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Abstract. This tutorial presents an overview of automatic speech recognition 

systems. First, a mathematical formulation and related aspects are described. 

Then, some background on speech production/perception is presented. An 

historical review of the efforts in developing automatic recognition systems is 

presented. The main algorithms of each component of a speech recognizer and 

current techniques for improving speech recognition performance are 

explained. The current development of speech recognizers for Portuguese and 

English languages is discussed. Some campaigns to evaluate and assess speech 

recognition systems are described. Finally, this tutorial concludes by discussing 

some research trends in automatic speech recognition.  
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1 Introduction 

Speech is a versatile mean of communication. It conveys linguistic (e.g., message 

and language), speaker (e.g., emotional, regional, and physiological characteristics of 

the vocal apparatus), and environmental (e.g., where the speech was produced and 

transmitted) information. Even though such information is encoded in a complex 

form, humans can relatively decode most of it.  

This human ability has inspired researchers to develop systems that would emulate 

such ability. From phoneticians to engineers, researchers have been working on 

several fronts to decode most of the information from the speech signal. Some of 

these fronts include tasks like identifying speakers by the voice, detecting the 

language being spoken, transcribing speech, translating speech, and understanding 

speech. 

Among all speech tasks, automatic speech recognition (ASR) has been the focus of 

many researchers for several decades. In this task, the linguistic message is the 

information of interest. Speech recognition applications range from dictating a text to 

generating subtitles in real-time for a television broadcast.  

Despite the human ability, researchers learned that extracting information from 

speech is not a straightforward process. The variability in speech due to linguistic, 

physiologic, and environmental factors challenges researchers to reliably extract 
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relevant information from the speech signal. In spite of all the challenges, researchers 

have made significant advances in the technology so that it is possible to develop 

speech-enabled applications.  

This tutorial provides an overview of automatic speech recognition. From the 

phonetics to pattern recognition methods, we show the methods and strategies used to 

develop speech recognition systems.  

This tutorial is organized as follows. Section 2 provides a mathematical 

formulation of the speech recognition problem and some aspects about the 

development such systems. Section 3 provides some background on speech 

production/perception. Section 4 presents an historical review of the efforts in 

developing ASR systems. Section 5 through 8 describes each of the components of a 

speech recognizer. Section 9 describes some campaigns to evaluate speech 

recognition systems. Section 10 presents the development of speech recognition. 

Finally, Section 11 discusses the future directions for speech recognition.  

2 The Speech Recognition Problem 

In this section the speech recognition problem is mathematically defined and some 

aspects (structure, classification, and performance evaluation) are addressed. 

2.1 Mathematical Formulation 

The speech recognition problem can be described as a function that defines a 

mapping from the acoustic evidence to a single or a sequence of words. Let X = (x1, 

x2, x3, …, xt) represent the acoustic evidence that is generated in time (indicated by the 

index t) from a given speech signal and belong to the complete set of acoustic 

sequences, . Let W = (w1, w2, w3, …, wn) denote a sequence of n words, each 

belonging to a fixed and known set of possible words, . There are two frameworks 

to describe the speech recognition function: template and statistic.  

2.1.1 Template Framework 

In the template framework, the recognition is performed by finding the possible 

sequence of words W that minimizes a distance function between the acoustic 

evidence X and a sequence of word reference patterns (templates) [1]. So the problem 

is to find the optimum sequence of template patterns, R
*
, that best matches X, as 

follows 

𝑅∗ = argmin
𝑅𝑠

𝑑 𝑅𝑠 ,𝑋  

where R
S
 is a concatenated sequence of template patterns from some admissible 

sequence of words. Note that the complexity of this approach grows exponentially 

with the length of the sequence of words W. In addition, the sequence of template 

patterns does not take into account the silence or the coarticulation between words. 

Restricting the number of words in a sequence [1], performing incremental processing 
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[2], or adding a grammar (language model) [3] were some of the approaches used to 

reduce the complexity of the recognizer.  

This framework was widely used in speech recognition until the 1980s. The most 

known methods were the dynamic time warping (DTW) [3-6] and vector quantization 

(VQ) [4, 5]. The DTW method derives the overall distortion between the acoustic 

evidences (speech templates) from a word reference (reference template) and a speech 

utterance (test template). Rather than just computing a distance between the speech 

templates, the method searches the space of mappings from the test template to that of 

the reference template by maximizing the local match between the templates, so that 

the overall distance is minimized. The search space is constrained to maintain the 

temporal order of the speech templates. Fig. 1 illustrates the DTW alignment of two 

templates. 

 

Fig. 1. Example of dynamic time warping of two renditions of the word ―one‖. 

The VQ method encodes the speech patterns from the set of possible words into a 

smaller set of vectors to perform pattern matching. The training data from each word 

wi is partitioned into M clusters so that it minimizes some distortion measure [1]. 

The cluster centroids (codewords) are used to represent the word wi, and the set of 

them is referred to as codebook. During recognition, the acoustic evidence of the test 

utterance is matched against every codebook using the same distortion measure. The 

test utterance is recognized as the word whose codebook match resulted in the 

smallest average distortion. Fig. 2 illustrates an example of VQ-based isolated word 

recognizer, where the index of the codebook with smallest average distortion defines 

the recognized word. Given the variability in the speech signal due to environmental, 

speaker, and channel effects, the size of the codebooks can become nontrivial for 

storage. Another problem is to select the distortion measure and the number of 

codewords that is sufficient to discriminate different speech patterns. 
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Fig. 2. Example of VQ-based isolated word recognizer. 

2.1.2 Statistical Framework 

In the statistical framework, the recognizer selects the sequence of words that is 

more likely to be produced given the observed acoustic evidence. Let 𝑃 𝑊 𝑋  denote 

the probability that the words W were spoken given that the acoustic evidence X was 

observed. The recognizer should select the sequence of words 𝑊  satisfying  

𝑊 = argmax
𝑊∈𝜔

𝑃 𝑊 𝑋 .  

However, since 𝑃 𝑊 𝑋  is difficult to model directly, Bayes‘ rule allows us to rewrite 

such probability as 

𝑃 𝑊 𝑋 =  
𝑃 𝑊 𝑃 𝑋 𝑊 

𝑃 𝑋 
 

where P 𝑊  is the probability that the sequence of words W will be uttered, P 𝑋 𝑊  
is the probability of observing the acoustic evidence X when the speaker utters W, and 

𝑃 𝑋  is the probability that the acoustic evidence X will be observed. The term 𝑃 𝑋  
can be dropped because it is a constant under the max operation. Then, the recognizer 

should select the sequence of words 𝑊  that maximizes the product 𝑃 𝑊 𝑃 𝑋 𝑊 , 
i.e., 

𝑊 = argmax
𝑊∈𝜔

𝑃 𝑊 𝑃 𝑋 𝑊 . (1) 

This framework has dominated the development of speech recognition systems since 

the 1980s. 

2.2 Speech Recognition Architecture 

Most successful speech recognition systems are based on the statistical framework 

described in the previous section. Equation (1) establishes the components of a speech 

recognizer. The prior probability P 𝑊  is determined by a language model, and the 
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likelihood 𝑃 𝑋 𝑊  is determined by a set of acoustic models, and the process of 

searching over all possible sequence of words W that maximizes the product is 

performed by the decoder. Fig. 3 shows the main components of an ASR system.  

 

Fig. 3. Architecture of an ASR system. 

The statistical framework for speech recognition brings four problems that must be 

addressed: 

1. The acoustic processing problem, i.e., to decide what acoustic data X is going to be 

estimated. The goal is to find a representation that reduces the model complexity 

(low dimensionality) while keeping the linguistic information (discriminability), 

despite the effects from the speaker, channel or environmental characteristics 

(robustness). In general, the speech waveform is transformed into a sequence of 

acoustic feature vectors, and this process is commonly referred to as feature 

extraction. Some of the most used methods for signal processing and feature 

extraction are described in Section 5.  

2. The acoustic modeling problem, i.e., to decide on how 𝑃 𝑋 𝑊  should be 

computed. Thus several acoustic models are necessary to characterize how 

speakers pronounce the words of W given the acoustic evidence X. The acoustic 

models are highly dependent of the type of application (e.g., fluent speech, 

dictation, commands). In general, several constraints are made so that the acoustic 

models are computationally feasible. The acoustic models are usually estimated 

using Hidden Markov Models (HMMs) [1], described in Section 6. 

3. The language modeling problem, i.e., to decide on how to compute the a priori 

probability 𝑃 𝑊  for a sequence of words. The most popular model is based on a 

Markovian assumption that a word in sentence is conditioned on only the previous 

N-1 words. Such statistical modeling method is called N-gram and it is described in 

Section 7. 

4. The search problem, i.e., to find the best word transcription 𝑊  for the acoustic 

evidence X, given the acoustic and language models. Since it is impractical to 

exhaustively search all possible sequence of words, some methods have been 

developed to reduce the computational requirements. Section 8 describes some of 

the methods used to perform such search.  



6 André Gustavo Adami 

2.3 Automatic Speech Recognition Classification 

ASR systems can be classified according to some parameters that are related to the 

task. Some of the parameters are: 

─ Vocabulary size: speech recognition is easier when the vocabulary to recognize is 

smaller. For example, the task of recognizing digits (10 words) is relatively easier 

when compared to tasks like transcribing broadcast news or telephone 

conversations that involve vocabularies of thousands of words. There are no 

established definitions, but small vocabulary is measure in tens of words, medium 

in hundreds of words, large in thousands of words and up [6]. However, the 

vocabulary size is not a reliable measure of task complexity [7]. The grammar 

constraints of the task can also affect the complexity of the system. That is, tasks 

with no grammar constraints are usually more complex because all words can 

follow any word.  

─ Speaking style: this defines whether the task is to recognize isolated words or 

continuous speech. In isolated word (e.g., digit recognition) or connected word 

(e.g., sequence of digits that form a credit card number) recognition, the words are 

surrounded by pauses (silence). This type of recognition is easier than continuous 

speech recognition because, in the latter, the word boundaries are not so evident. In 

addition, the level of difficulty varies among the continuous speech recognition due 

to the type of interaction. That is, recognizing speech from human-human 

interactions (recognition of conversational telephone speech, broadcast news) is 

more difficult than human-machine interactions (dictation software) [8]. In read 

speech or when humans interact with machines, the produced speech is simplified 

(slow speaking rate and well articulated) so that it is easy to understand it [7].  

─ Speaker mode: the recognition system can be used by a specific speaker (speaker 

dependent) or by any speaker (speaker independent). Despite the fact that speaker 

dependent systems require to be trained on the user, they generally achieve better 

recognition results (there is no much variability caused by the different speakers). 

Given that speaker independent systems are more appealing than speaker 

dependent ones (no training required for the user), some speaker-independent ASR 

systems are performing some type of adaptation to the individual user‘s voice to 

improve their recognition performance. 

─ Channel type: the characteristics of the channel can affect the speech signal. It 

may range from telephone channels (with a bandwidth about 3.4 kHz) to wireless 

channels with fading and with a sophisticated voice [6]. 

─ Transducer type: defines the type of device used to record the speech. The 

recording may range from high-quality microphones to telephones (landline) to cell 

phones to array microphones (used in applications that track the speaker location). 

Fig. 4 shows the progress of spoken language systems along the dimensions of 

speaking style and vocabulary size. Note that the complexity of the system grows 

from the bottom left corner up to the top right corner. The bars separate the 

applications that can and cannot be supported by speech technology for viable 

deployment in the corresponding time frame. 
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Fig. 4. Progress of spoken language system along the dimension of speaking style and 

vocabulary size (adapted from [9]). 

Some other parameters specific to the methods employed in the development of an 

ASR system are going to be analyzed throughout the text.  

2.4 Evaluating the Performance of ASR 

A commonly metric used to evaluate the performance of ASR systems is the word 

error rate (WER). For simple recognition systems (e.g., isolated words), the 

performance is simply the percentage of misrecognized words. However, in 

continuous speech recognition systems, such measure is not efficient because the 

sequence of recognized words can contain three types of errors. Similar to the error in 

the digit recognition, the first error, known as word substitution, happens when an 

incorrect word is recognized in place of the correctly spoken word. The second error, 

known as word deletion, happens when a spoken word is not recognized (i.e., the 

recognized sentence does not have the spoken word). Finally, the third error, known 

as word insertion, happens when extra words are estimated by the recognizer (i.e., the 

recognized sentence contains more words than what actually was spoken). In the 

following example, the substitutions are bold, insertions are underlined, and deletions 

are denoted as *. 

Correct sentence: “Can you bring me a glass of water, please?” 

Recognized sentence: “Can you bring * a glass of cold water, police?” 

