
Boosting State Machine Replication
with Concurrent Execution

Eduardo Alchieri1, Fernando Dotti2, Parisa Marandi3, Odorico Mendizabal4 and Fernando Pedone5
1Departamento de Ciência da Computação, Universidade de Brası́lia, Brazil

2Escola Politécnica, Pontifı́cia Universidade Católica do Rio Grande do Sul, Brazil
3Microsoft, UK

4Universidade Federal do Rio Grande, FURG, Brazil
5Universitá della Svizzera italiana (USI), Switzerland

Abstract—State machine replication is a fundamental tech-
nique to render services fault tolerant. One of the key assump-
tions of state machine replication is that replicas must execute
operations deterministically. Deterministic execution often trans-
lates into sequential execution of requests at replicas. With the
increasing demand for dependable services and widespread use
of multi-core servers, several proposals for enabling concurrent
execution in state machine replication have appeared in the
literature. Invariably, these techniques exploit the fact that
independent operations, those that do not share any common
state or do not update shared state, can execute concurrently.
Existing protocols differ in several important ways. In this paper,
we survey this field of research and discuss the main aspects of
the different protocols. Central aspects include conflict detec-
tion, representation and enforcing; tradeoffs involving existing
architectures and level of allowed parallelism; workload-driven
adaptation schemes; and implications of parallel state machine
replication to recovery. Moreover, we discuss ongoing and future
work directions for high-throughput state machine replication.

I. INTRODUCTION

State machine replication (SMR) is a conceptually simple,
yet effective approach to rendering systems fault-tolerant.
The basic idea is that server replicas execute client requests
deterministically and in the same order [20], [29]. Conse-
quently, replicas transition through the same sequence of states
and produce the same output. State machine replication can
tolerate a configurable number of faulty replicas. Moreover,
application programmers can focus on the inherent complexity
of the application, while avoiding the difficulty of handling
replica failures [9]. Not surprisingly, the approach has been
successfully used in many contexts (e.g., [4], [10], [15]).

Modern multi-processor servers challenge the state machine
replication model since deterministic execution of requests
often leads to single-threaded replicas. To overcome this
limitation, a number of techniques have been proposed to
allow multi-threaded execution of requests in state machine
replication (e.g., [1], [2], [11], [17], [18], [25]). Most existing
techniques build on the observation that independent requests
can execute concurrently while conflicting requests must be
serialized and executed in the same order by the replicas—two
requests conflict if they access common state and at least one
of them updates the state, otherwise requests are independent.

Existing proposals differ on how dependency-based schedul-
ing is performed to provide concurrent execution of inde-

pendent requests and serialize conflicting requests. Based on
existing proposals, there are three classes of protocols:

• Late scheduling protocols: Requests are scheduled for
execution after they are ordered. This essentially means
that requests are scheduled at the replicas. Besides the
aforementioned requirement on conflicting requests, there
are no further restrictions on scheduling.

• Early scheduling protocols: Part of the scheduling de-
cisions are made before requests are ordered (e.g., the
request must be executed by a subset of the existing
worker threads). After requests are ordered, their schedul-
ing at each replica must respect these restrictions (i.e.,
scheduling at the replicas determines which thread in the
defined subset will execute the request).

• Static scheduling protocols: Scheduling decisions are
made before requests are ordered for execution. Thus,
there is no request scheduling at the replicas.

In this paper, we conjecture that there is an inherent tradeoff
between the moment scheduling decisions are made and the
efficiency of a particular approach. Intuitively, this seems
to hold because postponing scheduling decisions allows to
account for more information and maximize parallelism. We
provide examples to convey our intuition and use different
efficiency metrics to compare different techniques. Using the
same metrics, we show that scheduling conflicting requests
deterministically, a correctness requirement of state machine
replication, leads to schedulers that are less efficient than non-
deterministic schedulers.

Since late scheduling protocols are supposedly more ef-
ficient than their counterparts, one may wonder the raison-
d’être of static and early scheduling techniques. To shed some
light in the matter, we discuss scheduling techniques from
different perspectives. For example, it turns out that tracking
dependencies among requests in late scheduling may lead
to scheduling bottlenecks. This is the case if requests are
“light,” that is, the computing effort to execute a request and to
schedule the request are comparable. In addition to scheduling
overhead, we also consider reconfiguration and recovery.

This paper makes the following contributions: (a) We place
replication in the context of distributed applications (§II) and
briefly cover the main approaches to concurrency in state

machine replication (§III). (b) We present in detail the main
scheduling techniques proposed in the literature for parallel
state machine replication (§IV). (c) We compare these tech-
niques according to different criteria (§V). (d) We discuss
proposals that are related to the covered techniques (§VI).
(e) We discuss directions for future work (§VII).

II. BACKGROUND

We assume a distributed system composed of interconnected
processes that communicate by exchanging messages. There
is an unbounded set of client processes and a bounded set
of replica processes. The system is asynchronous: there is no
bound on message delays and on relative process speeds. We
assume the crash failure model and exclude arbitrary behavior.
A process is correct if it does not fail, or faulty otherwise.
There are up to f faulty replicas, out of 2f + 1 replicas.

A. The role of replication in distributed applications

Large distributed systems are typically structured in tiers,
a three-tier system being a prototypical case (see Figure 1).
In these environments, users are at the top tier and submit
requests to application servers, at the middle tier. Application
servers execute the application logic and submit requests to
the bottom tier. The bottom tier is responsible for handling
the application state. In this context, SMR clients are the
application servers in the middle tier and SMR replicas are
the servers in the bottom tier. In this paper, we refer to clients
and servers from the perspective of state machine replication.

Service
Execution

Agreement
and Service
Execution

UserApplicationApplication

Server SMR Replica

(b) Sequential service,
with state machine replication

Application Server

User

(a) Concurrent service,
without replication

Application
Logic

UserApplicationApplication

Application Server

User

Request

Application
Logic

Response

RequestResponse

Scheduler

Workers

Top tier

Middle tier

Bottom tier

Client SMR Client

Fig. 1. Three-tier application (a) without replication and (b) with replication.

