
A Formal Model for the
Deferred Update Replication Technique

Andrea Corradini1, Leila Ribeiro2, Fernando Dotti3, and Odorico Mendizabal3

1 Universitá di Pisa, Dipartimento di Informatica
Pisa, Italy

andrea@di.unipi.it
2 Universidade Federal do Rio Grande do Sul, Instituto de Informática,

Porto Alegre, Brazil,
leila@inf.ufrgs.br

3 Pontifícia Universidade Católica do Rio Grande do Sul, Faculdade de Informática,
Porto Alegre, Brazil,

fernando.dotti@pucrs.br; omendizabal@gmail.com

Abstract. Database replication is a technique employed to enhance both per-
formance and availability of database systems. The Deferred Update Replication
(DUR) technique offers strong consistency (i.e. serializability) and uses an op-
timistic concurrency control with a lazy replication strategy relying on atomic
broadcast communication. Due to its good performance, DUR has been used in
the construction of several database replication protocols and is often chosen as
a basic technique for several extensions considering modern environments. The
correctness of the DUR technique, i.e. if DUR accepted histories are serializable,
has been discussed by different authors in the literature. However, a more com-
prehensive discussion involving the completeness of DUR w.r.t. serializability
was lacking. As a first contribution, this paper provides an operational semantics
of the DUR technique which serves as foundation to reason about DUR and its
derivatives. Second, using this model the correctness of DUR w.r.t. serializabil-
ity is shown. Finally, we discuss the completeness of DUR w.r.t. serializability
and show that for any serializable history there is an equivalent history accepted
by DUR. Moreover, we show that transactions aborted by DUR could not be ac-
cepted without changing the order of already committed transactions.

1 Introduction

Since several decades, database management systems are of paramount importance to
safely keep users data. A database system is typically manipulated by concurrent trans-
actions from several users. The common correctness criterion used to validate consis-
tency in databases is serializability (or strong consistency) [3,11]. Roughly, an inter-
leaved execution of several concurrent transactions is serializable if it has the same
effect on a database as some serial execution of these transactions. The preservation of
database consistency is one key aspect which is usually ensured by schedulers responsi-
ble for implementation of concurrency control mechanisms. While early approaches to
assuring database integrity where based on some type of locking, hindering concurrency
and thus transaction throughput, optimistic methods for concurrency control emerged

to take advantage both from the low conflict rate among transactions and the hardware
architectures allowing better performance [9]. According to such methods, a transaction
executes under the optimistic assumption that no other transaction will conflict with it.
At the end of the execution, a validation phase takes place using read and write sets of
the transactions to decide commit or to invalidate the transaction [4].

Further seeking to enhance performance, replication techniques for database sys-
tems have been thoroughly studied in past years [3]. Several replication techniques
emerged in the database community which can be classified according to two basic
characteristics: where updates take place (primary copy vs. update anywhere) and kind
of interaction for update synchronization (eager vs. lazy) [7]. While database replication
is aimed primarily at performance, in distributed systems replication has as major con-
cern high availability. Replication approaches for distributed systems were developed in
parallel such as the primary-backup [5] and state machine replication [15] approaches.

The search for highly available and high performance databases leads to consider
the combination of replication and optimistic concurrency control. Since with optimistic
concurrency control transactions progress independently and are validated at the end of
the execution, and since in a distributed setting communication costs and delays are
to be avoided, a natural configuration to consider is the primary copy approach with
lazy uptate. The Deferred Update Replication (DUR) approach [12] uses these ideas
with multiple primary copies. According to DUR, a group of servers fully replicate the
database while clients choose any server to submit a transaction. Transaction process-
ing at the server takes place without coordinating with other servers. Upon transaction
termination issued by the client, a certification test is performed to assure database con-
sistency. The finalization protocol is based on atomic broadcast to submit the modifica-
tions of a local transaction to all other servers in total delivery order. Each server will
receive the same finalization requests in the same order, apply the same certification
tests, leading to same sequence of coherent modifications in each server.

The DUR technique is currently being extended in different ways, such as to sup-
port byzantine faults, to enhance throughput of update transactions and to support in-
memory transaction execution [13,17,16]. The correctness of the basic technique, i.e. if
DUR accepted histories are serializable, is discussed by different authors [6,8,12,13].
In [14] the authors use TLA+ to validate serializability of DUR based protocols. A
similar approach is adopted by [1], where the authors present a formal specification and
correctness proof for replicated database systems using I/O automata.

In this paper we contribute to the analysis of the DUR technique in three main as-
pects: (i) We provide an operational semantics of the DUR technique, which serves as
a foundation to discuss its correctness and completeness, as well as solid contribution
for future extensions to represent variations of DUR as mentioned before; (ii) Based on
this model the correctness of DUR is shown w.r.t. serializability; (iii) Furthermore we
show the completeness of DUR w.r.t. serializable histories: for any serializable history
there is an equivalent history accepted by DUR; moreover it is shown that if a transac-
tion would be aborted by the execution of DUR, then the history obtained by including
this transaction in a history recasting exactly the execution of the algorithm up to this
point would not be serializable in the strict sense, that is, without changing the order of
already committed transactions. While (ii) is, to some extent, closely related to previous

2

works, contributions (i) and (iii) bring new elements to the discussion of DUR and the
theory of concurrency control.

This paper is structured as follows: in Section 2 we present several concepts from [3]
on serializability theory; in Section 3 we present the DUR technique based on [17]; in
Section 4 the operational semantics of DUR is presented; in Section 5 both correctness
and completeness of DUR as mentioned above are discussed; finally in Section 6 we
review the results achieved and discuss possible directions for future work.

2 Serializability Theory

In this section we review some of the main definitions of serializability theory [3].