To estimate the word error rate (WER), the correct and the recognized sentence must 

be first aligned. Then the number of substitutions (S), deletions (D), and insertions (I) 

can be estimated. The WER is defined as 

𝑊𝐸𝑅 = 100% ×   
𝑆 + 𝐷 + 𝐼

 𝑊 
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where  𝑊  is the number of words in the sequence of word W. Table 1 shows the 

WER for a range of ASR systems. Note that for a connected digit recognition task, the 

WER goes from 0.3% in a very clean environment (TIDIGIT database) [10] to 5% 
(AT&T HMIHY) in a conversation context from a speech understanding system [11]. 

The WER increases together with the vocabulary size, when the performance of ATIS 

[12] is compared to Switchboard [13] and Call-home [14]. In contrast, the 

performance of NAB & WSJ [15] is lower than the Switchboard and Call-home. The 

difference is that in the NAB & WSJ task the speech is carefully uttered (read speech) 

as opposed to the spontaneous speech in the telephone conversations. 

Table 1. Word error rates for a range of speech recognition systems (adapted from [16]).  

Task Type of speech Vocabulary 

size 

WER 

Connected digit string (TIDIGIT database) Spontaneous 11 (0-9, oh) 0.3% 

Connected digit string (AT&T mall recordings) Spontaneous 11 (0-9, oh) 2.0% 
Connected digit string (AT&T HMIHY) Conversational 11 (0-9, oh) 5.0% 

Resource Management (RM) Read speech 1,000 2.0% 

Airline travel information system (ATIS) Spontaneous 2,500 2.5% 
North American business (NAB & WSJ) Read Text 64,000 6.6% 

Broadcast News Narrated news 210,000 ~15.0% 

Switchboard Telephone conversation 45,000 ~27.0% 
Callhome Telephone conversation 28,000 ~35.0% 

3 Speech 

In this section, we review human speech production and perception. A better 

understanding of both processes can result in better algorithms for processing speech.  

3.1 Speech Production 

The anatomy of the human speech production system is shown in Fig. 5. The vocal 

apparatus comprises three cavities: nasal, oral, and pharyngeal. The pharyngeal and 

oral cavities are usually grouped into one unit referred to as the vocal tract, and the 

nasal cavity is often called the nasal tract [1]. The vocal tract extends from the 

opening of the vocal folds, or glottis, through the pharynx and mouth to the lips 

(shaded area in Fig. 5). The nasal tract extends from the velum (a trapdoor-like 

mechanism at the back of the oral cavity) to the nostrils. 

The speech process starts when air is expelled from the lungs by muscular force 

providing the source of energy (excitation signal). Then the airflow is modulated in 

various ways to produce different speech sounds. The modulation is mainly 

performed in the vocal tract (the main resonant structure), through movements of 

several articulators, such as the velum, teeth, lips, and tongue. The movements of the 

articulators modify the shape of the vocal tract, which creates different resonant 

frequencies and, consequently, different speech sounds. The resonant frequencies of 

the vocal tract are known as formants, and conventionally they are numbered from the 

low- to the high-frequency: F1 (first formant), F2 (second formant), F3 (third formant), 
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and so on. The resonant frequencies can also be influenced when the nasal tract is 

coupled to the vocal tract by lowering the velum. The coupling of both vocal and 

nasal tracts produces the ―nasal‖ sounds of speech, like /n/ sound of the word ―nine‖. 

 

Fig. 5. The human speech production system [17]. 

The airflow from the lungs can produce three different types of sound source to 

excite the acoustic resonant system [18]: 

─ For voiced sounds, such as vowels, air is forced from the lungs through trachea and 

into the larynx, where it must pass between two small muscular folds, the vocal 

folds. The tension of the vocal folds is adjusted so that they vibrate in oscillatory 

fashion. This vibration periodically interrupts the airflow creating a stream of 

quasi-periodic pulses of air that excites the vocal tract. The modulation of the 

airflow by the vibrating vocal folds is known as phonation. The frequency of vocal 

fold oscillation, also referred to as fundamental frequency (F0), is determined by 

the mass and tension of the vocal folds, but is also affected by the air pressure from 

the lungs. 

─ For unvoiced sounds, the air from the lungs is forced through some constriction in 

the vocal tract, thereby producing turbulence. This turbulence creates a noise-like 

source to excite the vocal tract. An example is the /s/ sound in the word ―six‖.  

─ For plosive sounds, pressure is built up behind a complete closure at some point in 

the vocal tract (usually toward the front of the vocal tract). The subsequent abrupt 

release of this pressure produces a brief excitation of the vocal tract. An example is 

the /t/ sound in the word ―put‖.  

Note that these sound sources can be mixed together to create another particular 

speech sound. For example, the voiced and turbulent excitation occurs simultaneously 

for sounds like /v/ (from the word ―victory‖) and /z/ (from the word ―zebra‖).  
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Despite the inherent variance in producing speech sounds, linguists categorize 

speech sounds (or phones) in a language into units that are linguistically distinct, 

known as phonemes. There are about 45 phonemes in English, 50 for German and 

Italian, 35 for French and Mandarin, 38 for Brazilian Portuguese (BP), and 25 for 

Spanish [19]. The different realizations in different contexts of such phonemes are 

called allophones. For example, in English, the aspirated t [t
h
] (as in the word ‗tap‘) 

and unaspirated [t] (as in the word ‗star‘) correspond to the same phoneme /t/, but 

they are pronounced slightly different. In Portuguese, the phoneme /t/ is pronounced 

differently in words that end with ‗te’ due to regional differences: leite (‗milk’) is 

pronounced as either /lejt i/ (southeast of Brazil) or /lejte/ (south of Brazil). The set of 

phonemes can be classified into vowels, semi-vowels and consonants.  

The sounds of a language (phonemes and phonetic variations) are represented by 

symbols from an alphabet. The most known and long-standing alphabet is the 

International Phonetic Alphabet or IPA1. However, other alphabets were developed to 

represent phonemes and allophonic variations among phonemes not presents in the 

IPA: Speech Assessment Methods Phonetic Alphabet (SAMPA)[20] and Worldbet.  

Vowels 

The BP language has eleven oral vowels: /a ɐ e e ̤ɛ i  ɔ o u /. Some examples of 

oral vowels are presented in Table 2.  

Table 2. Oral vowels examples (adapted from [21]). 

Oral Vowel Phonetic Transcription Portuguese Word English 

Translation 

i sik sico chigoe 

e sek seco dry 

 sk seco (I) dry 

a sak saco bag 

 sk soco (I) hit 

o sok soco hit (noun) 

u suk suco juice 

 sak saque withdrawal 

e ̤ nue̤ número number 

ɐ sakɐ saca sack 

 sak saco bag 

It also has five nasalized vowels: /ɐ ̃ẽ ĩ õ ũ/. Such vowels are also produced when 

they precede nasal consonants (e.g., /ɲ/ and /m/). Some examples of oral vowels are 

presented in Table 3.  

                                                           
1 http://www.langsci.ucl.ac.uk/ipa/ 
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Table 3. Nasal vowels examples (adapted from [21]). 

Nasal Vowel Phonetic Transcription Portuguese Word English Translation 

ĩ sĩt cinto „belt‟ 

ĩ ĩɐ cima „above‟ 

e set sento „(I) sit‟ 

e teᵐpoa temporal‟ „storm‟ 

ɐ ̃ sɐ̃ santo „saint‟ 

ɐ ̃ ɐɲ̃a ganhar „(to) win‟ 

ɐ ̃ imɐ̃ imã magnet 

o  so d sondo „(I) probe‟ 

u  su t sunto „summed up‟ 

 

The position of the tongue‘s surface and the lip shape are used to describe vowels 

in terms of the common features height (vertical dimension, i.e., high, mid, low), 

backness (horizontal dimension, i.e., front, mid, and back) and roundedness (lip 

position, i.e., round and tense). Fig. 6 illustrates the height and backness features of 

vowels. According to the backness features, /e e ̤ẽ ɛ i ĩ/ are front vowels, /ɐ ̃a ɐ/ are 

mid vowels, and /ɔ o õ ũ u/ are back vowels. 

 

Fig. 6. Relative tongue positions in the nasal (left) and oral (right) vowels for BP, as they are 

pronounced in São Paulo [21]. 

The variations in the tongue placement with the vocal tract shape and length 

determine the resonances frequencies of each vowel sound. Fig. 7 shows the average 

frequencies of the first three formants for some BP vowels. Vowels are usually long 

in duration and are spectrally well defined [1], what make the task of vowel 

recognition easier for humans and machines. 
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Fig. 7. F1, F2 and F3 of BP oral vowels estimated over 90 speakers [22]. 

Semivowels 

Semivowels are a class of speech sounds that have a vowel-like characteristic. 

Sometimes they are also classified as approximant because the tongue approaches the 

top of the oral cavity without obstructing the air flow [23]. They occur at the 

beginning or end of a syllable and they can be characterized by a gliding speech 

sound between adjacent vowel-like phonemes within a single syllable [1]. Such 

gliding speech sound is also known as diphthong (for two phonemes) or triphthong 

(for three phonemes). Usually, the sounds produced by semivowels are weak (because 

of the gliding of the vocal tract) and influenced by the neighboring phonemes. 

In the BP language, semivowels occur with oral vowels (represented by the 

phonemes /w/ and /j/) or nasal vowels (represented by the phonemes /w/̃ and / j̃/), as 

illustrated in Table 4. Semivowels also occur in words that end in nasal diphthongs 

(i.e., word with endings: -am, -em/-ém, -ens/-éns, -êm, -õem). 

Table 4. Examples of semivowels in the BP language. 

Semivowel Phonetic Transcription Portuguese Word English Translation 

j lejt i leite ‗milk‘ 

w sɛw céu ‗sky‘ 

j̃ sẽj̃ cem „(a) hundred‟ 

j̃ mɐ̃j̃  mãe „mother‟ 

w ̃ sawɐ̃w̃ saguão „lobby‟ 

w ̃ mɐ̃w̃ mão „hand‟ 
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Consonants 

Consonants are characterized by momentary interruption or obstruction of the 

airstream through the vocal tract. Therefore, consonants can be classified according to 

the place and manner of this obstruction. The obstruction can be caused by the lips, 

the tongue tip and blade, and the back of the tongue. Some of the terms used to 

specify the place of articulation, as illustrated in Fig. 8, are the following:  

─ Bilabial: made by constricting both lips as in the phoneme /p/ as in pata /patɐ/ 

(„paw‟). The BP consonants that belong to this class are /p/, /b/, and /m/. 

─ Labiodentals: the lower lip contacts the upper front teeth as in the phoneme /f/ as in 

faca /fakɐ/ („knife‟). The BP consonants that belong to this class are /f/ and /v/.  

─ Dental: the tongue tip or the tongue blade protrudes between the upper and lower 

front teeth (most speakers of American English, also known as interdental [24]) or 

have it close behind the lower front teeth (most speakers of BP). The BP 

consonants that belong to this class are /t/, /d/, and /n/. The allophones /t / and /d / 
occur in syllables that start with „ti‟ (as in the proper name Tita /titɐ/) or „di‟ (as in 

the word dita /d itɐ/, „said (fem.)‟), respectively, and in words that end with „te‟ 

and „de‟. 

─ Alveolar: the tongue tip or blade approaches or touches the alveolar ridge as in the 

phoneme /s/ as in saca /sakɐ/ („sack‟);  

─ Retroflex: the tongue tip is curled up and back. However, such phoneme does not 

occur in BP.  

─ Postalveolar: the tongue tip or (usually) the tongue blade approaches or touches the 

back of the alveolar ridge as in the phoneme // as in chaga /aɐ/ („open sore‟). 

Sometimes it is called palato-alveolar since it is the area between the alveolar ridge 

and the hard palate.  

─ Palatal: the tongue blade constricts with the hard palate (―roof‖ of the mouth) as in 

the phoneme /ɲ/ as in ganhar /ɐɲ̃a/ („(to) win‟). 

─ Velar: the dorsum of the tongue approaches the soft as in the phoneme // as in 

gata /atɐ/ („(female) cat‟). 

  

Fig. 8. Places of articulation. 

The manner of articulation describes the type of closure made by the articulators 

and the degree of the obstruction of the airstream by those articulators, for any place 

of articulation. The major distinctions in manner of articulation are:  

─ Plosive (or oral stop): a complete obstruction of the oral cavity (no air flow) 

followed by a release of air. Examples of BP phonemes include /p t k/ (unvoiced) 
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and /b d g/ (voiced). In the voiced consonants, the voicing is the only sound made 

during the obstruction.  

─ Fricative: the airstream is partially obstructed by the close approximation of two 

articulators at the place of articulation creating a narrow stream of turbulent air. 

Examples of BP phonemes include /f s / (unvoiced) and / v z / (voiced). 

─ Affricate: begins with a complete obstruction of the oral cavity (similar to a 

plosive) but it ends as a fricative. Examples of BP allophones include /t / 
(unvoiced) and /d / (voiced).  

─ Nasal (or nasal stop): it also begins with a complete obstruction of the oral cavity, 

but with the velum open so that air passes freely through the nasal cavity. The 

shape and position of the tongue determine the resonant cavity that gives different 

nasal stops their characteristic sounds. Examples of BP phonemes include /m b ɲ/, 

all voiced. 