B. Agreement and execution in SMR

SMR renders a service fault-tolerant by replicating the
server and coordinating the execution of client commands
among the replicas [20], [29]. The service is defined by a state
machine and consists of state variables that encode the state
machine’s state and a set of commands that change the state
(i.e., the input). The execution of a command may (i) read
state variables, (ii) modify state variables, and (iii) produce a

response for the command (i.e., the output). Commands are
deterministic: the changes to the state and the response of a
command are a function of the state variables the command
reads and the command itself.

SMR requires replicas to execute commands in the same
order. Therefore, before commands are executed by the repli-
cas, the replicas must agree on the execution order. These order
requirements can be encapsulated by an atomic broadcast com-
munication abstraction, defined by primitives broadcast(m)
and deliver(m), where m is a message. Atomic broadcast
ensures the following properties [8], [12]1:
• Validity: If a correct process broadcasts a message m,

then it eventually delivers m.
• Uniform Agreement: If a process delivers a message m,

then all correct processes eventually deliver m.
• Uniform Integrity: For any message m, every process

delivers m at most once, and only if m was previously
broadcast by a process.

• Uniform Total Order: If both processes p and q deliver
messages m and m′, then p delivers m before m′, if and
only if q delivers m before m′.

C. Correctness
SMR provides clients with the abstraction of a highly avail-

able service while hiding the existence of multiple replicas.
This last aspect is captured by linearizability, a consistency
criterion [13]: a system is linearizable if there is a way to
reorder the client commands in a sequence that (i) respects
the semantics of the commands, as defined in their sequen-
tial specification, and (ii) respects the real-time ordering of
commands across all clients.

III. OVERVIEW OF APPROACHES TO PARALLEL
STATE MACHINE REPLICATION

In this section we review the basics of state machine replica-
tion and overview proposals that have introduced concurrency
in state machine replication.

A. Classic SMR
State machine replication provides clients with the illusion

of a non-replicated service, that is, replication is transparent to
the clients. Clients broadcast commands to all replicas and wait
for the response from one replica (see Figure 2 (a)). Before
requests can be executed on the replicas they are ordered
by the agreement layer. Since replicas execute commands
deterministically and in the same order, every replica produces
the same response after the execution of the same command.
Differently from a non-replicated service, clients remain obliv-
ious to failures, as the service is operational despite the failure
of some of its replicas (i.e., up to f faulty replicas). In failure-
free scenarios, however, a non-replicated service is often more
efficient than a replicated service since in the replicated case
requests reach the servers through the agreement layer and
execution is single-threaded.

1Atomic broadcast needs additional synchrony assumptions to be imple-
mented [6], [9]. These assumptions are not explicitly used by the protocols
proposed in this paper.

AgreementAgreementAgreementAgreementAgreementAgreement

Agreement
(Atomic broadcast)

Replica

Service
Execution

Replica

(a) Classic

Agreement
(Atomic broadcast)

ApplicationApplication

Service
Execution

Replica

(b) Pipelined

Agreement
(Atomic broadcast)

Application

Request

Client Client Client

Response

AgreementAgreement

Service
Execution

Agreement
(Atomic broadcast)

Paralelizer

Replica

Application

Client

Classifier

AgreementAgreement

Service
Execution

Agreement
(Atomic broadcast)

Replica

Application

Client

Classifier

Service
Execution
Paralelizer

(c) Late scheduling (d) Early scheduling (e) Static scheduling

Fig. 2. Different techniques to implement state machine replication: (a) sequential execution; (b) pipelined execution; and concurrent execution with (c) late
scheduling, (d) early scheduling, and (e) static scheduling.

B. Pipelined SMR

Having replicas execute commands sequentially by a sin-
gle thread does not imply that the whole replica’s logic
must be single-threaded; multiple threads on a replica can
cooperatively handle the requests. For example, one thread
receives the requests, another executes the requests, and a third
thread responds to the clients. In [28], the authors propose
a pipelined architecture to exploit the processing power of
multicore servers. The agreement layer (atomic broadcast) and
the replicas are organized as a collection of modules connected
through shared message queues where messages are totally
ordered (see Figure 2 (b)). Although staging improves the
throughput of state machine replication, there is always only
one thread sequentially executing the commands.

C. Late scheduling

It has been observed that a replica can execute commands
that access disjoint variables (independent commands) con-
currently without violating consistency [29]. The notion of
command interdependency is application-specific and must
be provided by the application developer or automatically
extracted from the service code. Recently, several replication
models have exploited command dependencies to parallelize
the execution on replicas. We discuss these techniques in this
and in the next sections.

To benefit from command inter-dependencies to parallelize
execution, some proposals add a parallelizer (i.e., deterministic
scheduler) to the replicas [19]. The parallelizer delivers all
the commands ordered through the agreement layer, examines
command dependencies, and distributes them among a pool of
worker threads for execution (see Figure 2 (c)). To distribute
the commands among threads, besides considering dependen-
cies, the scheduler can also balance the load among threads.
Threads that are less occupied can be given more commands to
execute if their execution does not conflict with the commands
that are being executed by other threads.

D. Early scheduling

The parallelizer in late scheduling sequentially delivers and
assigns commands for execution to the worker threads. To
ensure that worker threads have balanced load and command
dependencies are not violated, the parallelizer and the worker
threads may share a graph data structure, where commands
are vertices and command interdependencies are edges. In
this scheme, the parallelizer adds vertices and edges to the
graph, upon delivery, and the worker threads remove them
from the graph, after execution. In some workloads, this shared
data structure may introduce significant overhead. The idea of
early scheduling [1], [2] is to make part of the scheduling
decisions before commands reach the parallelizer, and thus
reduce scheduling overhead (see Figure 2 (d)). For example,
it can be agreed that commands involving an object x must be
executed by a worker thread in a subset of all worker threads.
When an operation on x is delivered, the parallelizer needs
to coordinate with worker threads in the assigned subset, not
with all worker threads.