Definition 1 (Database actions). Given a set of variables X , a database action may
be r[x], a read of variable x ∈ X; w[x], a write on variable x ∈ X; c, a commit; or
a, an abort. The set of actions over variables in X will be denoted by Act(X). We say
that two actions are conflicting is they operate on the same variable and at least one of
them is a write.

Definition 2 (Transaction). A transaction is a pair 〈T,≤T 〉 where T : Act(X)→ N
is a multiset of actions, mapping each action to the number of its occurrences, and
≤T⊆ T × T is a finite partial order relation than satisfies

1. either c ∈ T or a ∈ T ;
2. T has at least one read or write action;
3. c and a must be maximal wrt ≤T ;
4. if w[x] ∈ T then for any other action o[x] that reads or writes variable x, either

o[x] ≤T w[x] or w[x] ≤T o[x]

We denote often transaction 〈T,≤T 〉 simply by T , leaving the partial order under-
stood. Here and in the following we often confuse the multiset T with its extension
{aiT[x] | a ∈ {r, w}, x ∈ X, 0 < i ≤ T (a[x])}. We denote by vars(T) the set of
variables used in T , namely vars(T) = {x ∈ X | T (r[x]) + T (w[x]) > 0}.

We also introduce the following auxiliary notations:

– T [x] = T ∩ {riT[x],wi
T[x]} is the subset of actions of T involving variable x;

– ≤x
T = ≤T ∩ (T [x]× T [x]);

We consider three subsets of vars(T).
The set of local variables is defined as loc(T) = {x | ∃i .wi

T[x] = min(≤x
T)}.

Intuitively, if the first action over x in T is a write (often called a “blind write”), then x
is handled as a local variable and its value before T is irrelevant. By the condition on
≤T , if the minimum of ≤x

T is a write then it is unique.
The readset of T is defined as rs(T) = { x | ∃i . riT[x] ∈ min(≤x

T)}. Thus the
readset of T consists of all the variables of the transaction whose original value was
read outside T . Note that rs(T) and loc(T) form a partition of vars(T).

The writeset of T is defined as ws(T) = {x | T (w[x]) > 0}, i.e. the set of variables
modified by T . A transaction with an empty writeset is called a read-only transaction;
we shall use the predicate ro defined as ro(T) ≡ (ws(T) = ∅). Note that loc(T) ⊆
ws(T).

3

Histories represent concurrent executions of transactions. Actions of different trans-
actions can never be the same, but they may act on shared data (variables). Therefore, a
history must carry information about the order in which conflicting actions shall occur.
Moreover, it may define also relationships among other (non-conflicting) actions.

Definition 3 (History). Given a set of transactions S = {T1, . . . , Tn}, a complete
history over S is a partial order 〈H,≤〉 where

1. H =
⋃n

i=1 Ti;
2. ≤ ⊇

⋃n
i=1 ≤i;

3. for any conflicting actions o1 and o2 in H , either o1 ≤ o2 or o2 ≤ o1.

A history is a prefix of a complete history. A transaction Ti is committed/aborted in a
history H if cTi

∈ H / aTi
∈ H . If a transaction is neither committed nor aborted, it is

active in a history. The committed projection of a history H is denoted by C(H) and is
obtained removing from H all actions that belong to active or aborted transactions. The
non-aborted projection of a history H is denoted by NA(H) and is obtained removing
from H all actions of aborted transactions.

The set of variables used (written or read) is a history H is denoted by vars(H).
Given a history (H,≤H), the induced dependency relation on transactions ≤T

H is de-
fined as: T1 ≤T

H T2 if there are actions o1 ∈ T1 and o2 ∈ T2 such that o1 ≤H o2. A
history is strict if whenever there are actions wTj

[x] ≤H oTi
[x], with Ti, Tj ∈ H and

i 6= j, either aTj
≤H oTi

[x] or cTj
≤H oTi

[x].

Strictness implies that no data item may be read by a transaction if another transac-
tion that is writing to it has not terminated. This is commonly required in applications
since histories that are not strict allow serializations that are rather counterintuitive (that
would "undo the past"), and also implies recoverability and avoids cascading aborts.

The following equivalence notion on histories is known as conflict-equivalence,
since it is based on the compatibility between conflicting items of histories. In this
paper we will stick to this kind of equivalence.

Definition 4 (History Equivalence). Given two histories (H1,≤H1) and (H2,≤H2),
we say that they are equivalent if

1. H1 = H2 (they have the same actions);
2. they order conflicting actions of non-aborted transactions in the same way: for all

o1, o2 ∈ NA(H1) such that o1 and o2 are conflicting, o1 ≤H1 o2 if and only if
o1 ≤H2

o2.

Note that this definition of equivalence poses no restriction on the dependencies of
non-conflicting actions.

Definition 5 (Serial History). A complete history (H,≤H) is serial if for every two
transactions Ti, Tj ∈ H , either for all oi ∈ Ti we have end j ≤H oi, or for all oj ∈ Tj

it holds end i ≤H oj , where end j (end i) is the commit or abort action of Tj (Ti).

Note that the induced dependency relation on transactions of a serial history is a
total order, even if ≤H does not need to be total.

4

Definition 6 (Serializable History). A history (H,≤H) is (conflict) serializable if there
is a serial history (Hs,≤Hs) that is equivalent to the committed projection C(H).

For a proof of the following theorem, see [3].

Theorem 1. Let (H,≤H) be a history and G(H) be the graph whose nodes are the
transactions of H and arrows denote the relationship between the conflicting actions
in ≤H , lifted to the corresponding transactions. A history is serializable iff G(H) is
acyclic.