─ Tap: a single tap is made by one articulator against another resulting in an 

instantaneous closure and reopening of the vocal tract. Example of BP phoneme is 

// in the word caro /ka/ (‗expensive‘). 

─ Approximant: one articulator is close to another without causing a complete 

obstruction or narrowing of the vocal tract. The consonants that produce an 

incomplete closure between one or both sides of the tongue and the roof of the 

mount are classified as lateral approximant. Examples of lateral approximant in BP 

include /l/ of /gal/ galo („rooster‟) and // of /a/galho („branch‟). 

Semivowels, sometimes called a glide, are also a type of approximant because it is 

pronounced with the tongue closer to the roof of the mouth without causing a 

complete obstruction of the airstream. 

The BP consonants can be arranged by manner of articulation (rows), place of 

articulation (columns), and voiceless/voiced (pairs in cells) as illustrated in Table 5.  

Table 5. The consonants of BP arranged by place (columns) and manner (rows) of articulation 

[21]. 

 

The place and manner of articulation are often used in automatic speech 

recognition as a useful way of grouping phones together or as features [25, 26]. 

Despite all these different descriptions on how these sounds are produced, we have 

to understand that speech production is characterized by a continuous sequence of 

articulatory movements. Since every phoneme has an articulatory configuration, 

physiological constraints limit the articulatory movements between adjacent 

phonemes. Thus, the realization of phonemes is affected by the phonetic context. This 
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phenomenon between adjacent phonemes is called coarticulation [24]. For example, a 

noticeable change in the place of articulation can be observed in the realization of /k/ 

before a front vowel as in ‗key‘ /ki/ as compared with a back vowel as in ‗caw‘ /kɔ/. 

3.2 Speech Perception 

The process of how the brain interprets the complex acoustical patterns of speech 

as linguistics units is not well understood [18, 27]. Given the variations in the speech 

signal produced by different speakers in different environments, it has become clear 

that speech perception does not rely on invariant acoustic patterns available in the 

waveform to decode the message. It is possible to argue that the linguistic context is 

also very important for the perception of speech, given that we are able to identify 

nonsense syllables spoken (clearly articulated) in isolation [27].  

It is out of the scope of this tutorial to give more than a brief overview of the 

speech perception. We are going to focus on the physical aspects of the speech 

perception used for speech recognition.  

3.2.1 The auditory System 

The auditory system can be divided anatomically and functionally into three 

regions: the outer ear, the middle ear, and the inner ear. Fig. 9 shows the structure of 

the human ear. The outer ear is composed of the pinna (external ear, the part we can 

see) and the external canal (or meatus). The function of pinna is to modify the 

incoming sound (in particular, at high frequencies) and direct it to the external canal. 

The filtering effect of the human pinna preferentially selects sounds in the frequency 

range of human speech. It also adds directional information to the sound. 

 

Fig. 9. Structure of the human ear2. 

The sound waves conducted by the pinna go through the external canal until they 

hit the eardrum (or tympanic membrane), causing it to vibrate. These vibrations are 

                                                           
2 http://www.hearingclinic.net.au/mhc/content/the_ear.php 

http://shay.ecn.purdue.edu/~ee649/notes/figures/ear.gif
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transmitted through middle ear by three small bones, the ossicles, to a membrane-

covered opening (called oval window) in the bony wall of the spiral shaped structured 

of the inner ear – the cochlea. The middle ear is an air-filled cavity (tympanic cavity) 

that couples sound from the air to the fluids via oval window in the cochlea. It 

connects to the throat/nasopharynx via the Eustachian tube. The smallest bones in the 

human body, the ossicles are named for their shape. The hammer (malleus) joins the 

inside of the eardrum. The anvil (incus), the middle bone, connects to the hammer and 

to the stirrup (stapes). The base of the stirrup, the footplate, fills the oval window 

which leads to the inner ear. Because of the resistance of the oval window, the middle 

ear converts, through the lever action of the ossicles, low-pressure vibration of the 

eardrum into high-pressure vibration at the oval window. It is interesting to note that 

the middle ear is most efficient at middle frequencies (500-4000Hz), which mostly 

characterizes speech sounds.  

The inner ear consists of a bony labyrinth filled with fluid that has two main 

functional parts: the vestibular system (the rear part, responsible for the balance) and 

the cochlea (frontal part, responsible for hearing). The cochlea is divided along its 

length by two membranes: Reissner‘s membrane and the basilar membrane (BM), as 

shown in Fig. 10. The BM has its base situated at the start of the cochlea, the oval 

window. At the end of the BM, known as the apex, there is a small opening (the 

helicotrema), which connects the two outer chambers of the cochlea, the scala 

vestibuli and the scala tympani. The oscillation of the oval window due to an   

 

 

Fig. 10. Cross section of the cochlea3. 

frequency and varies along the BM because the BM is stiff and narrow at the base and 

it is wider and much less stiff at the apex. This means that different frequencies 

                                                           
3 http://en.wikipedia.org/wiki/Cochlea 
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resonate particularly strongly at different points along the BM. High-frequency 

sounds cause the greatest motion of the BM near the oval window and low-frequency 

sounds cause the greatest motion of the BM farthest from the oval window. This 

suggests that the BM can be modeled as a bank of overlapping bandpass filters [28] 

(also known as ‗auditory filters‘). Consequently, each location on the BM responds to 

a limited range of frequencies, so each different point correspond to an auditory filter 

with a different center frequency (the frequency that gives maximum response). These 

auditory filters are nonlinear, level-dependent and the bandwidth increases from the 

apex to base of the cochlea (from low to high frequency). The bandwidth of the 

auditory filter is called the critical bandwidth [28]. 

Finally, the motion of the BM is converted into neural signal in the auditory 

nervous system for final processing resulting in sound perception through hair cell 

nerves. The hair cell nerves are between the BM and the tectorial membrane, which 

form part of a structure called organ of Corti (Fig. 10). The tunnel of Corti divides the 

hair cell nerves into two groups. Closest to the outside of the cochlea, the outer hair 

cells are arranged in three rows in the cat and up to five rows in humans and make 

contact with tectorial membrane [27]. On the other side of the arch, the inner hair 

cells form a single row. There are about 25 000 outer hair cells (each with about 140 

hairs, or stereocilia, protruding from it) and 3 500 inner hair cells (each with about 40 

hairs). The up and down motion of the BM causes the fine stereocilia to shear back 

and forth under the tectorial membrane. The displacement of the stereocilia leads to 

excitation of the inner hair cells generating action potentials in the neurons of the 

auditory nerve. The great majority of neurons that carry information to the auditory 

system connect to inner hair cells (each hair cell is contacted by about 20 neurons) 

[27]. The main role of the outer hair cells may be to produce high sensitivity and 

sharp tuning.  

4 Historical Review of Automatic Speech Recognition 

The first machine to recognize speech, in some level, was a commercial toy named 

Radio Rex produced in 1922 by Elmwood Button Company [7]. Rex was a brown 

bulldog made of celluloid and metal that jumps out the house when its name was 

spoken. The dog was held within its house by an electromagnet arrangement against 

the force of a spring. The electromagnet arrangement could be interrupted by a 

vibration caused by an acoustic energy of 500 Hz that released the dog. Such energy 

is present in the vowel of the word Rex. Despite its ingenious way of responding 

when the dog‘s name was called, the toy suffered the same problem of many current 

ASR systems: it rejected out-of-vocabulary words. This problem happens because 

several words can carry sounds that have 500Hz acoustic energy and the toy could not 

distinguish them. 

The first true speech recognizer was a system built in 1952 by David et. al [29] at 

Bell Laboratories. The system was able to recognize digits from a single speaker. The 

system used the spectral energy over time of two wide bands that cover the first two 

formant frequencies of the vocal tract. Such approach was quite successful (achieved 

a 2% error) for a single speaker because it averaged out the speech variability by 
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performing a histogram of the energy (therefore, the time information was lost). 

Besides, the digits were separated by pauses.  

In 1959, Denes and Fry [30] introduced a simple bigram language model for 

phonemes to improve the recognition of speech sounds (4 vowels and 9 consonants), 

consequently, words. The hypothesis was that the probability of uttering a linguistic 

unit is conditional to the probability of the previous unit. Their system used 

derivatives of spectral energies as the acoustic information.  

Given that computers were not fast enough in the 1960s for signal processing, 

several Japanese researchers built special-purpose devices to perform speech 

recognition tasks. Suzuki and Nakata at the Radio Research Lab in Tokyo [31] built a 

hardware for vowel recognizer (Fig. 11). This system was based on a filter bank 

spectrum analyzer whose output from each of the channels was fed to a vowel 

decision circuit, and a majority decision logic scheme was used to choose the spoken 

vowel. Nagata et al. [32] at NEC Laboratories built a hardware for digit recognition 

(results of 99.7% for 1000 utterances of 20 male speakers were obtained for a set of 

formant-related features). Sakai and Doshita at Kyoto University [33] developed a 

hardware for phoneme recognition (one hundred Japanese monosyllables). This last 

hardware is considered significant because it was the first report of a system that 

performed speech segmentation along with zero-crossing analysis on different 

sections of the speech to recognize phonemes. Up to that date, recognizers were built 

assuming that the unknown utterance contained only the token to be recognized and 

no other speech sound. 

 

Fig. 11. Front view of the spoken vowel recognizer built by Suzuki and Nakata at the Radio 

Research Lab in Tokyo [31]. 

Besides segmenting speech, another approach that was used to deal with the 

nonuniformity of the time scales in speech events was time normalization. Same 
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speech event can have different durations for the same speaker or different contexts, 

and this will cause a probable mismatch with the training material. Martin et al. [34] 

at RCA Laboratories proposed, among several solutions, the use of detection of 

utterance endpoints to perform time alignment of speech events. Such time 

normalization method improved the recognition performance by reducing the time 

scale variability between training and testing material. In the Soviet Union, Vintsyuk 

[35] proposed the use of dynamic programming, also known as dynamic time warping 

(DTW), for time alignment of a pair of speech utterances to derive a meaningful 

measurement of their similarity. He also applied it to continuous speech recognition 

[36]. Even though his work was unknown in the research community around 1970, 

Sakoe and Chiba at NEC Laboratories proposed a more formal method of dynamic time 

warping for speech pattern matching but they only published it in an English-

language journal in 1978 [37]. After such publication, several other researchers follow 

the method [38, 39], making it one of the main methods for speech recognition at that 

time [40].  

The mathematical foundation of another statistical approach was in development in 

the 1960s. Baum and Petrie developed several concepts for hidden Markov modeling, 

such as the forward-backward algorithm for estimating the model parameters 

iteratively [41]. 

Until the 1960s, the main method for estimating the short-term spectrum was a 

filterbank. In 1965, Cooley and Tukey [42] introduced a computationally efficient 

form of the discrete Fourier transform: the fast Fourier transform (FFT). It is an 

equivalent to filterbank but much more efficient. In 1968, Oppenheim et. al. [43] 

proposed the cepstral analysis for speech processing that essentially estimates a 

smooth spectral envelope. In the late 1960‘s, the fundamental concepts of Linear 

Predictive Coding (LPC), to estimate the vocal tract response from speech 

waveforms, were formulated by Atal [44, 45] and Itakura [46]. 

In the late 1960s, John Pierce published a letter [47] that examines the motivations 

and progress of the speech recognition area. First, he argued that the only motivation 

for working on speech recognition was the money that was supporting it, not a real 

need in that time. He continued the letter saying that any signal processing experiment 

was a waste of time and money because people did not perform speech recognition, 

but speech understanding. Another issue that he raised was the lack of science in the 

speech research: 

“We all believe that a science of speech is possible despite the 

scarcity in the field of people who behave like scientists and of 

results that look like science. Most recognizers behave, not 

like scientists, but like mad inventors or untrustworthy 

engineers… 

Despite Pierce‘s criticism, it is not possible to deny that the 1960s was one of the 

decades with more breakthroughs (e.g., LPC, FFT, Cepstral analysis, HMM, DTW) 

that were important for the speech processing technology for the years to come.  

In the 1970s, the Advanced Research Project Agency (ARPA) funded a five-year 

program of research and development on speech understanding [48]: the ARPA SUR 

(Speech Understanding Research). The goal of such program was to develop several 
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speech understanding systems that accept continuous speech from cooperative 

speakers. The system should recognize 1,000 words with constrained grammar 

yielding less than 10% semantic error. The $15 million dollar project was mainly 

done at three sites: System Development Corporation (SDC), Carnegie Mellon 

University (CMU) and Bold, Beranek & Newman (BBN). The ARPA project also 

included the effort from other sites to support the main work: Lincoln Laboratory, 

SRI International, and University of California at Berkeley. Among the systems built 

by the sites, CMU‘s Harpy [49] was the only one to deliver the requirements of the 

program. Harpy was able to recognize 1,011 with a reasonable accuracy (95% of 

sentences understood). In the Harpy system (Fig. 12), the speech was parameterized 

using LPC and followed by a phone template matching that was used to segment and 

label the speech input. Then, a graph search, based on a beam search algorithm, built 

the most likely sequence of words according to constraints extracted from the 

language. The Harpy system was the first to take advantage of a finite state network 

(FSN) to reduce computation and efficiently determine the closest matching string 

[50]. 