E. Static scheduling

Static scheduling is a more extreme version of early
scheduling, in which the worker thread to execute a command
is decided when the command is broadcast for execution. P-
SMR [23] is an example of static scheduling. P-SMR has
no parallelizer or scheduler and worker threads on replicas
concurrently deliver and execute multiple disjoint streams of
ordered commands. To preserve correctness, commands in
each stream must be independent from the commands in any
other stream. To ensure independency among the concurrently
delivered streams, unlike previous approaches in which com-
mand dependencies are determined at the replicas, in P-SMR
command dependencies are determined by the clients, before
commands are ordered. Commands in P-SMR are ordered by
an atomic multicast library and clients multicast independent
commands to different multicast groups. P-SMR implements

a fully parallel model in which independent commands are
ordered, delivered, and executed in parallel. Dependent com-
mands are ordered through dedicated multicast groups and
executed sequentially (see Figure 2 (e)).

IV. SCHEDULING TECHNIQUES IN DETAIL

In this section, we formalize the notion of conflict and
detail the three scheduling approaches that exploit request
independency to introduce concurrency in SMR.

A. The notion of conflict

State machine replication determines how service operations
must be propagated to and executed by the replicas. Typically,
(i) every correct replica must receive every operation; (ii) no
two replicas can disagree on the order of received and executed
operations; and (iii) operation execution must be deterministic:
replicas must reach the same state and produce the same output
upon executing the same sequence of operations. Even though
executing operations in the same order and serially at replicas
is sufficient to ensure consistency, it is not necessary.

Let R be the set of requests available in a service (i.e., all
the requests that a client can issue). A request can be any
deterministic computation involving objects that are part of
the application state. We denote the sets of application objects
that replicas read and write when executing a request r as r’s
readset and writeset, or RS(r) and WS(r), respectively. We
define the notion of conflicting requests as follows.

Definition 1 (Request conflict). The conflict relation #R ⊆
R×R among requests is defined as

(ri, rj) ∈ #R iff

 RS(ri) ∩WS(rj) 6= ∅ ∨
WS(ri) ∩RS(rj) 6= ∅ ∨
WS(ri) ∩WS(rj) 6= ∅


Requests ri and rj conflict if (ri, rj) ∈ #R. We refer to

pairs of requests not in #R as non-conflicting or independent.
Consequently, if two requests are independent (i.e., they do
not share any objects or only read shared objects), then the
requests can be executed concurrently at replicas (e.g., by
different worker threads at each replica). Concurrent execution
of requests raises the issue of how requests are scheduled for
execution on worker threads. We distinguish between three
categories of protocols.

B. Late scheduling

In this category of protocols, replicas deliver requests in
total order and then a parallelizer at each replica assigns
requests to worker threads for execution. The parallelizer
must respect dependencies between requests. More precisely,
if requests ri and rj conflict and ri is delivered before rj , then
ri must execute before rj . If ri and rj are independent, there
are no restrictions on their scheduling (e.g., the parallelizer
can assign each request to a different worker thread).

CBASE [19] is a protocol in this category. The parallelizer
at each replica delivers requests in total order and includes
them in a dependency graph where vertices represent delivered
but not yet executed requests and directed edges represent

dependencies among them. Request ri depends on rj (i.e.,
ri → rj is an edge in the graph) if ri is delivered after
rj , and they conflict. The dependency graph is shared with a
pool of worker threads that choose requests for execution from
the graph respecting their interdependencies: a request can be
executed if it is not under execution and does not depend on
any requests in the graph. After executing it, the worker thread
removes the request from the graph and chooses another one.

With CBASE each node of the graph represents a single
command submitted to the SMR. While it allows maximum
concurrency to be achieved, because it represents the needed
and sufficient information to start each command concurrently,
each command has to be compared for conflict with each other
one on graph insertion. For light commands, the cost of this
operation may exceed command execution. In [25], the authors
investigate the effect of batching on late scheduling. Instead
of submitting a command at a time, clients broadcast batches
of commands to the replicas. Dependencies are represented
among batches and not commands. This technique reduces
the overhead of dependency tracking but possibly serializes
independent commands: If any two commands in different
batches conflict, then the two batches conflict and are se-
rialized according to their delivery order. Two independent
commands included in these batches will also be serialized.
To speed up batch conflict detection, in [25] batches carry a
bitmap that encodes variables accessed by the commands in
the batch. An intersection between two batch bitmaps means
the batches conflict. This technique may include false positives
since different variables may map to the same bits in the
map. Although false positives reduce concurrency, they do
not violate safety. In conflict-free scenarios this technique is
shown to drastically increase throughput. As conflicts arise,
throughput drops but still outperforming CBASE.

1) Replica execution model: The late scheduler adopts the
following replica execution model:

i. All the replicas have n+1 threads: one scheduler thread
and n worker threads.

ii. All threads access a common dependency graph to insert
(scheduler) and to get/remove (workers) requests.

iii. The scheduler delivers requests in total order and inserts
each request in the dependency graph, according to the
conflict dependencies.

iv. Each worker selects a request from the graph if it is
available for execution, marking the request as execut-
ing, and then removes it from the graph after execution.

Algorithms 1 and 2 represent the execution model for
the scheduler and worker threads, respectively. Whenever a
request is delivered by the atomic broadcast protocol, the
scheduler (Algorithm 1) inserts it in the dependency graph.
While doing that, the scheduler must have exclusive access to
the graph. Moreover, developers must provide a function to
indicate whether two requests conflict, following Definition 1.
Each worker thread (Algorithm 2) gets one available request
from the graph and marks it as in execution. After execution,
the request is removed from the graph together with the edges
indicating its dependencies by the worker thread. The workers

must have exclusive access to the graph both to select and to
remove a request.