3 The Deferred Update Replication

The Deferred Update Replication (DUR) technique coordinates transaction process-
ing on a group of servers that fully replicate the database. It provides fault-tolerance
due to replication while offering good performance. Clients submit transactions to any
server. Servers execute transactions locally, without coordination with other servers, in
a so-called execution phase. The concurrency control strategy is optimistic. When the
client requests the transaction’s commit, it broadcasts its local updates to all servers
which then have to certify that the transaction can be serialized with other commited
transactions that executed concurrently. Note that the termination phase uses an atomic
broadcast protocol that ensures that all servers receive the same termination messages
in the same order. Since all execute the same certification procedures, they decide ho-
mogeneously, accepting (committing and updating the local states) or not (aborting) the
transaction, and thus progress over same (replicated) states. The good performance is
achieved since: update transactions progress independently in each server during the
execution phase; read-only transactions can be certified locally; communication is re-
stricted to the dissemination of updates for certification at the end of the transaction
(lazy approach) which implies a lower overhead if compared to propagation of updates
during the transaction (eager approach).

Since in the following sections we provide an operational semantics for DUR, we
adopt and explain here the main DUR algorithms at client and server sides from [17].
Each transaction t has a unique identifier id, a readset rs keeping the variables read by
t; a writeset ws keeping both the variables and the values updated by t; and a snapshot
id st that records the snapshot of the database when t started reading values.

According to the client algorithm of [17] (see Fig. 1, left), after a transaction t is
initiated (lines 1 to 4), the client may request a read, a write or a commit operation. For
brevity, it is not shown in the algorithm the case in which the client executes an abort
operation. A read operation by transaction t on variable k will add k to t.rs. If k belongs
to t.ws it means that k has been previously written and the read operation returns the
local value (lines 7, 8). Otherwise the value has to be read from one server s from the
set of servers S (lines 10, 11). If this was the first read of this transaction, the snapshot
id returned by the server is stored in t.st . A write operation simply adds locally to
t.ws the value written on the variable. A commit of a read-only transaction is decided
locally. In case of an update transaction, a request for certification of transaction t is
atomically broadcast to all servers and an answer from one of the servers is awaited.

5

The transaction certification decision is based on the readset of the transaction and on
the writesets of the already committed concurrent transactions.

Notice that the algorithm does not distinguish between local and non-local vari-
ables: when a variable is read it is added to the readset even if it was initialized with a
blind write.

DUR, Client c’s code

1: begin(t):
2: t.rs← ∅
3: t.ws← ∅
4: t.st← ⊥
5: read(t, k):
6: t.rs← t.rs ∪ k
7: if (k, ∗) ∈ t.ws then
8: return v s.t. (k, v) ∈ t.ws
9: else

10: send(read , k, t.st) to some s ∈ S
11: wait until receive(k, v, st) from s
12: if t.st = ⊥ then t.st = st
13: return v
14: write(t, k, v):
15: t.ws← t.ws ∪ k, v
16: commit(t):
17: if t.ws = ∅ then
18: return commit
19: else
20: abcast(c, t)
21: wait until receive(outcome) from s
22: return outcome

DUR, Server s’s code

1: initialization:
2: SC ← 0
3: WS [..]← ∅
4: when receive(read, k, st) from c
5: if st = ⊥ then st← SC
6: retrieve(k, v, st) from database
7: send(k, v, st) to c
8: when adeliver(c, t)
9: outcome← certify(t)

10: if outcome = commit then
11: apply t.ws to database
12: send(outcome) to c
13: function certify(t)
14: for i = t.st to SC do
15: if WS [i] ∩ t.rs 6= ∅ then
16: return abort
17: SC ← SC + 1
18: WS [SC]← items(t.ws)
19: return commit

Fig. 1. DUR Algorithms

According to the server algorithm, a server has a snapshot counter SC recording
the number of committed transactions (line 17) and a writeset for each snapshot WS [i]
that records the writeset of the transaction committed at snapshot i. When a read re-
quest arrives, if it is the first read of a transaction (line 5) then the server assigns to the
transaction’s snapshot id st the current value of the snapshot counter, that the client will
keep for future reads. Then the server retrieves from the database the most recent value
v for variable k before or at the same snapshot identified by st (line 6). When client c
requests a commit (using the atomic broadcast primitive adeliver - line 8) all servers
will run the certification test (line 9) and in case the outcome is commit the writeset is
used to update the database (lines 10, 11). Any outcome is sent to client c (line 12). The
certification of t verifies if any committed transaction concurrent with t (line 14) up-
dated variables of the readset of t (line 15). In such case t has to be aborted. Otherwise
t is committed, a new snapshot is generated at the server (line 17) and the server keeps
track of the variables updated in the last commit (line 18).

6

As one can observe, the certification of a transaction t depends only on whether the
values read (t.rs) are valid upon termination, i.e. if no committed concurrent transaction
has written on a value after it has been read by t.

Certification of read-only transactions is straightforward since all read values are
consistent with the snapshot st of the first read, assuring that no update happened on
the variables until after st - the transaction is considered to happen atomically at st,
reading a consistent state even if snapshot st is in the past.

We can observe that since updates are deferred to the moment of termination, and
actually updates and commit of one transaction are performed atomically, no updates
and commits of different transactions interleave. The database progresses over states
where updates are from a single transaction.

4 The DUR algorithm, formally

We present here a formalization of the behaviour of the server, as described in the previ-
ous section, using a transition system. This will be exploited for a proof of correctness
and completeness of the DUR Server algorithm.

We assume that there is a fixed set of transactions T which includes all transactions
that will ever interact with the server. Since at most a finite number of transactions
can be terminated in each state of the server’s evolution, to make the formalization
easier we assume T to be finite. Notice that the readset and the writeset of a transaction
are built in the client’s code, and are used by the server only when the transaction is
completed. Therefore we consider them as statically known, and denote them as rs(T)
and ws(T), respectively. Note however that rs(T) denotes the readset as defined in
Def. 2, while the readset of a transaction according to the algorithm of Fig. 1 also
includes the local variables, and could be denoted as rs(T) ∪ loc(T): we will discuss
later the consequences of this assumption.