 

Fig. 12. A block diagram of the CMU Harpy system. It is also shown a small fragment of the 

state transition network for sentence beginning with ―Give me‖ [49].  

Although the other systems did not meet ARPA program goals, they also collaborate 

in the advance of the speech recognition technology. The CMU‘s Hearsay-II [51] 

pioneered the use of parallel asynchronous processes that simulate the component 

knowledge sources in a speech system. The knowledge sources performed several 

functions, such as extracting acoustic parameters, classifying acoustic segments into 

phonetic classes, recognizing words, parsing phrases, and generating and evaluating 

predictions for undetected words or syllables. All knowledge sources are integrated 

through a global “blackboard” to produce the next level of hypothesis from some type 

of information or evidence (in a lower level). The BBN‘s HWIM (Hear What I Mean) 

[52] incorporated phonological rules to improve phoneme recognition, handled 

segmentation ambiguity by a lattice of alternative hypotheses, and introduced the 

concept of word verification at the parametric level.  

The most significant progress on the speech recognition area was the introduction 

of the statistical approach Hidden Markov Models (HMMs). The theory of HMM was 

developed in the late 1960s and early 1970s by Baum, Eagon, Petrie, Soules and 
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Weiss [41, 53]. The HMM was introduced into speech recognition by the researchers 

at IBM [54, 55], Carnegie Mellon University [54, 56], AT&T Bell Laboratories, and 

Institute for Defense Analyses. The main idea was that instead of storing the whole 

speech pattern in the memory, the units to be recognized are stored as statistical 

models represented by a finite state automata made of states and links among states. 

This approach allowed the introduction of different pronunciations for the same word 

and the modeling of smaller speech units like phonemes. The parameters of the model 

are the probability density of observing a speech feature in a given state and the 

probability of transitioning among states. Algorithms were proposed in the late 1960s 

to estimate such parameters [41] and to find an optimal path between states that 

matches the signal [57], similarly to DTW. The Expectation-Maximization (EM) 

algorithm [58] was incorporated into the modeling to allow estimating the parameters 

from real data. 

The goal of AT&T Bell Laboratories was to provide automated telecommunication 

services to the public (e.g., voice dialing, and command and control for routing of 

phone calls) that worked well for a large number of costumers. That is, any speech 

recognition system should be speaker independent and could deal with different 

accents or pronunciations [59]. These needs led to the creation of speech clustering 

algorithms for creating word and sound patterns that were representative of a large 

population.  

In the 1980s, the speech recognition systems moved from a template framework to 

a more elaborated statistical framework, from simple tasks (digits, phonemes) to more 

complex tasks (connected digits and continuous speech recognition). The complexity 

of speech recognition demanded a framework that integrated knowledge and allowed 

to decompose the problem into sub-problems (acoustic and language modeling) easier 

to solve [60]. The statistical framework developed in the 1980s (and all the 

improvements along the years) is used in most current speech recognition systems. 

Despite the use of HMM in speech applications in the 1970s, such approach was 

really disseminated in the 1980s [61, 62]. HMM became the dominant speech 

recognition paradigm [63-66]. More than 30 years later, this methodology is still 

dominant due to the improvement efficiently incorporated.  

The lack of a standard research database was a problem for many speech 

researchers because it made comparisons between speech recognition systems a very 

difficult task. Besides, the evaluation of speech recognition systems was 

compromised by the lack of large speech corpora. To solve these problems, a group of 

scientists (a joint effort among the Massachusetts Institute of Technology (MIT), 

Stanford Research Institute (SRI), and Texas Instruments (TI)) worked with NIST 

(National Institute of Standard and Technology) to develop a large corpus. The 

collection of the TIMIT corpus began in 1986. Such corpus is a collection of read 

sentences (10 sentences) that are phonetically balanced from 630 speakers. The 

speech was recorded at TI and transcribed at MIT (that is the origin of the name 

TIMIT).  

Advances in speech signal representation included the perceptually motivated mel-

frequency cepstral coefficients [67] and the integration of dynamic features (time 

derivatives of temporal trajectories)[68]. The dynamic features, known as delta 

cepstrum features (or just delta features), were first proposed for speaker recognition 
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[69], but later they were applied to speech recognition. Both representations are 

widely used in almost all speech recognition systems. 

Artificial neural networks (ANN) re-emerged in the 1980s after a decade in the 

obscurity because of the book Perceptrons by Minsky and Papert [70]. Such book 

proved that perceptrons could not represent non-linearly separable problems. The 

main reason for re-emerging was the advent of the training technique 

(backpropagation) for multilayer perceptron (MLP) that avoided such problem. ANNs 

were developed to perform different types of classification in speech. For example, a 

time-delay neural network (this network is similar to MLP and the continuous input 

data is delayed and sent as an input to the neural network to consider the context 

information) was used for recognizing consonants [71] and phonemes [72]. Despite 

considerable number of work on phoneme or digit recognition, few researches applied 

ANN to complex tasks such as large-vocabulary continuous-speech problems [73].  

In 1984, ARPA began a second program to develop a large-vocabulary, 

continuous-speech recognition system that yielded high word accuracy for a 1000-

word database management task. The program included speaker-independent 

recognition. This program produced a new (read) speech corpus called Resource 

Management [74] with 21,000 utterances from 160 speakers, several speech 

recognition systems [63-66, 75, 76], and several improvements and refinements in the 

HMM approach for speech recognition.  

In the 1990s, the development of software tools for speech recognition helped to 

increase the speech research community. A speech recognition tool named HTK 

Hidden Markov Model Toolkit was made available by the Speech Vision and 

Robotics Group (lead by Steve Young) of the Cambridge University Engineering 

Department [77]. HTK is a tool for developing large-vocabulary, speaker-independent 

continuous speech recognition systems (but it has also been used for other application 

that can benefit from the hidden Markov modeling approach). The constant 

improvements have made one of the most used toolkits for speech recognition 

research.  

In another development of HMMs, Morgan and Boulard [78] demonstrated that 

artificial neural networks (more specifically multi-layer perceptrons) can be used to 

estimate the HMM state-dependent observation.  

Several feature transformation methods were introduced in the 1990s. Hermansky 

introduces the Perceptual Linear Prediction (PLP) method [79] that modifies the 

speech spectrum by applying several psychophysically based spectral transformations. 

Several methods were proposed to alleviate channel distortion and speaker variations 

like RASTA filtering [80, 81] and Vocal Tract Length Normalization (VTLN) [82, 

83], respectively. Kumar [84] proposed the heteroscedastic linear discriminant 

analysis (HLDA) that projects the feature space into a smaller space and maximally 

discriminative similar to the LDA, but without the assumption that the classes have 

equal variances.  

The DARPA (Defense Advanced Research Projects Agency) program continued in 

the 1990s with the read speech program. After the Resource Management task, the 

program moved to another task: the Wall Street Journal [85]. The goal was to 

recognize read speech from the Wall Street Journal, with a vocabulary size as large as 

60,000 words. In parallel, a speech-understanding task, called Air Travel Information 
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System (ATIS) [12], was developed. The goal of the ATIS task was to perform 

continuous speech recognition and understanding in the airline-reservation domain.  

Since the early 1990s, methods for adapting the acoustic models to a specific 

speaker data (speaker adaptation) have been introduced. Two commonly used 

methods are the maximum a posteriori probability (MAP) [86, 87] and the maximum 

likelihood linear regression (MLLR) [88]. Other methods focused on the HMM 

training by shifting the paradigm of fitting the HMM to the data distribution to 

minimizing the recognition error, such as the minimum error discriminative training 

[89].   

In 2000, the Sphinx group at Carnegie Mellon made available the CMU Sphinx 

[90], an open-source toolkit for speech recognition.  

Hermansky proposed a new speech feature that is estimated from an artificial 

neural net [91]. The features are the posterior probabilities of each possible speech 

unit estimated from a multi-layer perceptron. Another feature transformation method 

is feature-space minimum phone error (fMPE) [92]. The fMPE transform operates by 

projecting from a very high-dimensional, sparse feature space derived from Gaussian 

posterior probability estimates to the normal recognition feature space, and adding the 

projected posteriors to the standard features. 

In summary, a huge progress has been made in speech recognition over nearly 60 

years.  

 

Fig. 13 outlines the progress made in speech recognition and natural language 

understanding. Applications went from recognition of a few isolated words to 

recognition of continuous speech with vocabularies of tens of thousands of words. 

The continuous development of methods for speech processing that integrate 

knowledge from several areas and increasing computer power has enabled the 

application of speech technology in several areas. Despite all the progress, there is 

still the challenge of enabling machines to recognize and, more importantly, 

understand fluent speech in any environment or condition. 

 
 

Fig. 13. Milestones in speech recognition and understanding technology over the past 40 years 

(from [93]).  
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5 Signal Processing and Feature Extraction 

Every other component in a speech recognition system depends on two basic sub-

systems: signal processing and feature extraction. The signal processing sub-system 

works on the speech signal to reduce the effects of the environment (e.g., clean versus 

noisy speech), the effects of the channel (e.g., cellular/land-line phone versus 

microphone). The feature extraction sub-system parameterizes the speech waveform 

so that the relevant information (in this type of application, the information about the 

speech units) is enhanced and the non-relevant information (age-related effects, 

speaker information, and so on) is mitigated. There are methods that attempt to extract 

parameters of a speech production model (production-based analysis), or to simulate 

the effect that the speech signal has on the speech perception system (perception-

based analysis), or just to use a signal-based method to describe the signal in terms of 

its fundamental components [94].  

Regardless the method employed to extract features from the speech signal, the 

features are usually extracted from short segments of the speech signal. This approach 

comes from the fact that most signal processing techniques assume stationarity of the 

vocal tract, but speech is nonstationary due to constant movement of the articulators 

during speech production. However, due to the physical limitations on the movement 

rate, a segment of speech sufficiently short can be considered equivalent to a 

stationary process. It is like if the segment is a picture taken of the speech sound 

during its production. In practical terms, a sliding window (with a fixed length and 

shape) is used to isolate each segment from the speech signal. Typically, the segments 

have between 20 ms and 30 ms and they are overlapped by 10 ms [7]. This approach 

is commonly referred to short-time analysis.  

5.1 Signal-based Analysis 

The methods in this type of analysis disregard how the speech was produced or 

perceived. The only assumption is that the signal is stationary. Two methods 

commonly used are filterbanks and wavelet transform. 

Filterbanks estimate the frequency content of a signal using a bank of bandpass 

filters, whose coverage spans the frequency range of interest in the signal (e.g., 100-

3000Hz for telephone speech signals, 100-8000 Hz for broadband signals). The most 

commonly technique for implementing a filterbank is the short-time Fourier transform 

(STFT). It uses a series of harmonically related basis functions (sinusoids) to describe 

a signal. The discrete STFT is estimated using the following equation  

𝑋 𝑛, 𝑘 =  𝑥 𝑚 𝑤 𝑛 − 𝑚 𝑒−𝑗
2𝜋
𝑁
𝑘𝑚

∞

𝑚=−∞

 (2) 

where w[n] is assumed to be non-zero only in the interval [0; N-1] and it is known as 

the analysis window, N is the number of sinusoidal components (which defines the 

frequency resolution of the analysis). The bandpass filters have center frequencies 

equal to the frequencies of the basis functions of the Fourier Analysis, i.e., 𝜔𝑘 =
2𝜋

𝑁
𝑘 

[95]. The shape of the bandpass filters are frequency-shifted copies of the transfer 
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function of the analysis function w[n]. The drawbacks of the STFT are that all filters 

have the same shape, the center frequencies of the filters are evenly spaced and the 

properties of the function limit the resolution of the analysis [94]. Another drawback 

is the time-frequency resolution trade-off. A wide window produces better frequency 

resolution (frequency components close together can be separated) but poor time 

resolution. A narrower window gives good time resolution (the time at which 

frequencies change) but poor frequency resolution. In speech applications, the fast 

Fourier transform (FFT) is used to efficiently compute 𝑋 𝑛, 𝑘 .  
Given the STFT-based filterbank drawbacks, wavelets were introduced to allow 

signal analysis with different levels of resolution. This method uses sliding analysis 

window function that can dilate or contract, and that enables the details of the signal 

to be resolved depending on its temporal properties. This allows to analyze signals 

with discontinuities and sharp spikes. Similar to the STFT analysis, the wavelet 

analysis multiplies the signal of interest with a wavelet function (like the analysis 

window), and then the transform is computed for each segment generated. Unlike 

STFT, the width of the wavelet function changes with each spectral component, so 

that, at high frequencies, it produces good time resolution and poor frequency 

resolution, whereas at low frequencies, it produces gives good frequency resolution 

and poor time resolution. The discrete wavelet transform is estimated using the 

following equation 

𝑐𝑛 ,𝑚 =  𝑥 𝑡 𝑛 ,𝑚
∗  𝑡 𝑑𝑡 

𝑛 ,𝑚  𝑡 =
1

 𝑎𝑚
  

𝑡 − 𝜏𝑛
𝑎𝑚

  

where cn,m are the wavelet coefficients (result of the inner product between the signal 

x[t] with the discretized wavelet basis hn,m[t], which are the original wavelets sampled 

in scale and in shift. The wavelet coefficients are analogous the coefficients of the 

discrete STFT, 𝑋 𝑛, 𝑘 . Fig. 14 shows the time-frequency ―tiles‖ for the STFT and 

the wavelet transform, respectively, that represent the essential concentration of the 

basis in the time-frequency plane.  
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Fig. 14. Comparison of the time-frequency resolution for the STFT and the wavelet transform. 