Algorithm 1 Late scheduler.
1: variables:
2: graph← ∅ // the dependency graph
3: on deliver(req):
4: graph.insert(req); // insert the request and its dependencies

Algorithm 2 Worker threads for late scheduling.
1: variables:
2: graph← ∅ // the dependency graph
3: while true do
4: req ← graph.next(); // get the next available request
5: exec(req) // execute request
6: graph.remove(req); // remove the request and its dependencies

2) Liveness: From the total delivery order and the conflict
relation, a directed acyclic graph emerges representing depen-
dencies. The fact that the graph is a DAG ensures that, at
any point in time, if the subset of independent commands is
processed, necessarily other commands become free for exe-
cution. This is true for the initial state (no previous command)
and inductively for the whole computation, ensuring liveness.

3) Safety: Since dependent commands are executed in the
same order across replicas, whenever any two replicas have
executed the same set of commands they have modified the
state shared by any two commands in the same order and thus
reach the same replica state.

C. Early scheduling

In the early scheduling approach [1], [2], clients tag a
request with its class identifier, before it is ordered, to identify
how it should be processed. A scheduler thread delivers re-
quests in total order and assigns, based on the tag, each request
to one or more threads, as detailed below. This association
needs knowledge of the application. For example, one could
establish that all requests that access object x are executed by
thread t0 and all requests that access object y are executed by
thread t1; requests that access both objects require threads
t0 and t1 to coordinate so that only one thread executes
the request. The advantage of early scheduling is that since
scheduling decisions are simple at the replicas (e.g., there is
no dependency graph), the scheduler is less likely to become
a performance bottleneck.

In [1] the notion of request classes is introduced to
denote concurrency and dependencies among requests, thus
encoding application knowledge. Given a service with a set
R of possible requests, a set C of classes is defined and, for
each class of C: (i) a non-empty non-overlapping subset of
requests from R is associated; and (ii) a subset of conflicting
classes is associated. A third construction rule is that each
request is associated to exactly one element of C. A conflict
among classes happens when any two requests from those
classes conflict, according to the conflict definition #R above.
Requests that belong to conflicting classes have to be serialized
according to the total order induced by atomic broadcast while

independent classes can be executed concurrently. Notice that
a class may be self-conflicting, meaning that its requests have
to be serialized.

1) Replica execution model: The early scheduler adopts the
following replica execution model to support request classes:

i. All the replicas have n+1 threads: one scheduler thread
and n worker threads.

ii. Each worker thread has a separate input queue and
removes requests from the queue in FIFO order.

iii. The scheduler delivers requests in total order and dis-
patches each request r to one or more input queues:

a. If scheduled to one worker only, r can be processed
concurrently with other requests.

b. If scheduled to more than one worker thread, then
r depends on preceding requests assigned to these
workers. Therefore, all workers involved in r must
synchronize before one worker, among the ones
involved, executes r.

2) Class to threads mapping: With this execution model,
the following class-to-thread-mapping rules can be applied to
ensure linearizable executions:

i. Every class is associated with at least one worker
thread, to ensure that requests are eventually executed.

ii. If a class is self-conflicting, it is sequential: Each request
is scheduled to all threads of the class and processed as
described in the previous section.

iii. If two classes conflict, at least one of them must be
sequential. The previous requirement may help decide
which one.

iv. For conflicting classes c1, sequential, and c2, concur-
rent, the set of workers associated to c2 must be included
in the set of workers associated to c1. This requirement
ensures that requests in c2 are serialized w.r.t. c1’s.

v. For conflicting sequential classes c1 and c2, it suffices
that c1 and c2 have at least one worker in common. The
common worker ensures that requests in the classes are
serialized.

These rules result in several possible class-to-threads map-
pings. More concretely, a mapping is defined as follows.

Definition 2 (CtoT). CtoT = C → {Seq, Cnc} × P(T)
where: C is the set of class names; {Seq, Cnc} is the
sequential or concurrent synchronization mode of a class; and
P(T) the possible subsets of T = {t0, .., tn−1}, the n worker
threads at a replica.

With a CtoT , Algorithms 3 and 4 present the execution
model for the scheduler and worker threads, respectively.
Whenever a request is delivered by the atomic broadcast
protocol, the scheduler (Algorithm 3) assigns it to one or
more worker threads. If a class is sequential, then all threads
associated with the class receive the request to synchronize
the execution (lines 4–6). Otherwise, requests are associated
to a unique thread (line 7–8), following a round-robin policy
(function next).

Algorithm 3 Early scheduler.
1: variables:
2: queues[0, ..., n− 1]← ∅ // one queue per worker thread
3: on deliver(req):
4: if req.class.smode = Seq then // if execution is sequential
5: ∀t ∈ CtoT (req.classId) // for each conflicting thread
6: queues[t].fifoPut(req) // synchronize to exec req
7: else // else assign req to one thread in round-robin
8: queues[next(CtoT (req.classId))].fifoPut(req)

Algorithm 4 Worker threads for early scheduling.
1: variables:
2: myId← id ∈ {0, ..., n− 1} // thread id, out of n threads
3: queue[myId]← ∅ // the queue with requests for this thread
4: barrier[C] // one barrier per request class
5: while true do
6: req ← queue.fifoGet() // wait until a request is available
7: if req.class.smode = Seq then // sequential execution:
8: if myId = min(CtoT (req.classId)) then // smallest id:
9: barrier[req.classId].await() // wait for signal

10: exec(req) // execute request
11: barrier[req.classId].await() // resume workers
12: else
13: barrier[req.classId].await() // signal worker
14: barrier[req.classId].await() // wait execution
15: else // concurrent execution:
16: exec(req) // execute the request

Each worker thread (Algorithm 4) takes one request at a
time from its queue in FIFO order (line 6) and then proceeds
depending on the synchronization mode of the class. If the
class is sequential, then the thread synchronizes with the
other threads in the class using barriers before the request is
executed (lines 8–14). In the case of a sequential class, only
one thread executes the request. If the class is concurrent, then
the thread simply executes the request (lines 15–16).