Instead the snapshot id, identifying the snapshot of the database that a transaction
accesses, is assigned dynamically by the server at the first read operation. Therefore the
state of a server includes, besides the snapshot counter SC and a vector of committed
writesets WS (see lines 2-3 of the algorithm), a function ST defined on T returning the
snapshot id, if defined, and ⊥ otherwise. The state also includes an additional function
on transactions, the commit index CI , which is defined only on terminated transactions
and records whether the transaction is aborted or not, and in case it is not read-only the
index of its committed writeset in vector WS .

The components of a well-formed server state have to satisfy several constraints
listed in the next definition, most of which are pretty obvious: as shown in Thm. 2,
well-formedness will guarantee reachability. We just stress that the commit index of a
read-only transaction is set, quite arbitrarily, to its snapshot id plus 0.5. In this way it is
smaller than the commit index of any transaction that could modify the variables in the
readset after being accessed.

Definition 7 (server state). A server state over a finite set of transactions T is a four-
tuple D = 〈SC ,WS ,ST ,CI 〉, where

– SC is an integer, the snapshot counter;

7

– WS is a vector of (committed) writesets WS : {0, . . . ,SC} → P(X);
– ST : T → {0, . . . ,SC} ∪ {⊥} maps each transaction in S to its snapshot id, i.e.

an integer ST (T) ≤ SC which is the index of the writeset from which the first
value of T is read, if any, and ⊥ otherwise;

– CI : T → {0.5, 1, 1.5, . . . ,SC ,SC + 0.5} ∪ {⊥, abort} maps each transaction
to its commit index. A transaction T is aborted if CI (T) = abort; it is active if
CI (T) = ⊥ and ST (T) 6= ⊥; and it is committed if CI (T) ∈ Z. We shall denote
by Comm(D) the set of transactions committed in D, and by RO(D) its subset of
read-only transactions.

We will denote by ⊥ the constant function mapping all transactions to ⊥.
A server state is well-formed if the following conditions are satisfied:

1. WS (0) = X , that is, the first writeset of WS includes all variables (it represents
their initial values);

2. every other writeset in WS corresponds to exactly one committed, non-read-only
transaction; formally, CI restricts to a bijection Comm(D) \ RO(D)↔ [1, SC],
and ∀T ∈ Comm(D) \ RO(D) .WS (CI (T)) = ws(T);

3. if the snapshot id of a transaction is defined then its readset is not empty:
ST (T) 6= ⊥ ⇒ rs(T) 6= ∅;

4. an aborted transaction has a defined snapshot id and its readset has been modified
by a committed transaction:
CI (T) = abort ⇒ ST (T) 6= ⊥∧ (∃i ∈ [ST (T)+1,SC] .WS (i)∩ rs(T) 6= ∅);

5. the snapshot id of a non-read-only committed transaction, if defined, is less than
the commit index, and in this case its readset was not modified before committing:
¬ro(T) ∧ CI (T) 6∈ {abort,⊥} ∧ ST (T) 6= ⊥ ⇒
0 ≤ ST (T) < CI (T) ∧ (∀i ∈ [ST (T) + 1,CI (T)− 1] .WS (i) ∩ rs(T) = ∅);

6. a read-only transaction cannot abort, and if committed its commit index is one half
more than its snapshot id: ro(T)⇒
(CI (T) 6= abort) ∧ (CI (T) 6= ⊥ ⇒ ST (T) 6= ⊥ ∧ CI (T) = ST (T) + 0.5).

The behaviour of the server can be represented as a transition systems where tran-
sitions are triggered by the interactions with the clients. Every client, while executing
a transaction T ∈ T , interacts with the server to read the values of the variables in
its readset and to deliver the values of the variables in its writeset upon completion.
From the server’s side, as described in algorithm DUR Server (Fig. 1, right), this cor-
responds to receiving a sequence of receive (briefly rec) requests, followed by one
adeliver (adel) request, which depending on the situation can cause the transaction to
commit or to abort. The first rec request is handled in a special way, as it will fix the
snapshot of the data repository which is relevant for transaction T .

For our goals, the concrete values of the variables are irrelevant, as it is the name of
the variable read with a rec request, assuming that it belongs to the readset of the trans-
action. We will therefore disregard this information. assuming that rec requests will
have only the transaction issuing the request as argument, exactly as the adel request.

Definition 8 (server as transition system). A server S over a set of transactions T is
a transition system having as states the well-formed server states of Def. 7, as initial

8

state the state D0 = 〈SC 0 = 0,WS 0 = [0 7→ X],ST 0 = ⊥,CI 0 = ⊥]〉, and where
transitions are generated by the following inference rules (for the sake of readability, the
components of states that are not changed in a rule are represented by an undescore):

[read-⊥]
ST (T) = ⊥

〈_, _,ST , _〉 rec(T)−−−−→ 〈_, _,ST [T 7→ SC], _〉

[read]
ST (T) 6= ⊥

〈_, _, _, _〉 rec(T)−−−−→ 〈_, _, _, _〉
[commit]

CI (T) = ⊥,¬ro(T),¬ (∃x ∈ rs(T), i ∈ {ST (T) + 1, . . . ,SC} . x ∈WS (i))

〈SC ,WS , _,CI 〉 adel(T)−−−−−→ 〈SC + 1,WS [SC + 1 7→ ws(T)], _,CI [T 7→ SC + 1]〉

[commit-RO]
CI (T) = ⊥, ro(T)