5.2 Production-based Analysis 

The speech production process can be described by a combination of a source of 

sound energy modulated by a transfer (filter) function. This theory of the speech 

production process is usually referred to as the source-filter theory of speech 

production [94, 96]. The transfer function is determined by the shape of the vocal 

tract, and it can be modeled as a linear filter. However, the transfer function is 

changing over time to produce different sounds. The source can be classified into two 

types. The first one is quasi-periodic that occurs at the glottal opening. It is 

responsible for the production of voiced sounds (e.g., vowels, semivowels, and voiced 

consonants). This source can be modeled as a train of pulses. The second one is 

related to unvoiced excitation. In this type, the vocal folds are apart but some 

constriction(s) is (are) made (tongue-tip-teeth constriction for /s/, or teeth-lower-lip 

constriction for /f/), making difficult to the airstream pass through as easily. This 

source can be modeled as a random signal. Fig. 15 illustrates this speech production 

model, where u(t) is the source, h(t) is the filter, and s(t) is the segment of produced 

speech. The magnitude spectrum of each component for a voiced segment is also 

shown. Note that the amplitude of the harmonics of the quasi-periodic signal 

combines the effects of both the source spectrum (glottal pulse shape) and radiation 

(lip), and decreases by approximately 6dB per octave. The spectrum of the produced 

speech segment is shown on the right, and is the result from filtering the source 

spectrum with the filter function.  
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Fig. 15. Source-filter model of speech production. The source u(t) is passed through an acoustic 

filter h(t) resulting in speech s(t). The spectra of the source U(), filter H(), and speech output 

U() are shown at bottom. 

Despite this model is a decent approximation of the speech production, it fails on 

explaining the production of voiced fricatives. Voiced fricatives are produced using a 

mix of excitation sources: a periodic component and an aspirated component. Such 

mix of sources is not taken into account by the source-filter model. 

Several methods take advantage of the described linear model to derive the state of 

the speech production system by estimating the shape of the filter function. In this 

section, we describe three production-based: spectral envelope, linear predictive 

analysis and cepstral analysis. 

5.2.1 Spectral Envelope  

According to the source-filter model, the spectral envelope of the transfer function 

would reflect the vocal tract shape to produce a given speech sound. Thus, the 

spectral envelope could be used to discriminate speech units that are linguistically 

distinct in a given language. Consequently, the goal of many speech analysis 

techniques is to separate the spectral envelope (filter shape) from the source. Fig. 16 

shows the spectral envelope of a vowel produced by male and female speakers. The 

peaks in the spectral envelope correspond to the resonance frequencies (formants) of 

the vocal tract, which characterize a speech sound of a language. Note that both 

spectra have certain similarity in the overall shape of the envelope. However, the 

location of the peaks is different for both speakers. Differences in the dimensions of 

the articulators affect the formants for the same speech sound [97, 98]. In Fig. 16, the 

female speaker has higher formant frequencies than the male speaker due to a shorter 

vocal tract (this is also true for children).  
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Fig. 16. Short-time spectra of the same vowel (voiced sound) produced by a male and female 

speaker. 

5.2.2 Cepstral Analysis 

According to the source-filter theory, the speech signal is the result of convolving 

an excitation source with the vocal tract response. Therefore, a useful speech analysis 

approach would be to separate (deconvolve) the two components. Usually this 

operation is not possible for signals in general, but it works for speech because both 

signals have different spectral characteristics [99]. This transformation is described by 

a mathematical theory called homomorphic (i.e., cepstral) processing [43, 100].  

The source filter model of the speech production can be represented by the spectral 

magnitude of the speech signal (most speech applications require only the amplitude 

spectra) 

 𝑆 𝜔  =  𝑈 𝜔   𝐻 𝜔  . (3) 

The multiplication in the frequency domain of the excitation and vocal tract spectra 

means that the components are convolved in the time domain. Taking the logarithm of 

Equation (3) yields 

𝑙𝑜𝑔 𝑆 𝜔  = 𝑙𝑜𝑔 𝑈 𝜔  + 𝑙𝑜𝑔 𝐻 𝜔  . (4) 

Equation (4) is a linear function that can be deconvolved by operations like filtering. 

The slowly varying components of 𝑙𝑜𝑔 𝑆 𝜔   (filter component) are represented by 

the low frequencies and the fine details (source component) by the high frequencies. 
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Hence another Fourier transform is used to separate the components of 𝑈 𝜔  and 

𝐻 𝜔  and produce the cepstrum of the speech signal 

𝑐 𝑛 =
1

2𝜋
 𝑙𝑜𝑔 𝑆 𝜔  𝑒𝑗𝜔𝑛 𝑑𝜔
𝜋

−𝜋

 (5) 

where c(n) is called the n
th

 cepstral coefficient. The cepstral analysis estimates the 

spectral envelope of the filter component by truncating the cepstrum below a certain 

threshold [101], which is assumed to cover the filter impulse response. Fig. 17 shows 

a voiced speech segment, its spectrum, and the estimated cepstrum. The x-axis of the 

cepstrum plot is quefrency because the variable being analyzed is frequency rather 

than time. The transfer function usually appears as a steep slope at the beginning of 

the plot. The excitation appears as periodic peaks occurring after around 5ms. Note 

that there is a peak around 0.091 seconds, which represents the periodic excitation 

source of a male speaker (110 Hz). The spectral envelope is estimated using a small 

number of cepstral coefficients (to capture only the filter impulse response), resulting 

in a smooth spectral envelope. The only problem is that the smoothing performed by 

the cepstral analysis can remove the spectral differences between different sounds. 

 

Fig. 17. Cepstral Analysis of a voiced speech segment (male speaker). The spectral envelope 

estimated by cepstral analysis (20 cepstral coefficients) is shown in the bottom plot. 

5.2.3 Linear Predictive Analysis 

The idea behind the linear predictive (LP) analysis is to represent the speech signal 

by time-varying parameters that are related to the vocal tract and the source [44, 102, 

103]. Based on the source-filter model of speech production, the LP analysis defines 

that the output 𝑠 𝑛  of the acoustic filter can be approximated by a linear combination 

of the past p speech samples and some input excitation 𝑢 𝑛  
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𝑠 𝑛 =  −   𝑎𝑘𝑠 𝑛 − 𝑘  

𝑝

𝑘=1

+ 𝐺𝑢 𝑛  (6) 

where ak for k = 1, 2, ..., p, are the predictor coefficients (also known as 

autoregressive coefficients because the output can be thought of as regressing itself), 

and G is the gain of the excitation. Since the excitation input is unknown during 

analysis, we can disregard the estimation of such variable and rewrite equation as: 

𝑠  𝑛 =  −   𝑎𝑘𝑠 𝑛 − 𝑘  

𝑝

𝑘=1

 (7) 

where 𝑠  𝑛  is the prediction of 𝑠 𝑛 . The predictor coefficients ak account for the 

filtering action of the vocal tract, the radiation and the glottal flow [45]. The transfer 

function of the linear filter is defined as  

𝐻 𝑧 =  
1

1 +   𝑎𝑘𝑧
−𝑘𝑝

𝑘=1

 (8) 

and it is also known as all-pole system function (the roots of the denominator 

polynomial). This function can also be used to describe another widely used model 

for speech production: lossless tube concatenation [95, 104]. This model is based on 

the assumption that the vocal tract can be represented by a concatenation of lossless 

tubes.  

The basic problem of LP analysis is to determine the predictor coefficients ak from 

the speech. The basic approach is to find the set of predictor coefficients that 

minimize the mean-squared prediction error of a speech segment. Given that the 

spectral characteristics of the vocal tract filter changes over time, the predictor 

coefficients are estimated over a short segment (short-time analysis).  

According to Atal [45], the number of coefficients required to adequately represent 

any speech segment is determined by the number of resonances and anti-resonances 

of the vocal tract in the frequency range of interest, the nature of the glottal volume 

flow function, and the radiation. Fant [105] showed that, on average, the speech 

spectrum contains one resonant per kHz. Since such filter requires at least two 

coefficients (poles) for every resonant in the spectrum [94], a speech signal sampled 

at 10kHz would require, at least, a 10
th

 order model. Given that LPC is an all-pole 

model, a couple of extra poles may be required to take care of some anti-resonances 

(zeros, the roots of the numerator polynomial) [23]. Gold and Morgan [7] suggested 

that the speech spectrum can be specified by a filter with p = 2 * (BW + 1) 

coefficients, where BW is the speech bandwidth in kHz. So, for our example above, 

the number of coefficients would be 12. Fig. 18 shows several spectra of different 

LPC model orders for a voiced sound. Note that a 4
th

 order LPC model (Fig. 18a) 

does not efficiently represent the spectral envelope of the speech sound. The 12
th

 

order LPC model (Fig. 18b) fits efficiently the three resonances (which is a very 

compacted representation of the spectrum). However, as p increases (Fig. 18c and 

Fig. 18d), the harmonics of the spectrum are more fitted by the LPC filter. 

Consequently, the separation between the source and filter is reduced, which does not 

provide a better discrimination between different sounds.  
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Fig. 18. Spectra of different LPC models with different model orders of a segment from /ah/ 

phoneme: (a) 4th order, (b) 12th order, (c) 24th order, and (d) 128th order. The spectra of the LPC 

analysis (thick line) are superimposed on the spectrum of the phoneme (thin line). 

Despite the good fit of resonances, the LP analysis does not provide an adequate 

representation of all types of speech sounds. For example, nasalized sounds are poorly 

modeled by LPC because the production of such sounds is better modeled by a pole-

zero system (the nasal cavity)[94]. Unvoiced sounds are usually over-estimated by a 

model with order for voiced sounds because such sounds tend to have a simpler 

spectral shape [7]. 

Different representations can be estimated from the LPC coefficients that 

characterize uniquely the vocal tract filter H(z) [102]. One reason for using other 

representations is that the LPC coefficients are not orthogonal or normalized [7]. 

Among the several representations [102, 106], the most common are: 

─ Complex poles of the filter describe the position and bandwidth of the resonance 

peaks of the model.  

─ Reflection coefficients represent the fraction of energy reflected at each section of 

a nonuniform tube (with as many sections as the order of the model).  

─ Area functions describe the shape of the hypothetical tube. 

─ Line spectral pairs relate to the positions and shapes of the peaks of the LP model.  

─ Cepstrum coefficients form a Fourier pair with the logarithmic spectrum of the 

model (they can be estimated through a recursion from the prediction coefficients). 

These parameters are orthogonal and well behaved numerically.  

Besides speech recognition, the theory of LP analysis has been applied to several 

other speech technologies, such as, speech coding, speech synthesis, speech 

enhancement, and speaker recognition.  

0 1 2 3 4 5

-60

-40

-20

0

20

L
og

 M
ag

ni
tu

de
 (

dB
)

Frequency (kHz) 

 (a)

0 1 2 3 4 5

-60

-40

-20

0

20

L
og

 M
ag

ni
tu

de
 (

dB
)

Frequency (kHz) 

 (b)

0 1 2 3 4 5

-60

-40

-20

0

20

L
og

 M
ag

ni
tu

de
 (

dB
)

Frequency (kHz) 

 (c)

0 1 2 3 4 5

-60

-40

-20

0

20

L
og

 M
ag

ni
tu

de
 (

dB
)

Frequency (kHz) 

 (d)



32 André Gustavo Adami 

5.3 Perception-based Analysis 

Perception-based analysis uses some aspects and behavior of the human auditory 

system to represent the speech signal. Given the human capability of decoding 

speech, the processing performed by the auditory system can tell us the type of 

information and how it should be extracted to decode the message in the signal. Two 

methods that have been successfully used in speech recognition are Mel-Frequency 

Cepstrum Coefficients (MFCC) and Perceptual Linear Prediction (PLP).  