3) Safety: Since each request is associated to a class and
classes have at least one thread, each request is enqueued to
at least one thread. The thread queues are compatible with the
total order since the scheduler delivers and assigns requests
to threads in delivery order. Whenever two requests conflict,
they belong to conflicting classes. The mapping enforces that
these conflicting classes are either both sequential or at least
one of them is sequential. In the first case threads of both
classes process sequentially, and since they have at least one
overlapping thread, this one thread synchronizes the threads
from both classes. As the input queue of the threads is
compatible with the total delivery order, so is the request
processing. In the second case, all the threads of the concurrent
class are also threads of the sequential one. Thus, whenever a
request to the sequential class is issued, it is assigned also to
all the threads of the concurrent class. Since this assignment is
performed by the scheduler in delivery order, any concurrent
requests previous (or subsequent) to the sequential one will be
executed before (or after) preserving the total order. Moreover,
it was showed in [1], [2] that if replicas use the same class
definition, irrespective of the number of threads, a correct
class-to-thread mapping will enforce the correct ordering of
conflicting requests.

4) Liveness: At any point in time, the first element of the
queue of a worker thread either is a unique request to that
thread or it appears in different thread queues. In the first case,
according to the execution model and mapping, the request
is independent and can be executed. In the second case, all
the threads with that request have to synchronize to execute
it. Since all input queues are compatible with the delivery
order, any request previous to this one appears before it in
all needed threads and therefore can be processed before it,
which guarantees that the request will eventually be the first
in all queues where it appears and thus can be executed (i.e.,
the approach is deadlock-free).

D. Static scheduling

The main idea of static scheduling [23] is to remove
scheduling decisions from the replicas. Consequently, there
is no scheduler that could become a performance bottleneck
at the replicas. Similar to the early scheduler, clients tag
requests with the ids of the worker threads that will execute
the requests. At the replica side, the atomic broadcast primitive
uses the request tag to deliver requests directly to worker
threads, without involving a scheduler. If two requests conflict,
then they must be addressed to at least one common thread,
which will impose a sequential execution on the requests.
Independent requests can be addressed to different threads to
be executed in parallel.

We call this technique static scheduling because clients
directly choose the worker thread to execute their requests and
this mapping does not change. This is differently from the pre-
vious two techniques, which implement dynamic scheduling.
In early scheduling, clients identify the requests classes but
the final mapping is done by the scheduler at the replicas.

1) Replica execution model: The static scheduler adopts the
following replica execution model:

i. All the replicas have n worker threads.
ii. Clients tag requests with the ids of one or more worker

threads and the atomic broadcast primitive delivers
requests directly to the threads, according to the ids
contained in the requests.

iii. If a request is delivered to one worker only, then the
request can be processed concurrently with requests
delivered in other worker threads.

iv. If two or more worker threads deliver the same request r,
it is because r depends on preceding requests delivered
by these workers. Therefore, all workers involved in r
must synchronize before one worker, among the ones
involved, executes r.

Algorithm 5 presents the execution model for the worker
threads. Whenever a request is delivered by the atomic broad-
cast protocol, the worker thread identifies if it can execute
the request without any synchronization, i.e., when the client
tagged a request with only its identifier (lines 4-6). Otherwise,
the thread must synchronize with the other threads involved in
the conflict. For this purpose, threads communicate by signals
and the thread with the lowest identifier executes the request
while the other threads wait for the execution (lines 7-17).

Algorithm 5 Worker threads for static scheduling.
1: variables:
2: myId← id ∈ {0, ..., n− 1} // thread id, out of n threads
3: on deliver(req):
4: ids← tags(req) // get the threads ids
5: if |ids| == 1 then //request assigned to only this thread
6: exec(req) // execute request
7: else // conflict: more threads involved
8: e← min(ids)
9: if e = myId then

10: for j ∈ ids : j 6= myId do
11: wait for signal from j // waits all threads to stop
12: exec(req) // execute request
13: for j ∈ ids : j 6= myId do
14: signal j // resumes all threads
15: else
16: signal e // signals thread with lowest id to execute
17: wait for signal from e // waits the execution

2) Liveness and Safety: Due to the similarities with the
early scheduling strategy, liveness and safety can be analo-
gously argued for static scheduling.

V. ANALYSIS OF SCHEDULING TECHNIQUES

This section briefly compares the various approaches to par-
allel state machine replication according to different criteria.

A. Scheduling efficiency

Now we discuss how different scheduling techniques com-
pare using three criteria: average turnaround time, percentage
of time processors are idle in a two-processor system, and
makespan. The turnaround time is the interval from the time
the request is delivered at a replica to the time it is executed;
makespan is the total time needed to complete all requests.

We consider four requests: three read requests on different
variables, R(x), R(y), and R(z), and a write request W (x, z),
delivered in this order. Moreover, the requests have all been
delivered at the replica when scheduling starts. The requests
take 2, 4, 10 and 1 time units to be executed, respectively. The
only conflict is between the write request and the read requests
on x and z. Figure 3 shows the results for a concurrent non-
deterministic scheduling, classic state machine replication, late
scheduling, and two cases for early scheduling and static
scheduling.

1) Determinism vs. non-determinism: In Figure 3, non-
replicated case, consider that requests arrived in the same
order as they are delivered in the other techniques, that is,
R(x), R(y), R(z), and W (x, z). If the service is not replicated,
as long as conflicting requests are serialized, any possible
order is correct, even if conflicting requests are reordered with
respect to their arrival order. Reordering requests in this case
does not harm linearizability since the reordered requests have
not been answered yet; thus clients can not observe any real-
time dependencies.