〈_, _, _,CI 〉 adel(T)−−−−−→ 〈_, _, _,CI [T 7→ ST (T) + 0.5]〉

[abort]
CI (T) = ⊥,¬ro(T), (∃x ∈ rs(T), i ∈ {ST (T) + 1, . . . ,SC} . x ∈WS (i))

〈_, _, _,CI 〉 adel(T)−−−−−→ 〈_, _, _,CI [T 7→ abort]〉
Rules [read-⊥] and [read] encode lines 4-7 of algorithm DUR Server (Fig. 1):

since we abstract from variables values, and variable names are recorded by functions
rs and ws, the only visible effect in the server state is the assignment of a snapshot
id to a transaction, if missing. Rules [commit] and [abort] encode lines 8-19 of the
algorithm. Note that in the premises of these rules we used the set rs(T) instead of
the larger set rs(T) ∪ loc(T), as used in the algorithm in Fig. 1. This means that our
model has actually less abort transitions than the algorithm would have, and we will
show in Thm. 4 that our definition characterises exactly the histories that should be
aborted because would lead to non-serializable histories. Rule [commit-RO] records
the completion of a read-only transaction, that has no visible effect for the server in the
DUR algorithm, but is necessary in our encoding to keep function CI up to date.

Note that rules are well defined, even if ST (T) might be undefined. The snapshot id
of T is undefined if and only if the execution of T never generates a rec(T) transition,
i.e. if the readset rs(T) is empty. In this case, T is not read-only (because transactions
without any action are forbidden by Def. 2) and thus the second premise of rule [com-
mit] is vacuously satisfied, while the premise of the [abort] rule is vacuously false.

We shall often represent transitions by labeling them with both the request of the

client (over the arrow) and with the applied rule (under), as in D
rec(T)−−−−−→

[read-⊥]
D′. Fur-

thermore, we write D ⇒ D′ if there is a transition from D to D′ using the rules of
Def. 8.

To conclude this section, let us show that the well-formedness of a server state
guarantees its reachability. The lenghty proof is in the appendix.

Theorem 2 (well-formed server states are reachable). A server state over a set of
transactions T is reachable if and only if it is well-formed.

9

5 Correctness and Completeness of Deferred Update Replication

We show now that the server as previously specified guarantees the serializability of
the transactions that commit. This is a pretty straigthforward correctness result. More
interestingly, thanks to the rigorous formalization we are also able to prove that the
server is “complete”, in the sense that it never happens that a transaction aborts if it was
serializable.

Since by Thm. 2 all and only the well-formed states are reachable in an execution
of the server, the correctness of the server can be proved by showing that in any well-
formed state, the dependencies among committed transactions that are recorded in the
state are compatible with a history including them only if the history is serializable. In
other words, a non-serializable history could not be executed by the server.

Therefore let us define when a complete history containing a set of committed trans-
actions is consistent with a well-formed state of the server.

Definition 9 (history-state consistency). Let D = 〈SC ,WS ,ST ,CI 〉 be a well-formed
server state over a set of transactions T , and 〈H,≤H〉 be a complete history. Then H
and D are consistent if

1. 〈H,≤H〉 is a history over the transactions of T which committed in D (Comm(D));
2. for each pair T 6= T ′ ∈ Comm(D), for each pair of conflicting actions a ∈ T and

b ∈ T ′, we have:
(a) a <H b implies CI (T) < CI (T ′);
(b) if x ∈ rs(T ′) and b = rT′ [x] (and thus a = wT[x]), then wT[x] <H rT′ [x]

if and only if CI (T) ≤ ST (T ′).

Condition 2(a) states that the causality among conflicting actions belonging to dis-
tinct transactions in H is consistent with the commit ordering of transactions. Condition
2(b) guarantees that the history correctly records the values read by a transaction for the
variables in its readset, imposing that such values are those available at the database
snapshot ST (T). In fact, each read action in the readset must depend on all and only
the write actions for the same variable in transactions that committed not later than the
snapshot id. Note that since all pairs of conflicting events have to be causally related
in a history, it follows that rT′ [x] <H wT[x] if and only if ST (T ′) < CI (T). In
this case, since by 2(a) we also know that CI (T ′) < CI (T), we can conclude that
ST (T ′) ≤ CI (T ′) < CI (T), as ST (T ′) ≤ CI (T ′) because D is well-formed.

The next result states the correctness of DUR algorithm.

Proposition 1 (consistent histories are serializable). Let 〈H,≤〉 be a complete his-
tory consistent with a well-formed server state D = 〈SC ,WS ,ST ,CI 〉. Then H is
serializable.

Proof. Let v′D be the commit ordering on Comm(D), i.e. T v′D T ′ if CI (T) ≤
CI (T ′); it is a partial order because two read-only transactions may have the same
commit index. Let vD be any total order compatible with v′D, ordering such read-only
transactions in an arbitrary way. Then by condition 2(a) above for each pair of conflict-
ing actions aT[x] ≤H bT′ [x] in H with T 6= T ′, we have T vD T ′. Therefore H is
serializable, because it is equivalent to a serial history where all actions of a transaction
T are caused by the commit action of a transaction T ′ if and only if T ′ vD T . ut

10

Viceversa, completeness can be proved by showing that any serializable history is
consistent with a well-formed server state.

Theorem 3 (Serializable histories and consistent states). Let H be a complete seri-
alizable history without aborted transactions. Then there is a well-formed server state
D that is consistent with H .