5.3.1 Mel-Frequency Cepstrum Coefficients 

The Mel-Frequency Cepstrum Coefficients is a speech representation that exploits 

the nonlinear frequency scaling property of the auditory system [67]. This method 

warps the linear spectrum into a nonlinear frequency scale, called Mel. The Mel-scale 

attempts to model the sensitivity of the human ear and it can be approximated by 

𝐵 𝑓 = 1125𝑙𝑛  1 +
𝑓

700
 , 

The scale is close to linear for frequencies below 1 kHz and is close to logarithmic for 

frequencies above 1 kHz. The MFCC estimation is depicted in Fig. 19.  

  

Fig. 19. Diagram of the Mel-Frequency Cepstrum Coefficients estimation.  

The first step is to estimate the magnitude spectrum of the speech segment. First, 

the speech signal is windowed with w[n], and the discrete STFT, X n, k , is computed 

according to Equation (2). Then, the magnitude of X n, k  is weighted by a series of 

triangular-shaped filter frequency responses, 𝐻𝑚  𝑘 , (whose center frequencies and 

bandwidths match the Mel scale) as follows  

Θ 𝑚 =   𝑋 𝑛, 𝑘  2𝐻𝑚  𝑘 

𝑁−1

𝑘=0

,            0 < 𝑚 ≤ 𝑀 

where M is the number of filters, and 𝐻𝑚  𝑘  is the m
th

 filter. Fig. 20 shows an 

example of a mel-scale filterbank with 24 triangular-shaped frequency responses.  
 

 

Fig. 20. Mel-scale filter bank with 24 triangular-shaped filters.   
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The weighting operation, Θ 𝑚 , performs two operations on the magnitude spectrum: 

frequency warping and critical band integration. The log-energy is computed at the 

output of each filter  

𝑆 𝑚 = 𝑙𝑛 Θ 𝑚  . 

The mel-frequency cepstrum is then the discrete cosine transform (DCT) of the M 

filter outputs 

𝑐 𝑛 =  𝑆 𝑚 𝑐𝑜𝑠  𝑛  𝑚 −
1

2
 
𝜋

𝑀
 

𝑀−1

𝑚=0

,           𝑛 = 1, 2,… , 𝐿 

where L is the desired length of the cepstrum. For speech recognition, typically only 

the first 13 cepstrum coefficients are used [23]. The advantage of computing the DCT 

is that it decorrelates the original me-scale filter log-energies [104]. One of the 

advantages of MFCC is that it is more robust to convolutional channel distortion 

[104].  

5.3.2 Perceptual Linear Prediction 

Conventional LP analysis approximates the areas of high-energy concentration of 

the spectrum (formants) in the spectrum, while smoothing out the fine harmonic 

structure and other less relevant spectral details. Such approximation is performed 

equally well at all frequencies of the analysis band, which is inconsistent with human 

hearing. For example, frequency resolution decreases in frequency above 800 Hz and 

hearing is most sensitive at middle frequency range of the audible spectrum. In order 

to alleviate such inconsistency, Hermansky [79] proposed a technique, called 

Perceptual Linear prediction, that modifies the short-term spectrum of speech by 

several psychophysically-based spectral transformations prior to LP analysis. The 

estimation of the PLP coefficients is illustrated in Fig. 21.  

 

Fig. 21. Perceptual Linear Prediction estimation.  

The first steps in computing the PLP and MFCC coefficients are very similar. The 

speech signal is windowed (e.g., Hamming window) and the discrete STFT, 𝑋 𝑛, 𝑘 , 
is computed. Typically the FFT is used to estimate the discrete STFT. Then, the 

magnitude of the spectrum is computed.  

The magnitude of 𝑋 𝑛, 𝑘  is integrated within overlapping critical band filter 

responses. Unlike the mel cepstral analysis, the integration is performed by applying 

trapezoid-shaped filters (an approximation of what is known about the shape of 
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auditory filters) to the magnitude spectrum at roughly 1-Bark intervals. Fig. 22 shows 

an example of a bark-scale filterbank with 14 trapezoid-shaped frequency responses. 

The Bark frequency  is derived from the frequency axis  (radians/second) by the 

warping function from Schroeder [107] 

Ω 𝜔 = 6𝑙𝑛  
𝜔

1200𝜋
+   

𝜔

1200𝜋
 

2

+ 1 . 

 

Fig. 22. Bark-scale filter bank with 14 trapezoid-shaped filters.  

Some researchers suggest to use the Mel-frequency scale instead of the Bark scale to 

improve the system robustness to mismatched environments [108]. 

To compensate the unequal sensitivity of human hearing at different frequencies, 

the output of each filter, Θ 𝑚 , is pre-emphasized by a simulated equal-loudness 

curve, 𝐸 𝜔𝑚  , as follows  

Ξ 𝑚 = 𝐸 𝜔𝑚   Θ 𝑚  

where 𝜔𝑚 =  1200𝜋 sinh  
Ω 2𝜋 

𝑀
𝑚 6  , and 𝐸 𝜔  is given by  

𝐸 𝜔 =
 𝜔2 + 56.8 × 106 𝜔4

 𝜔2 + 6.3 × 106 2 𝜔2 + 0.38 × 109 
. 

In MFCC analysis, pre-emphasis is applied in the time-domain.  

The spectral amplitudes are compressed by taking the cubic root, as follows 

𝛷 𝑚 = 𝛯 𝑚 1 3 . 

Typically, the compression is performed using the logarithm, but the cube root is an 

operation that approximates the power law of hearing and simulates the nonlinear. 

This operation together with the equal loudness pre-emphasis reduce the spectral-

amplitude variation of the critical band spectrum so that the LP analysis can be 

performed using a low order model. 

Finally, 𝛷 𝑚  is approximated by the spectrum of an all-pole model using the 

autocorrelation method. Since the logarithm has not been computed, the inverse DFT 

of 𝛷 𝑚  yields a result more like autocorrelation coefficients (since the power 

spectral are real and even, only the cosine components of the inverse DFT is 

computed). An autoregressive model is used to smooth the compressed critical band 
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spectrum. The prediction coefficients can be further transformed into the cepstral 

coefficients using the cepstral recursion. 

5.4 Methods for Robustness 

Although the described speech representations provide smooth estimates of the 

short-term spectrum, other methods are applied to such parameters to provide 

robustness in ASR applications. For example, the assumption of a stationary model in 

the short-term analysis does not take into account the dynamics of the vocal tract. In 

addition, any short-term spectrum based method is susceptible to convolutive effects 

in the speech signal introduced by the frequency response of the communication 

channel. Three methods that increased the robustness of ASR systems are described: 

delta features, RASTA filtering and Cepstral Means Subtraction.  

A method widely used to model the dynamics of the speech signal is the temporal 

derivatives of acoustic parameters [109, 110]. Typically, feature vectors are 

augmented with the first and second temporal derivatives of the short-term spectrum 

or cepstrum, which corresponds to the velocity and the acceleration of the temporal 

trajectory, respectively. The velocity component is usually referred to delta features 

and the acceleration is referred to delta-delta features [111]. The delta and delta-delta 

features are estimated by fitting a straight line and a parabola, respectively, over a 

finite length window (in time) of the temporal trajectory. Typically, the delta features 

are estimated over a time interval between 50ms and 100ms. This processing can be 

seen as a filtering of the temporal trajectories. Another method that performs filtering 

of temporal trajectories is the RASTA processing.  

Any other short-term spectrum based method is susceptible to convolutive effects 

in the speech signal introduced by the frequency response of the communication 

channel. The frequency characteristic of a communication channel is often fixed or 

slowly varying in time, and it shows as an additive component in the logarithmic 

spectrum of speech (convolutional effect). In addition, the rate of change of these 

components in speech often lies outside the typical rate of change of the vocal tract 

shape. The RASTA (RelAtive SpecTRAl) filtering exploits these differences to 

reduce the effects of changes in the communication channel, by suppressing the 

spectral components that change more slowly and faster than speech [112]. This is 

accomplished by applying a bandpass filter to each frequency channel, which 

preserves much of the phonetically important information in the feature 

representation. In a modification of the PLP, called RASTA-PLP, the filtering is 

applied on the log of each critical band trajectory and then followed by an 

exponentiation [113, 114]. RASTA approaches are discussed in much greater detail in 

[112]. 

Another method that performs some filtering in the logarithmic spectral domain is 

the cepstral mean normalization or subtraction (CMS) [69]. The CMS removes the 

mean of the cepstral coefficient feature vectors over some interval. This operation 

reduces the impact of stationary and slowly time-varying distortion. Another 

normalization applied to the cepstral coefficients to improve the system robustness to 

adverse conditions is the cepstral variance normalization (CVN) [115]. This 

normalization scales and limits the range of deviation in cepstral features to unity. 

Usually, the normalization is applied together with the mean normalization to the 
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sequence of feature vector. Thus, the cepstral features has zero mean and unity 

variance.   

6 Acoustic Modeling 

Acoustic models, 𝑃 𝑋 𝑊 , are used to compute the probability of observing the 

acoustic evidence X when the speaker utters W. One of the challenges in speech 

recognition is to estimate accurately such model. The variability in the speech signal 

due to factors like environment, pronunciation, phonetic context, physiological 

characteristics of the speaker make the estimation a very complex task. The most 

effective acoustic modeling is based on a structure referred to as Hidden Markov 

Models (HMM), which is discussed in this section.  

6.1 Hidden Markov Models 

A hidden Markov model is a stochastic finite-state automaton, which generates a 

sequence of observable symbols. The sequence of states is a Markov chain, i.e., the 

transitions between states has an associated probability called transition probability. 

Each state has an associated probability function to generate an observable symbol. 

Only the sequence of observations is visible and the sequence of states is not 

observable and therefore hidden; hence the name hidden Markov model. A hidden 

Markov model, as illustrated in Fig. 23, can be defined by 

─ An output observation alphabet 𝑂 =  𝑜1 , 𝑜2 ,… , 𝑜𝑀 , where M is the number of 

observation symbols. When the observations are continuous, M is infinite. 

─ A state space Ω =  1, 2,… ,𝑁 .  
─ A probability distribution of transitions between states. Typically, it is assumed 

that next state is dependent only upon the current state (first-order Markov 

assumption). This assumption makes the learning computationally feasible and 

efficient. Therefore, the transition probability can be defined as the matrix A =

 𝑎𝑖𝑗  , where 𝑎𝑖𝑗  is the probability of a transition from state i to state j, i.e., 

𝑎𝑖𝑗 = 𝑃 𝑠𝑡 = 𝑗 𝑠𝑡−1 = 𝑖 ,           1 ≤ 𝑖, 𝑗 ≤ 𝑁 

where, st is denoted as the state at time t.  

─ An output probability distribution 𝐵 =  𝑏𝑖 𝑘   associated with each state. Also 

known as emission probability, 𝑏𝑖 𝑘  is the probability of generating symbol ok 

while in state i, defined as 

𝑏𝑖 𝑘 = 𝑃 𝑣𝑡 = 𝑜𝑘  𝑠𝑡 = 𝑖  

where 𝑣𝑡  is the observed symbol at time t. It is assumed that current output 

(observation) is statistically independent of the previous outputs (output 

independence assumption).  

─ A initial state distribution 𝜋 =  𝜋𝑖 , where 𝜋𝑖  is the probability that state i is the 

first state in the state sequence (Markov chain),  
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𝜋𝑖 = 𝑃 𝑠0 = 𝑖 ,           1 ≤ 𝑖 ≤ 𝑁 

Since aij , bi k , and πi  are all probabilities, the following constraints must be 

satisfied 

𝑎𝑖𝑗 ≥ 0,          𝑎𝑖𝑗
𝑁
𝑗=1 = 1, 

𝑏𝑖 𝑘 ≥ 0,        𝑏𝑖 𝑘 
𝑀
𝑘=1 = 1, 

𝜋𝑖 ≥ 0,         𝜋𝑖
𝑁
𝑗=1 = 1, ∀ all i, j, k. 

 

Fig. 23. A hidden Markov model with three states.   

The compact notation 𝜆 =  A, B,π  is used to represent an HMM. The design of an 

HMM includes choosing the number of states, N, as well as the number of discrete 

symbols, M, and estimate the three probability densities, A, B, and .  

Three problems must be solved before HMMs can be applied to real-words applications 

[1, 23]:  

1. Evaluation problem: given an observation sequence 𝑂 =  𝑜1 , 𝑜2 ,… , 𝑜𝑇  and a 

model, how the probability of the observation sequence given the model, P(O|), 

is efficiently computed?  

2. Decoding problem: given an observation sequence 𝑂 =  𝑜1 , 𝑜2 ,… , 𝑜𝑇  and a model 

, how to choose the corresponding state sequence 𝑆 =  𝑠1, 𝑠2 ,… , 𝑠𝑇  that is 

optimal in some sense?  

3. Learning problem: given a model , how to estimate the model parameters to 

maximize 𝑃 𝑂 𝜆 ? 

The next sections presented formal mathematical solutions to each problem of HMM.  