State machine replication, however, restricts concurrency
to impose the same relative order of conflicting requests on
replicas. Therefore, in this case, conflicting requests have to
follow the total delivery order. In fact, this is the case for all

scenarios of Figure 3 with replication, where R(x) and R(z)
must precede W (x, z).

We detail how the three metrics were computed for the non-
replicated case only, as the calculation for the other cases is
similar. The turnaround time for requests R(x), R(y), R(z),
and W (x, z) is, respectively, 1, 3, 7, and 10 time units, for an
average of 5.25; this was the lowest average turnaround time
for the techniques shown. In this execution, two processors
were used during 10 time units each, for a total of 20 time
units; out of this time, thread T1 was idle for 3 time units,
resulting in 15% of idle time. Thread T2 determines the
makespan of the execution since it is the last one to finish,
at time 10.

2) Late scheduling: As already mentioned, the late schedul-
ing technique detects pairwise dependencies among requests,
representing them as a DAG. The DAG has enough in-
formation to optimize concurrency: for each request in the
dependency graph, each other previous pending request that
it depends on is identified. Since the unity of execution is a
request and dependencies are pairwise among requests, any
possible concurrency among execution units can be identified.
Figure 3, late scheduling, shows one possible way to schedule
requests that respects request dependencies.

3) Early scheduling: The early scheduling technique, as
mentioned, allows to group requests in request classes to
handle them with common restrictions. Whenever we group
requests in coarse classes and not represent finer independence
details, we may serialization of requests, which is safe but
reduces performance. Moreover, even if all possible inde-
pendence is represented by the class definition, for instance
using one class per request and thus being equivalent to the
granularity of late scheduling, the class to thread mapping is
fixed and may also induce serialization while late scheduling
could take any free thread from a pool to execute the next free
request. Figure 3 shows two cases for early scheduling. Case
1 shows a situation where there is a concurrent class for read
operation, associated to threads T1 and T2, and a sequential
class for write operations. The class for writes conflicts with
the read class, thus synchronizing all threads. Case 2 depicts
the situation where reads and writes to x and z are handled
in a sequential request class independent from accesses to y.

4) Static scheduling: Figure 3 also shows two cases for
static scheduling. In Case 1, requests on x and y are assigned
to thread T1, requests on z are assigned to thread T2, and
requests on x and z are assigned to both threads, which
must synchronize before the request is executed by one of the
threads (in the example, T1). In Case 2, requests that access
x and z are scheduled for execution at T1, and requests on y
are scheduled for execution at T2.

B. Scheduling overhead

As concurrency may increasingly drop following the tech-
niques presented above, so does the scheduling overhead at
server side. The overhead of the scheduler at server side is
important since it is a unique point through which all requests
have to pass.

Concurrent
No replication

W(x,z) R(x) R(z)

R(y)

W(x,z)

R(x)

R(z)

R(y)

T1

T2

T1

T2

W(x,z)R(x) R(z)

R(y)

T1

T2

W(x,z)R(x)

R(z)

R(y)T1

T2

W(x,z)R(x) R(z)

R(y)

T1

T2

Late scheduling

Early scheduling
Case 1

Static scheduling
Case 1

Static scheduling
Case 2

%idle

15% (1)

29% (3)

23% (2)

15% (1)

35% (4)

15% (1)

W(x,z)R(x) R(z)

R(y)

T1

T2

Early scheduling
Case 2

Makespan

10 (1)

12 (3)

11 (2)

10 (1)

13 (4)

10 (1)

Average
turnaround

time

5.25 (1)

5.75 (2)

7.25 (4)

6.25 (3)

7.75 (5)

6.25 (3)

W(x,z)R(x) R(z)R(y)
Sequential

T1

T2
50% (6) 17 (6)11.75 (6)

Fig. 3. Executions of different scheduling techniques (for each metric, the relative position of each technique is shown between parenthesis).

Static scheduling imposes no scheduling overhead at server
side while in early scheduling a choice is made to which thread
to dispatch (in case of independent requests) or to which set
of threads to dispatch (in case of conflicting requests). In any
case, requests are enqueued for execution. Assuming that each
worker thread has its queue, contention at these data structures
is limited.

With late scheduling, a central structure (the DAG) is kept
and the inclusion of a new request is O(n), where n is the
size of the graph. Also, the more elements in the graph, the
more conflicts may arise. This may lead to contention for this
structure while worker threads may try to access it to take free
requests for processing.

C. Reconfiguration

Reconfiguration is the process of modify the multiprogram-
ming level (MPL) of a parallel SMR, i.e., the number of
worker threads [1]. Although the MPL does not significantly
affect the performance of the late scheduler, since all needed
synchronization is executed in the dependency graph, it im-
pacts the performance of early [1] and static [23] schedulers
because synchronization among the threads involved in a
conflict is needed: a high MPL increases performance in
workloads with predominantly non-conflicting requests, but
negatively impacts performance if conflicting requests are the
norm; conversely, a low MPL excels in workloads dominated
by conflicting requests, but underperforms in the presence of
non-conflicting requests. The main idea of reconfigurations is
to keep the MPL according to the current workload.

Reconfiguring the MPL of a late scheduler is straightfor-
ward, as all synchronization is enforced by the graph. Thus,

threads can be spawned and killed without coordination. In
the early scheduler, it is necessary to synchronize the servers
before executing a reconfiguration since the scheduler at the
replicas executes the final mapping of requests to worker
threads [1]. Finally, the viability of reconfiguration of a
static scheduler is still an open problem: it is necessary to
synchronize the clients since they assign requests directly to
the worker threads.

D. Recovery

Parallel state machine replication renders recovery partic-
ularly challenging since throughput under normal execution
(i.e., in the absence of failures) is expected to be high [23],
[25]. Consequently, the log of commands that a recovering
replica needs to apply to catch up with operational replicas
may be large, which delays recovery. This situation renders
the replicated system more vulnerable to failures since a
recovering replica is only available once it can process new
client commands.