Proof. The proof is by induction on the number of committed transactions in H .
For the base case, the initial state of Def. 8 is clearly consistent with the empty

history since there are no aborted/active transactions in H .
Now suppose we have a complete serializable history Hn+1 with n + 1 transac-

tions. Let Hn be obtained by removing one transaction, say T , that is maximal with
respect to the transaction order induced by ≤H+1. Hn is a complete serializable his-
tory because Hn+1 is. By induction hypothesis there is a well-formed server state
Dn = 〈SC ,WS ,ST ,CI 〉 that is compatible with Hn. A well-formed server state
Dn+1 can be obtained in the following way. If T is not read-only and rs(T) 6= ∅

Dn+1 = 〈SC + 1,WS [T 7→ ws(T)],ST [T 7→ i],CI [T 7→ SC + 1]〉

where i ∈ [SCU ,SC] and SCU is the last snapshot in which some variable in rs(T)
was updated (SCU = max{CI (Ti) | WS (Ti) ∩ rs(T) 6= ∅}). This state clearly
satisfies all conditions of Def. 7. If the transaction does not read any value, ST maps T
to ⊥, and also in this case all conditions are satisfied. If T is read-only, we define the
server state as

Dn+1 = 〈SC ,WS ,ST [T 7→ i],CI [T 7→ i+ 0.5]〉

Again, this state satisfies all conditions of Def. 7. In particular, in this case T must read
some value by point 2 of Def. 2. ut

To conclude, let us exploit the proposed formalization to show that the server causes
a transaction to abort only when allowing it to commit would result in a non-serializable
history. Interestingly, this property would not hold if in the premise of rule [abort] of
Def. 8 we would have used as readset rs(T) ∪ loc(T) instead of rs(T).

For a given server state, it is possible to define a history corresponding to the execu-
tion of the transactions within this state. This history contains dependencies that enforce
an order on the committed transactions according to the CI order, and otherwise would
relate conflicting events of active/committed transactions according to the way they are
related in ST and CI . Note that there can not be any dependency between active trans-
actions because such transactions only have read actions in D (all write actions of a
transaction occur together with the commit).

Definition 10 (Execution history). Let D be a well-formed server state over a set
of transactions T without aborted transactions. Then we define the execution history
consistent with D, denoted by execHist(D), as 〈H,≤H〉 where

– H contains all actions of committed transactions of D, and only the minimal read
actions from variables in rs(T) of active transactions of D;

11

– ≤H is the transitive closure of the relation containing all dependencies of transac-
tions in T plus the pairs (we consider CI and ST whenever they are defined):
〈cTi

, cTj
〉, if CI (Ti) < CI (Tj);

〈cTi
,oTj

[x]〉, if CI (Ti) < CI (Tj) and oTj
[x] conflicts with an action wTi

[x];
〈wTi

[x], rTj
[x]〉 if CI (Ti) ≤ ST (Tj); and

〈rTi
[x],wTj

[x]〉 if ST (Ti) < CI (Tj).

The conditions on well-formed states (Def. 7) assure that ≤H is a partial order. By
construction, if D has no active/aborted transactions, execHist(D) is strict. The fol-
lowing theorem states that if a transaction T will be aborted at server state D, then the
corresponding history, that is, the history that contains all committed and active trans-
actions until that moment plus the writeset and commit of T would not be serializable.

Theorem 4 (abort is necessary). Given a well-formed server state D without aborted
transactions, the corresponding execution history execHist(D) = 〈EH ,≤EH 〉 and an
active transaction T from D. Let 〈H,≤H〉 be defined as

– H = EH ∪ T ;
– ≤H is the transitive closure of the relation containing ≤EH , ≤T plus the pairs
〈ci,oT〉, if an action of transaction T conflicts with some action of transaction
Ti ∈ EH .

If rule [abort] is enabled for a transaction T then H is not serializable.

Proof. If rule [abort] is enabled then T is not read-only and its read-set is not empty.
Moreover, there is at least one transaction that committed in D, say at snapshot i ≤ SC ,
that updated a variable, say by action wi[x], that was read by T with an action rT[x] and
TS(T) < i. This means that actions wi[x] and rT[x] are in EH and rT[x] ≤EH wi[x]
by Def. 10. By definition of H , we must have that ci ≤H rT[x] and thus wi[x] ≤H

rT[x] (because all actions of a transaction are related to the commit of the transaction
and ≤H is transitive). Therefore, since ≤H includes ≤EH , ≤H induces a cycle T ≤T

H

Ti and Ti ≤T
H T and is therefore not serializable (actually ≤H is not even a history,

since ≤H is not a partial order). ut

The proof of the last result is crucially based on the fact that each variable x in the
readset of T has its initial value set by an action rT[x]: if this value is overwritten by a
concurrent transaction that commits before T , then T has to abort because its addition
to the current history would cause a cycle of dependencies. If in the precondition of
rule [abort] we would have used rs(T)∪ loc(T) (as in the algorithm of Fig. 1) instead
of rs(T), the result would not hold. In fact, if the variable overwritten by a concurrent
transaction that commits before T is a local one, i.e. it is initialized in T by a blind write
wT[x], then the corresponding action rT[x] would not belong to the execution history
EH , and in the resulting history H it would be larger than any conflicting event in EH ,
giving rise to a serializable history. Thus in this situation the algorithm of Fig. 1 would
cause an unnecessary failure of the transaction, that is avoided in our model thanks to a
careful definition of readset.

12

6 Discussion

In this paper we have analyzed the Deferred Update Replication (DUR) technique,
providing a formal model as a transition system that described the behaviour of the
algorithm. In the construction of this transition system we used a slightly more permis-
sive premise for committing transactions than the algorithm presented in [17], allowing
transactions to commit even if some update was performed in some of its read vari-
ables, as long as the first action on this variable in the committing transaction was a
write (thus, the variable was considered to be local). We showed that for this model all
reachable states correspond to serialisable histories involving the corresponding trans-
actions. Moreover, we showed that for all serialisable histories, it is possible that the
DUR algorithm generates an execution containing all these transactions. But note that,
given a server state D and a transaction T that is trying to commit, if the algorithm
suggest the abortion, this does not mean that there is no serialisable history containing
all committed transaction plus T , what it means is that it is not possible to find a seri-
alisation without changing the order of some already committed transaction. This was
stated as a theorem relating abort transitions and strict histories.