6.1.1 Evaluation Problem 

The simplest way to compute the probability the observation sequence, 

O= o1, o2, …, oT , given the model, 𝑃 𝑂 𝜆 , is summing the probabilities of all 

possible state sequences S of length T. That is, to sum the joint probability of O and S 

occur simultaneously over all possible state sequences S, giving  
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𝑃 𝑂 𝜆 =  𝑃 𝑂, 𝑆 𝜆 

𝑎𝑙𝑙  𝑆

               

               =  𝑃 𝑂 𝑆, 𝜆  𝑃 𝑆 𝜆 

𝑎𝑙𝑙  𝑆

 

where 𝑃 𝑂 𝑆, 𝜆  is the probability of observing the sequence O given a particular state 

sequence S and 𝑃 𝑆 𝜆  is the probability of occurring such a state sequence S. Given the 

output independence assumption, 𝑃 𝑂 𝑆, 𝜆  can be written as 

𝑃 𝑂 𝑆, 𝜆  =  𝑃 𝑜𝑡  𝑠𝑡 , 𝜆                        

𝑇

𝑡=1  

 

                   = 𝑏𝑠1
 𝑜1 ∙ 𝑏𝑠2

 𝑜2 … 𝑏𝑠𝑇 𝑜𝑇 . 

By applying the first order Markov assumption, 𝑃 𝑆 𝜆  can be written by as 

𝑃 𝑆 𝜆 = 𝜋𝑠1
∙ 𝑎𝑠1𝑠2

∙ 𝑎𝑠2𝑠3
…𝑎𝑠𝑇−1𝑠𝑇 . 

Therefore the 𝑃 𝑂 𝜆  can be rewritten as 

𝑃 𝑂 𝜆 =  𝜋𝑠1
∙ 𝑏𝑠1

 𝑜1 ∙ 𝑎𝑠1𝑠2
∙ 𝑏𝑠2

 𝑜2 … 𝑎𝑠𝑇−1𝑠𝑇 ∙ 𝑏𝑠𝑇 𝑜𝑇 .

𝑎𝑙𝑙  𝑆

               

Note that this approach is computationally infeasible because the equation above 

requires (2T - 1)N
T
 multiplications and N

T
 – 1 additions [1]. Fortunately, a more 

efficient algorithm, called forward algorithm, can be used to compute 𝑃 𝑂 𝜆 .  
The forward algorithm is a type of dynamic programming algorithm that stores 

intermediate values as it builds up the probability of the observation sequence. The 

algorithm evaluates state by state the probability of being at that state given the partial 

observation sequence, that is,  

𝛼𝑡 𝑖 = 𝑃 𝑜1,𝑜2,… , 𝑜𝑡, 𝑠𝑡 = i 𝜆  

where 𝛼𝑡 𝑖  is the probability of the partial observation sequence in state i at time t, given 

the model 𝜆. The variable 𝛼𝑡 𝑖  can be solved inductively, as follows 

1. Initialization 

𝛼1 𝑖 = 𝜋𝑖 ∙ 𝑏𝑖 𝑜1 ,          1 ≤ 𝑖 ≤ 𝑁. 

2. Induction 

𝛼𝑡+1 𝑗 =   𝛼𝑡 𝑖 ∙ 𝑎𝑖𝑗

𝑁

𝑖=1

 ,           1 ≤ 𝑡 ≤ 𝑇 − 1, 1 ≤ 𝑗 ≤ 𝑁. 

3. Termination 

𝑃 𝑂 𝜆 =  𝛼𝑇 𝑖 .

𝑁

𝑖=1

 

The forward algorithm has a complexity of O(N
2
T), which is much better than an 

exponential complexity. Typically, temporal constraint is assumed in speech recognition 
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systems, that is, the state transitions have some temporal order, usually left to right. Thus, 

HMMs for speech applications have a final state (𝑠𝐹), altering the termination step of the 

forward algorithm to 𝑃 𝑂 𝜆 = 𝛼𝑇 𝑠𝐹 .  

6.1.2 Decoding Problem 

An approach to find the optimal state sequence for a given observation sequence is 

to choose the states st that are individually most likely at each time t. Even though this 

approach maximizes the expected number of correct states, the estimated state 

sequence can have transitions that are not likely or impossible to occur (i.e., aij=0). 

The problem is that the approach does not take into account the transition 

probabilities. A modified version of the forward algorithm, known as the Viterbi 

algorithm, can be used to estimate the optimal state sequence 

The Viterbi algorithm estimates the probability that the HMM is in state j after 

seeing the first t observations, like in the forward algorithm, but only over the most 

likely state sequence 𝑠1 , 𝑠2 ,… , 𝑠𝑡−1, given the model that is,  

𝛿𝑡 𝑖 = max
𝑠1,𝑠2,…,𝑠𝑡−1

𝑃 𝑠1, 𝑠2,… , 𝑠𝑡−1, 𝑠𝑡 = i,𝑜1,𝑜2,… , 𝑜𝑡 𝜆  

where 𝛿𝑡 𝑖  is the probability of the most likely state sequence in state i at time t after 

seeing the t observations. An array 𝜓𝑡 𝑡  is used to keep track of the previous state with 

highest probability so the state sequence can be retrieved at the end of the algorithm. The 

Viterbi algorithm can be defined as follows: 

1. Initialization 

𝛿1 𝑖 = 𝜋𝑖 ∙ 𝑏𝑖 𝑜1 ,           1 ≤ 𝑖 ≤ 𝑁. 
𝜓𝑡 𝑡 = 0.                                                  

2. Recursion 

𝛿𝑡 𝑗 = 𝑚𝑎𝑥
 1≤𝑖≤𝑁

 𝛿𝑡−1 𝑖 ∙ 𝑎𝑖𝑗  ∙ 𝑏𝑗  𝑜𝑡 ,                                                 

𝜓𝑡 𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥
 1≤𝑖≤𝑁

 𝛿𝑡−1 𝑖 ∙ 𝑎𝑖𝑗  ,                  2 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑗 ≤ 𝑁. 

3. Termination 

𝑃∗ = max
 1≤𝑖≤𝑁

 𝛿𝑇 𝑖  , 

𝑠𝑡
∗ = argmax

 1≤𝑖≤𝑁

 𝛿𝑇 𝑖  . 

4. Path backtracking 

𝑠𝑡
∗ = 𝜓

𝑡+1
 𝑠𝑡+1

∗ ,               𝑡 = 𝑇 − 1,𝑇 − 2,… , 1. 

6.1.3 Learning Problem 

The estimation of the model parameters 𝜆 =  A, B,π  is the most difficult of the 

three problems, because there is no known analytical method to maximize the probability 

of the observation sequence in a closed form. However, the parameters can be estimated 
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by maximizing 𝑃 𝑂 𝜆  locally using an iterative algorithm, such as the Baum-Welch 

algorithm (also known as the forward-backward algorithm).  

The Baum-Welch algorithm starts with an initial estimate of the transition and 

observation probabilities, and then use these estimated better probabilities that 

maximizes 𝑃 𝑂 𝜆 . The algorithm uses the forward probability 𝛼𝑡 𝑖  (in Section 6.1.1) 

and the complementary backward probability 𝛽. The backward probability 𝛽 is 

defined as 

𝛽𝑡 𝑖 = 𝑃 𝑜t+1,𝑜t+2,… ,𝑜𝑇 𝑠𝑡 = i, 𝜆  

where 𝛽𝑡 𝑖  is the probability of seeing the partial observation sequence from time t+1 to 

the end in state i at time t, given the model 𝜆. The variable 𝛽𝑡 𝑖  can be solved 

inductively, as follows 

1. Initialization 

𝛽𝑇 𝑖 = 1/𝑁,           1 ≤ 𝑖 ≤ 𝑁. 

2. Induction 

𝛽𝑡 𝑗 =   𝑎𝑖𝑗 ∙ 𝑏𝑗  𝑜𝑡+1 ∙ 𝛽𝑡+1 𝑗 

𝑁

𝑖=1

 ,           
𝑡 = 𝑇 − 1,𝑇 − 2,… ,𝑇

1 ≤ 𝑖 ≤ 𝑁
   

Before the reestimation procedure is described, two auxiliary variables need to be 

defined. The first variable, 𝜉𝑡 𝑖, 𝑗 , is the probability of being in state i at time t, and 

state j at time t+1, given the model and the observation sequence, i.e. 

𝜉𝑡 𝑖, 𝑗 = 𝑃 𝑠𝑡 = i, 𝑠𝑡+1 = j O, 𝜆 . 

Using the definitions of the forward and backward variables, 𝜉𝑡 𝑖, 𝑗  can be rewritten as 

𝜉𝑡 𝑖, 𝑗 =
𝑃 𝑠𝑡 = i, 𝑠𝑡+1 = j, O 𝜆 

𝑃 O 𝜆 
 

=
𝛼𝑡 𝑖 ∙ 𝑎𝑖𝑗 ∙ 𝑏𝑗 𝑜𝑡+1 ∙ 𝛽𝑡+1

 𝑗 

  𝛼𝑡 𝑖 ∙ 𝑎𝑖𝑗 ∙ 𝑏𝑗 𝑜𝑡+1 ∙ 𝛽𝑡+1
 𝑗 𝑁

𝑗=0
𝑁
𝑖=1

. 

The second variable, 𝛾𝑡 𝑖 , defines the probability of being in state i at time t, given the 

model and the observation sequence. This variable can be estimated from 𝜉𝑡 𝑖, 𝑗 , by 

summing all the probabilities of being in state i at time t and every state at time t+1, 

i.e., 

𝛾𝑡 𝑖 =  𝜉𝑡 𝑖, 𝑗 .

𝑁

𝑗=1

 

Using the above formulas, the method for reestimation of the HMM parameters can 

be defined as 

𝜋 𝑗 = expected frequency in state i at time t=1 = 𝛾1 𝑖  

𝑎 𝑖𝑗 =
expected number of transitions from state i to state j 

expected number of transitions from state i 
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=
 𝜉𝑡 𝑖, 𝑗 
𝑇−1
𝑡=1

 𝛾𝑡 𝑖 
𝑇−1
𝑡=1

                                                                         

𝑏 𝑗  𝑘 =
expected number of times in state j observing symbol 𝑣𝑘  

expected number of transitions from state i 
 

=
 𝜉𝑡 𝑖, 𝑗 
𝑇
𝑡=1,𝑜𝑡=𝑣𝑘

 𝛾𝑡 𝑖 
𝑇
𝑡=1

.                                                                   

The reestimated model is 𝜆 =  A , B ,π   , and it is more likely than the model  (i.e., 

𝑃 𝑂 𝜆  >  𝑃 𝑂 𝜆 ). Based on the above method, the model  is replaced by 𝜆  and the 

reestimation is repeated. This process can iterate until some limiting point is reached 

(usually is local maxima).  

One issue in the HMM reestimation is that the forward and backward probabilities 

tend exponentially to zero for sufficiently large sequences. Thus, such probabilities 

will exceed the precision range of any machine (underflow). An approach to avoid 

such problem is to incorporate a scaling procedure or to perform the computation in 

the logarithmic domain [1]. 

6.2 Hidden Markov Models for Speech Recognition 

There are several aspects of the model that must be defined before applying HMMs 

for speech recognition. In this section, some of the aspects are reviewed: 

discriminative training, choice of speech unit, model topology, output distribution 

estimators, parameter initialization, and some adaptation techniques. 

6.2.1 Discriminative Training 

The standard maximum likelihood (ML) maximize the probability given the 

sequence of observations to derive the HMM model , as follows 

𝜆𝑀𝐿 = argmax
𝜆

𝑃 𝑂 𝜆 . 

In a speech recognition problem, each acoustic class c from an inventory of C 

classes is represented by an HMM, with a parameter set c, c = 1, 2, …, C. The ML 

criterion to estimate the model parameters c using the labeled training sequence O
c
 

for the class c can be defined as 

 𝜆𝑐 𝑀𝐿 = argmax
𝜆

𝑃 𝑂𝑐 𝜆 . 

Since each model is estimated separately, the ML criterion does not guarantee that 

the estimated methods are the optimal solution for minimizing the probability of 

recognition error. It does not take into account the discrimination ability of each 

model (i.e., the ability to distinguish the observations generated by the correct model 

from those generated by the other models). An alternative criterion that maximizes 

such discrimination is the maximum mutual information (MMI) criterion. The mutual 

information between an observation sequence 𝑂𝑐  and the class c, parameterized by 

Λ ={𝜆𝑐}, c = 1, 2, …, C, is 
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𝐼Λ 𝑂
𝑐, 𝑐 = log

𝑃 𝑂𝑐 𝜆𝑐 

 𝑃 𝑂𝑐 𝜆𝑤 ,𝑤 𝑃 𝑤 𝐶
𝑤=1

              

=  log𝑃 𝑂𝑐 𝜆𝑐 − log  𝑃 𝑂𝑐 𝜆𝑤 ,𝑤 𝑃(𝑤)

𝐶

𝑤=1

. 

