 UCF file for the PS/2 keyboard interface.

	4.4 Inputing and Outputing Stereo Signals Through the Codec
	Figure 13: Connections between the XStend codec chip and the XS Board FPGA or CPLD.
	Listing 24: VHDL code for the codec clock generator module.
	Listing 25: VHDL code for the codec channel module.
	Listing 26: VHDL code for the top-level codec interface module.
	Listing 27 : VHDL code for the codec package.
	Listing 29: VHDL code for a design that uses the codec interface module to do loopback.
	Listing 30: XS40 UCF file for the stereo signal loopback application.
	Listing 31: XS95 UCF file for the stereo signal loopback application.

	5 XStend V1.2 Schematics
	XStend Bus Connections
	XStend RAM Connections
	XStend Analog I/O
	XStend Codec
	XStend LEDs, switches, PS/2 Intfc., Xchecker Intfc.