Besides being used to show the correctness and completeness of DUR, the formal
model can be used as a basis to reason about other extensions of DUR that have been
proposed recently in the literature, for example, considering replicated database parti-
tions to enhance overall throughput [17], byzantine fault tolerance [13], and in-memory
transaction execution [16]. Such extensions are very much attractive to modern compu-
tational environments (cloud computing; open systems and untrusted parties; modern
architectures) and a formal analysis involving correctness and completeness is highly
desired. More than the directly related family of DUR protocols, the contribution is
relevant to many other existing systems using replication and optimistic concurrency
control, a frequent combination.

Another interesting line of research would be to check to which extent the the-
ory of concurrency can be applied in this setting. The serialisability theory was very
well-studied mainly in the 80s and 90s, and to a great extent results are based on very
basic definitions of switching transactions to obtain equivalence notions over histories.
To handle more complex scenarios, like the ones arising e.g. from unreliable systems,
cloud computing or adaptive systems, it might be necessary to reason using more ab-
stract notions of histories and equivalences. The use of concurrency models explicitly
handling causality like event structures [10] or asymmetric event structures [2] may
allow to reason about database updates in such settings.

References

1. Armendáriz-Iñigo, J.E., González, D.M., Garitagoitia, J.R., Muñoz-escoí, Francesc, D.: Cor-
rectness proof of a database replication protocol under the perspective of the I/O automaton
model. Acta Informatica 46(4) (2009)

2. Baldan, P., Corradini, A., Montanari, U.: Contextual petri nets, asymmetric event structures
and processes. Information and Computation 171(1), 1–49 (2001)

3. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in
Database Systems. Addison-Wesley (1987)

13

4. Bhargava, B.: Concurrency control in database systems. IEEE Transactions on knowledge
and Data Engineering pp. 3–16 (1999)

5. Budhiraja, N., Marzullo, K., Schneider, F.B., Toueg, S.: The primary-backup approach. Dis-
tributed systems 2, 199–216 (1993)

6. Garcia, R., Rodrigues, R., Preguiça, N.: Efficient middleware for byzantine fault tolerant
database replication. In: 6th Conference on Computer systems. EuroSys ’11, ACM (2011)

7. Gray, J., Helland, P.: The dangers of replication and a solution. In: In Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data. pp. 173–182 (1996)

8. Kemme, B., Alonso, G.: A new approach to developing and implementing eager database
replication protocols. ACM Trans. Database Syst. 25(3) (Sep 2000)

9. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM Transac-
tions on Database Systems (TODS) 6(2), 213–226 (1981)

10. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains, part I. Theo-
retical Computer Science 13(1), 85 – 108 (1981)

11. Papadimitriou, C.H.: The serializability of concurrent database updates. Journal of the ACM
(JACM) 26(4), 631–653 (1979)

12. Pedone, F., Guerraoui, R., Schiper, A.: Transaction Reordering in Replicated Databases. In:
16th IEEE Symposium on Reliable Distributed Systems (1997)

13. Pedone, F., Schiper, N.: Byzantine fault-tolerant deferred update replication. Journal of the
Brazilian Computer Society 18 (2012)

14. Schmidt, R., Pedone, F.: A formal analysis of the deferred update technique. In: 11th In-
ternational Conference on Principles of distributed systems. OPODIS’07, Springer-Verlag,
Berlin, Heidelberg (2007)

15. Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys (CSUR) 22(4), 299–319 (1990)

16. Sciascia, D., Pedone, F.: RAM-DUR: In-memory deferred update replication. In: Reliable
Distributed Systems (SRDS), 2012 IEEE 31st Symposium on. pp. 81–90. IEEE (2012)

17. Sciascia, D., Pedone, F., Junqueira, F.: Scalable deferred update replication. In: Dependable
Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on.
pp. 1–12. IEEE (2012)

A Appendix

We present here the proof of Thm. 2.
Theorem 2 (well-formed server states are reachable). A server state over a set of
transactions T is reachable if and only if it is well-formed.

Proof. Only if part The fact that every server state reachable from the initial state
D0 of Def. 8 is well-formed can be proved easily by checking for all the inference rules
of Def. 8 that the target state of a transition is well-formed if so is the source state and
if the application conditions are satisfied.

If part Let D = 〈SCD,WSD,STD,CID〉 be a well-formed server state over T .
We proceed by induction on the cardinality of Comm(D).

If |Comm(D)| = 0, no transaction of T committed, and therefore we must have
SCD = 0,WSD = [0 7→ X], and CID = ⊥, as no transaction could have aborted
either, by condition 4 of Def. 7. Furthermore, STD(T) ∈ {⊥, 0} for all T ∈ T , i.e.
some transactions may already have 0 as snapshot id. Let us show that D is reachable,
i.e. D0 ⇒∗ D where D0 is as in Def. 8. In fact, if {Ti}1≤i≤k = {T | STD(T) = 0},

14

by condition 3 of Def. 7 we know that rs(Ti) is not empty for 1 ≤ i ≤ k, and thus there

exists a sequence of transitions D0
rec(T1)−−−−−→
[read-⊥]

D1
0 · · ·Dk−1

0

rec(Tk)−−−−−→
[read-⊥]

Dk
0 = D, where for

all i ∈ [1, k] it holds STDi
0
(T) = 0 ⇐⇒ T ∈ {T1, . . . , Ti}.