Traditionally, recovering a crashed server boils down to
fetching and installing a service checkpoint and retrieving
and (re-)executing commands that are not included in the
checkpoint. With standard recovery techniques, a recovering
replica can only execute “new commands” after it has fetched
and installed a checkpoint and retrieved and executed “old
commands” (commands that were already ordered and perhaps
even executed but are not included in the installed checkpoint).

Parallel state machine replication techniques exploit request
interdependencies as already discussed. The same observation
that independent commands can execute concurrently is also
useful for designing efficient recovery protocols. In [24], the

authors present a recovery protocol that allows new commands
to execute concurrently with recovery, before replicas are
completely updated: a new command does not need to wait
for an old command to be executed if the two are indepen-
dent. A second optimization is inspired by the fact that a
considerable amount of recovery time is due to state transfer
and installation. Authors propose to divide a checkpoint into
segments, and retrieve and install each segment only when it is
needed for the execution of a command. Thus, a segment can
be concurrently retrieved and installed with other segments.
Checkpoint segments are handled on demand and possibly
concurrently.

VI. RELATED WORK

In this section, we review other replication approaches
related to the ones surveyed in this text. They fall in two
categories: (i) optimistic scheduling and (ii) approaches that
solve non-determinism during run-time (execution) using dif-
ferent strategies that enforce replicas to have the same trace
of causally dependent commands.

Eve [18] proposes a significant depart from the previous
techniques. Following an optimistic approach, in Eve replicas
first execute the requests and then verify the correctness of the
states through a verification stage, hence named as Execute-
Verify (EV). Eve distinguishes one of the replicas as the
primary to which clients send their requests. The primary
replica organizes the requests into batches and assigns to each
batch a unique sequence number. The primary then propagates
the batched requests to the other replicas. All the replicas,
including the primary, are equipped with a deterministic mixer.
Using the application semantics, the mixer converts a batch of
requests to a set of parallel batches such that all the requests
in a parallel batch can be executed in parallel. Once the
execution of a parallel batch terminates, replicas calculate a
token based on their current state and send their token to
the verification stage. The verification stage investigates the
equality of the tokens. If the tokens are equal, replicas commit
the requests and respond to the clients. Otherwise, replicas
must roll back the execution and re-execute the requests in
the order determined by the primary as it was batching the
requests. The verification stage also adds to Eve the advantage
of detecting concurrency bugs.

In [17], authors present Storyboard, an approach that sup-
ports deterministic execution in multi-threading environments.
Their strategy uses a forecasting mechanism that, based
on application-specific knowledge, heuristically predicts an
ordered sequence of locks across replicas. Authors report
forecasts to emerge from off-line executions to identify lock-
ing patterns of the application. While forecasts are correct,
commands can be executed in parallel. If the forecast made
by the predictor does not match the execution path of a
command, then the replica has to establish a deterministic
execution order in cooperation with other replicas. In this case,
Storyboard blocks the execution of the command and repre-
dicts the command’s execution path. The repredict command
runs a consensus protocol to determine a consistent point in

the execution order across all replicas. The reprediction will
contain at least the lock which the command currently seeks
to acquire, but possibly also further locks. All replicas will
proceed with the new forecast. This cycle of reprediction is
repeated until the command completes.

CRANE [7] is a parallel SMR system that transparently
replicates general multi-threaded programs. One important
idea of CRANE is to combine the input determinism of Paxos
and the execution determinism of deterministic multi-threading
(DMT) [14], [26]. This technique maintains a logical time that
advances deterministically on each thread’s synchronization
within a replica. Within each replica, CRANE intercepts
POSIX socket and the Pthreads synchronization interface
and implement deterministic versions of such synchronizing
operations. To ensure total order delivery of synchronization
commands across replicas, for each incoming socket call (e.g.,
accept() or recv()), CRANE runs a distributed consen-
sus protocol, so that correct replicas see exactly the same se-
quence of calls. CRANE schedules synchronization commands
using deterministic multi-threading (DMT) and assure that
requests are processed in the same logical time across replicas.
In terms of application design simplicity, CRANE [7] is a
good choice. Its drawback is that multithreaded applications
with intense synchronization incur higher overhead.

Rex [11] uses an execute-agree-follow strategy. A single
server (primary) receives requests and processes them. The
execution of each request has to be deterministic, the only
source of non-determinism being the concurrent execution of
requests. Fine-grained locks are assumed to access shared vari-
ables and synchronization events (e.g. lock, unlock) records
causality among requests processing in a trace. The server
periodically proposes the trace for agreement to the pool
of replicas. The other replicas receive the traces and replay
the execution respecting the partial order of commands. The
Execute-agree-follow model proposed by Rex resembles the
passive replication model more than the SMR.

VII. FINAL REMARKS

This paper surveyed techniques that boost SMR perfor-
mance by parallelizing request execution. These techniques
improve system performance, when compared to a classic
SMR, and introduce tradeoffs. In the following, we briefly
overview directions for future work.

1) Late scheduling concurrent graph: Regarding late
scheduling, existing proposals rely on a DAG for dependency
tracking and enforcing. This DAG is accessed concurrently
by the scheduler and worker threads. Existing implementations
use a single lock on the whole graph. It is natural to investigate
concurrent structures to manipulate this graph with a finer
grain locking strategy. Interestingly, we note that concurrent
manipulation of graph data structures is a recent research topic
[16], [21], [22], [27]. Among existing work, [27] discusses
concurrency for a graph structure close to the one used in late
scheduling, where both nodes and edges can be created and
deleted and the graph is acyclic and directed. Nodes represent
transactions and edges represent conflicts among transactions.