Suppose now that |Comm(D)| = n+ 1. We first show that, without loss of gener-
ality, we may assume that no transaction aborted yet in D. In fact, if {Ti}1≤i≤k = {T |
CID(T) = aborted}, then D is reachable from a state D′ where those transactions
are still active (i.e. CID′(Ti) = ⊥), with a sequence of k [abort] transitions, one for
each element of {Ti}1≤i≤k. The preconditions of such [abort] transitions are satisfied
by condition 4 of Def. 7.

Now, assuming that D has no aborted transactions, let T be one of the transactions
in Comm(D) with maximal commit index. We have two cases: either T is read-only or
not.

If T is read-only, by conditions 6 and 2 of Def. 7 we have CID(T) = STD(T) +
0.5 = SC + 0.5. Consider the server state D′ = 〈SC ,WS ,ST ′,CI ′〉 where

ST ′(x) =

{
ST (x) if x 6= T
⊥ if x = T

CI ′(x) =

{
CI (x) if x 6= T
⊥ if x = T

State D′ represents a snapshot of the system where all transactions but T are as in
state D, while T did not start yet (its snapshot id is ⊥). It is easily shown that D′ is
well-formed, therefore by inductive hypothesis D′ is reachable from D0.

It remains to show that D is reachable from D′ by accepting all the requests gen-

erated by the execution of T , i.e. D′
rec(T)−−−−−→

[read-⊥]
D′′

rec(T)−−−−→
[read]

D′′ · · ·D′′ adel(T)−−−−−−−→
[commit-RO]

D; in

fact the first transition sets ST (T) to SC , and the last one sets CI (T) to SC + 0.5.
If T is not read-only, by condition 2 of Def. 7 we have that CID(T) = SCD. Let us

additionally assume that STD(T) = CID(T)− 1. The idea, as in the case just seen, is
to remove T from D obtaining a state D′ with less committed transactions. But if there
are transactions with STD(T ′) = SCD = CID(T), the resulting state would not be
well-formed because STD(T ′) > SCD′ = SCD − 1.

Therefore let us consider state D′ obtained from D by setting STD′(T) = ⊥ for
all transactions in {T}1≤i≤k = {T | STD(T) = CID}. We clearly have D′ ⇒∗ D

with a sequence of transitions D′
rec(T1)−−−−−→
[read-⊥]

D′1 · · ·D′k−1
rec(Tk)−−−−−→
[read-⊥]

D′k = D, which are

possible by condition 3 of Def. 7.
Consider now the server state D′′ = 〈SC ′′,WS ′′,ST ′′,CI ′′〉 where

SC ′′ = SC ′ − 1, WS ′′(x) =

{
WS ′(x) if x 6= SC ′

⊥ if x = SC ′

ST ′′(x) =

{
ST ′(x) if x 6= T
⊥ if x = T

CI ′′(x) =

{
CI ′(x) if x 6= T
⊥ if x = T

State D′′ is the server state before transaction T has started, and it is easily shown to
be well-formed. Therefore by induction hypothesis D′′ is reachable from D0. To show
that D′′ ⇒∗ D′, we consider two cases, depending on the readset of T .

15

1. rs(T) = ∅: In this case, the premise of [commit] is satisfied because T is not

read-only, thus D′′
adel(T)−−−−−→
[commit]

D̂. The resulting state is

D̂ = 〈SC ′′ + 1,WS ′′[SC ′′ + 1 7→ ws(T)],ST ′′,CI ′′[T 7→ SC ′′ + 1]〉

and using SC ′′ = SC ′ − 1, CI ′(T) = SC ′, rs(T) = ∅ we conclude that

D̂ = 〈SC ′,WS ′′[CI ′(T) 7→ ws(T)],ST ′,CI ′′[T 7→ SC ′]〉

and thus D′ = D̂ is reachable.
2. rs(T) 6= ∅: Here, analogously to the case of read-only transactions, we may start

by an application of rule [read-⊥] followed by some applications of rule [read]
until all variables in rs(T) are read, leading to state D̂. Since state D was well-
formed, it is easy to check that rule [commit] is enabled for T in D̂, and that its
application yields state D′.

It remains to consider the last case, where the transaction with highest commit in-
dex in D, say T , is not read-only and where STD(T) < CID(T) − 1. We argue as
follows. Let D′ be exactly like D, but with STD′(T) = CID(T)− 1. By the argument
just presented we know that D′ is reachable from D0, i.e. there is a sequence of tran-

sitions D0 ⇒ D1 · · ·Dn−1 ⇒ Dn = D′. In this sequence, the transition · rec(T)−−−−−→
[read-⊥]

·,

that sets the value of ST (T), must occurr after transition · adel(T ′)−−−−−→
[commit]

·, which sets

CI (T ′) = CI (T)− 1. Between the two transitions, there could be other [read], [read-

⊥] and [commit-RO] transitions only. Now, it is easy to show that · rec(T)−−−−−→
[read-⊥]

· can

be anticipated by switching it with all these transitions, without affecting the well-
formedness of the states and without changing the final state. Finally, when we have

the consecutive transitions · adel(T ′)−−−−−→
[commit]

· rec(T)−−−−−→
[read-⊥]

·, we can switch them by obtaining

· rec(T)−−−−−→
[read-⊥]

· adel(T ′)−−−−−→
[commit]

·. This is possible, again, because the well-formedness of state D

ensures that ws(T ′) ∩ rs(T) = ∅. In the resulting final state only the value of ST (T)
is changed, and it is CI (T ′) = CI (T) − 2. By iterating this transformation of the se-
quence of transitions we can show that the original state D is reachable. ut

16

	A Formal Model for the Deferred Update Replication Technique