The graph is used to calculate serializable executions. When-
ever a transaction is added, edges are included to represent
conflicts and the graph is checked for cycles. In case of cycles,
vertices and edges are removed to keep the graph acyclic.

2) Work stealing in early and static scheduling: In these
scheduling techniques, requests are assigned to the queues of
the worker threads for execution. Consequently, it is possible
that some thread receives more requests than the others, de-
pending on the mapping adopted in the system. This problem
is more likely to happen in the static scheduler since the
clients define the thread to execute its requests without any
information about the system current load. Since requests
could have different execution costs, this behavior affects also
the early scheduler. Since threads may need to synchronize
with overloaded threads, this phenomenon may impact the
overall system performance.

Work stealing [3] is a technique that could be adapted to
early and static schedulers in order to decrease the load at
the overloaded threads. With this approach, one thread can
steal the requests assigned to other threads. Consequently, all
threads can present balanced load. The main challenge is that
threads must steal requests and, at the same time, respect the
interdependencies among the requests.

3) Dependency handling: While important scheduling tech-
niques need information about a service’s request conflicts,
this information has to be declared by the application de-
veloper. The problem of identifying possible concurrency
among requests is analogous to the problem of parallelizing
sequential programs: parts of the program candidate to work
in parallel have to be independent such that any relative
order among them leads to consistent results. While there are
already results towards parallelization of sequential programs,
the automatic detection of independent program parts is not
trivial, when possible at all. If such detection needs pointer
analysis, for instance, this leads to an undecidable problem [5].
Nonetheless, the investigation of the applicability of existing
techniques to parallel SMR as well as possible restrictions to
the problem to allow automatic conflict detection are open
questions.

Besides, although run-time structures and algorithms to de-
tect and track dependencies are in use, they impose important
overhead. This is specially the case for exact conflict detection
techniques, such as used in late scheduling that impose pair-
wise comparison with all pending requests. Structures such
as bloom-filters or bitmaps reduce overhead but may allow
false-positives at rates that compromise performance gains.
Designing structures and algorithms that efficiently handle
dependencies is an open research problem.

ACKNOWLEDGMENTS

This work is supported in part by CAPES (Brazil) and
MCTIC/RNP (Brazil) through projects Scalable Dependabil-
ity (PVE 88887.124751/2014-00) and P4Sec (grant number
002949), respectively.

REFERENCES

[1] E. Alchieri, F. Dotti, O. M. Mendizabal, and F. Pedone. Reconfiguring
parallel state machine replication. In SRDS, 2017.

[2] E. Alchieri, F. Dotti, and F. Pedone. Early scheduling in parallel state
machine replica. In ACM SoCC, 2018.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded compu-
tations by work stealing. J. ACM, 46(5):720–748, Sept. 1999.

[4] M. Burrows. The chubby lock service for loosely coupled distributed
systems. In OSDI, 2006.

[5] V. T. Chakaravarthy. New results on the computability and complexity
of points–to analysis. SIGPLAN Not., 38(1):115–125, Jan. 2003.

[6] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of ACM, 43(2):225–267, 1996.

[7] H. Cui, R. Gu, C. Liu, T. Chen, and J. Yang. Paxos made transparent.
In SOSP, 2015.

[8] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast
algorithms: Taxonomy and survey. ACM Computing Surveys, 36(4):372–
421, Dec. 2004.

[9] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374–382, Apr. 1985.

[10] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. Anderson.
Scalable consistency in Scatter. In SOSP, 2011.

[11] Z. Guo, C. Hong, M. Yang, L. Zhou, L. Zhuang, and D. Zhou. Rex:
Replication at the speed of multi-core. In EuroSys, 2014.

[12] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related
problems. In S. Mullender, editor, Distributed Systems, pages 97–145.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 1993.

[13] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(3):463–492, 1990.

[14] N. Hunt, T. Bergan, L. Ceze, and S. D. Gribble. DDOS: taming
nondeterminism in distributed systems. In ACM SIGPLAN Notices,
volume 48, pages 499–508, 2013.

[15] J. D. J. C. Corbett and M. E. et al. Spanner: Google’s globally distributed
database. In OSDI, 2012.

[16] N. D. Kallimanis and E. Kanellou. Wait-Free Concurrent Graph Objects
with Dynamic Traversals. In OPODIS, 2015.

[17] R. Kapitza, M. Schunter, C. Cachin, K. Stengel, and T. Distler. Story-
board: Optimistic deterministic multithreading. In HotDep, 2010.

[18] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin.
All about eve: execute-verify replication for multi-core servers. In OSDI,
2012.

[19] R. Kotla and M. Dahlin. High throughput byzantine fault tolerance. In
DSN, 2004.

[20] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[21] K. Lev-Ari, G. Chockler, and I. Keidar. A constructive approach for
proving data structures’ linearizability. In DISC, 2015.

[22] K. Lev-Ari, G. V. Chockler, and I. Keidar. On correctness of data
structures under reads-write concurrency. In DISC, 2014.

[23] P. J. Marandi, C. E. Bezerra, and F. Pedone. Rethinking state-machine
replication for parallelism. In ICDCS, 2014.

[24] O. M. Mendizabal, F. L. Dotti, and F. Pedone. High performance
recovery for parallel state machine replication. In ICDCS, 2017.

[25] O. M. Mendizabal, R. T. S. Moura, F. L. Dotti, and F. Pedone. Efficient
and deterministic scheduling for parallel state machine replication. In
IPDPS, 2017.

[26] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient determin-
istic multithreading in software. ACM Sigplan Notices, 44(3):97–108,
2009.

[27] S. Peri, M. Sa, and N. Singhal. Maintaining acyclicity of concurrent
graphs. CoRR, abs/1611.03947, 2016.

[28] N. Santos and A. Schiper. Achieving high-throughput state machine
replication in multi-core systems. In ICDCS, 2013.

[29] F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys, 22(4):299–319,
1990.