The MMI criterion is to find the entire model set Λ such that the mutual 

information is maximized, 

 Λ 𝑀𝑀𝐼 = max
Λ

  𝐼Λ 𝑂
𝑐, 𝑐 

𝐶

𝑐=1

 . (9) 

Thus, the MMI criterion is maximized by making the correct model sequence likely and 

all the other model sequence unlikely. The implementation of the MMI is based on a 

variant of Baum-Welch training called Extended Baum-Welch that maximizes (9). 

Briefly, the algorithm computes the forward-backward counts for the training utterances 

like in the ML estimation. Then, another forward-backward pass is computed over all 

other possible utterances and subtract these from the counts. Note that the second step is 

extremely computing intensive. In practice, MMI algorithms estimate the probabilities of 

the second step only on the paths that occur in a word lattice (as an approximation to the 

full set of possible paths). MMI training can provide consistent performance 

improvements compared to similar systems trained with ML [116].  

Rather than maximizing the mutual information, several authors have proposed the 

use of different criteria. The minimum classification error (MCE) criterion is designed 

to minimize these errors and have been shown to outperform MMI estimation on 

small tasks [117]. Other criterion includes to minimize the number of word level 

errors (minimum word error – MWE) or the number of phone level errors (minimum 

phone error - MPE) [92, 118]. 

6.2.2 Speech Unit Selection 

A crucial issue for acoustic modeling is the selection of the speech units that 

represent the acoustic and linguistic information for the language. The speech units 

should at least derive the words in the vocabulary (or even new words) and be 

trainable (i.e., there is data enough to estimate the models). The amount of data is also 

related to the matter of getting the speech units. The more difficult is to extract the 

speech units from the speech signal, the fewer data is obtained from estimating the 

models.  

The speech units can range from phones up to words. Whole words have been used 

for tasks like digit recognition. An advantage of this unit is that it captures the 

phonetic coarticulation within the word. However, this approach becomes prohibitive 

for tasks with large vocabularies (i.e., requirement of large amounts of training data, 

no generalizable for new words). Typically, phones or sub-phones (transition-based 

units such as diphone to circumvent the phonetic coarticulation problem) are used as 

speech units. Usually, these units are fewer than words, which present no training data 

problem. However the realization of a phoneme is strongly affected by the 

surrounding phonemes (phonetic coarticulation). 
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One way to reduce such effects is to model the context where the phoneme occurs. 

This approach, known as context-dependent phonetic modeling, has been widely used 

by large-vocabulary speech recognition systems. The most common kind of context-

dependent model is a triphone HMM [23]. A triphone model represents a phone in a 

particular left and right context. For example, in the word speech, pronounced /s p iy 

ch/, one triphone model for /p/ is [s-p+iy], that is, /p/ is preceded by /s/ and followed 

by /iy/. The specificity of the model increases the number of parameters to estimate 

and not all triphones will have enough examples to be used in the estimation. For 

example, there are about 40
3
 or 64,000 triphones for a phoneset with 40 phones. 

Certainly, not all triphones occur in any language. The problem can become more 

complicated when the context is modeled between words. All the possible 

surrounding neighboring words can produce a large number of models. Some 

techniques are used to deal with this problem by parameter sharing.  

Another speech unit that reduces the coarticulation effect is the syllable [119]. The 

advantage of syllables is that they contain most of the variable contextual effects, 

even though the beginning and ending portions of the syllable are susceptible to some 

contextual effect. Chinese has about 1200 tone-dependent syllables, 50 syllables in 

Japanese, 30,000 syllables in English. Syllable is not suitable for English given the 

large number of units. To reduce the considerable number of syllables for certain 

languages, another type of syllable-based unit was used for speech recognition: 

demisyllables. A demisyllable consists of either the initial (optional) consonant cluster 

and some part of the vowel nucleus, or the remaining part of the vowel nucleus and 

the final (optional) consonant cluster [1]. English has something on the order of 2,000 

demisyllables, Spanish has less than 750, and German has about 344.  

Speech recognition systems that use sub-word models (i.e., phones, sub-phones, or 

syllables) have a list that provides the transcription of all words of the task according 

to the set of sub-word units [16, 120]. This list is commonly referred to as lexicon or 

dictionary. Used by the language model, acoustic models, and the decoder, every 

entry of the lexicon (word) is described as a sequence of the sub-word units. When 

the sub-word units are phones, the lexicon is also referred to as pronunciation 

dictionary or phonetic dictionary. Some phonetic dictionaries freely available include  

 CMU Dictionary4: contains over 125,000 lexical entries for North American 

English; 

 UFPAdic5: contains over 64,000 lexical entries for BP 

 PRONLEX6 contains 90,988 lexical entries and includes coverage of the Wall 

Street Journal, and conversational telephone speech (Switchboard and 

CallHome English). 

6.2.3 Model Topology 

Some of the issues in implementing HMMs are the number of states and the choice 

of transitions between states. Again, there is no deterministic answer. Given that 

                                                           
4 http://www.speech.cs.cmu.edu/cgi-bin/cmudict 
5 http://www.laps.ufpa.br/falabrasil/downloads.php 
6 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC97L20 
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speech is a nonstationary temporal signal, a left-to-right topology is used to capture 

the temporal dynamics of speech. Such topology has a self transition (to account for 

differences in duration) and there is one transition between two adjacent states, that 

configures the temporal evolution of speech (i.e., the transitions allow only a path that 

goes from left to right, aij = 0, j < i). Fig. 24 illustrates a left-to-right HMM with five 

states. This topology is one of the most popular HMM structures used in state-of-the-

art speech recognition systems. In addition to states that have an output probability 

distribution, it is often used states without it called null states. The goal is to facilitate 

the composition of larger units (e.g., words) from the sub-units [121]. The inclusion 

of null states requires some changes to the computation of the forward and backward 

probabilities.  

 

Fig. 24. Left-to-right HMM with two null states (without output probability distribution). 

 

6.2.4 Output Probability Density Estimators 

In the previous sections, the observations where characterized as discrete symbols 

that could be modeled at each state by a discrete probability density. The problem 

with this approach is that most of speech signal representations are continuous (and 

multi-dimensional), as seen in Section 5. Among the methods used to describe 

continuous observations, Gaussian densities and neural networks are commonly used.  

Most speech recognition systems assume that the observations are generated by a 

multivariate Gaussian distribution (described by a mean vector and a covariance 

matrix). However, the number of parameters required to estimate the covariance 

matrix (dimension of each observation squared) for each state can be prohibitive. So, 

Gaussians with diagonal covariance (i.e., only variances) are combined to model the 

observation. In this density estimator, the output probability density of each state is 

represented by 

𝑏𝑖 𝑜 =  𝑐𝑖𝑘 ∙  𝒩 𝑜, 𝜇𝑖𝑘Σik  
𝑀

𝑘=1
 

where o is the observation vector being modeled, 𝒩 𝑥, 𝜇𝑖𝑘Σik   is a single Gaussian 

density function with mean vector 𝜇𝑖𝑘  and covariance matrix Σik  for state i, and M 

denotes the number of components, and 𝑐𝑖𝑘  is the weight for the k
th

 component 

satisfying the stochastic and nonzero constraints. The parameter estimation for the 

density changes the reestimation procedure in the Baum-Welch algorithm, as 

following 
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𝑐 𝑗𝑘 =
 𝛾𝑡 𝑗, 𝑘 
𝑇
𝑡=1

  𝛾𝑡 𝑗, 𝑘 
𝑀
𝑘=1

𝑇
𝑡=1

 

𝜇 𝑗𝑘 =
 𝛾𝑡 𝑗, 𝑘 
𝑇
𝑡=1 ∙ 𝑜𝑡

 𝛾𝑡 𝑗, 𝑘 
𝑇
𝑡=1

 

𝛴 𝑗𝑘 =
 𝛾𝑡 𝑗, 𝑘 
𝑇
𝑡=1 ∙  𝑜𝑡 − 𝜇𝑗𝑘   𝑜𝑡 − 𝜇𝑗𝑘  

𝑡

 𝛾𝑡 𝑗, 𝑘 
𝑇
𝑡=1

 

where 𝛾𝑡 𝑗, 𝑘  is the probability of being in state j at time t with the k
th

 mixture 

component accounting for ot defined as 

𝛾𝑡 𝑗, 𝑘 =
𝑐𝑗𝑘 ∙ 𝒩 𝑜𝑡 , 𝜇𝑗𝑘 Σjk  

 𝑐𝑗𝑚 ∙ 𝒩 𝑜𝑡 , 𝜇𝑗𝑚 Σjm  
𝑀
𝑚=1

. 

Despite the reduction of parameters by using diagonal covariance matrix, there is still 

some considerable number of parameters. In addition, some states can share similar 

observation densities. To improve the parameter estimation, the distributions of 

different states can be tied (i.e., the same density for the tied states) according to some 

rule. The most common technique to select the states to tie is decision tree based on a 

triphone model [122]. Decision tree is a binary tree in which a question is attached to 

each node. The questions are related to the phonetic context to the immediate left or 

right. For example, in Fig. 25, the first question in the tree (root node) is: ―Is the left- 

context phone a nasal?.‖ A decision tree is built for each phone to cluster all the 

corresponding states of all triphones. Each state cluster (in the leaf nodes of the tree) 

will form a single state. 

 

Fig. 25. Example of a tied-state HMM and a phonetic decision tree (adapted from [122]). 
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Artificial neural network (ANN) is another method to estimate probabilities. It has 

been shown that the outputs of ANNs used in classification can be interpreted as 

estimates of posterior probabilities of output classes conditioned on the input data 

[123]. The state output probability can be estimated by applying Bayes rule to the 

outputs [124]. The hybrid approach HMM/ANN has been used in a significant 

number of ASR systems [7].  

6.2.5 Initial Estimates 

The Baum-Welch algorithm uses an initial estimate of the transition and 

observation probabilities. Since the algorithm tends to a local maximum, it is 

important to select an initial estimate that is as close as possible to global maximum 

of the likelihood function.  

Empirical work has shown that random (under the stochastic and nonzero value 

constraints) or uniform initial estimates can work reasonable well for speech 

applications, especially for discrete HMMs [1, 23]. However, when the observations 

are continuous, more sophisticated methods can be applied to produce an initial 

estimate. The segmented data from k-means clustering [125] can be used to derive the 

parameters (e.g., Gaussian mean and covariance) for the probability density function 

of each state. Another method is to equally divide the sequence of observations 

amongst the model states to estimate the parameters for the probability density 

function and then to perform a maximum likelihood segmentation of the sequence 

until some stopping criteria [121]. The flat-start approach sets all transitions 

probabilities to be equal and initializes the density parameters for each state with the 

parameters estimated over the data for that model [6]. Models with mixture of 

Gaussians densities can be estimated by incrementally splitting on each iteration the 

Gaussian densities. 

6.2.6 Model Adaptation 

Mismatches between the training and testing conditions may degrade performance 

of the speech recognition system. Some of the mismatches include new speakers, 

unseen environments or channels. The solution to these problems is to minimize the 

effect of such mismatches by modifying the acoustic models using some data from the 

unseen condition. For example, in a speaker-independent ASR system, the acoustic 

models can be adapted (modified) to the new speaker using training data from the 

new user, which could result in improved accuracy [126]. In addition to minimize the 

differences between the model and the new speaker, model adaptation can be used to 

estimate models on a limited amount of (unseen) training data. Among all the 

methods, the three main approaches to adaptation are: 

1. $ Maximum A Posteriori (MAP) adaptation [127], the simplest form of acoustic 

adaptation, incorporates some prior knowledge into the estimation procedure. In 

ML estimation, the HMM parameter  is assumed fixed but unknown. In the MAP 

estimation,  is assumed random with a priori distribution 𝑃0 𝜆 , and it can be 

estimated by 
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𝜆𝑀𝐴𝑃 = argmax
𝜆

𝑃 𝑂 𝜆 𝑃0 𝜆  

Note that the choice of the prior distribution  𝑃0 𝜆  is very important in the 

estimation process. The HMM parameters are still estimated with the expectation-

maximization (EM) algorithm, but using the MAP formulas [127]. The MAP 

adaptation can be regarded as an interpolation of the original prior parameter with 

those that would be obtained from the adaptation data [6, 23]. One important 

property of MAP adaptation is that as the amount of adaptation data increases, 

more the estimated parameters tend to a model estimated only on sufficient 

adaptation data.  

 

2. Maximum Likelihood Linear Regression (MLLR) adaptation [88] adjusts the 

Gaussian density parameters (mean vector and covariance matrix) using a set of 

linear regression transformation functions to increase the data likelihood of the 

adaptation data. Since the number of transformation parameters is small, it is 

possible to adapt large model with small amounts of data. It consists of finding a 

linear transformation (R) to adjust the Gaussian density parameters so that it 

maximizes the likelihood of the adaptation data, satisfying  

𝜆𝑀𝐿𝐿𝑅 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜆

𝑃 𝑂 𝜆,𝑅  

Typically, the transformation R is applied to the model means. In the mixture 

Gaussian density functions, the k
th

 mean vector 𝜇𝑖𝑘  for each state i can be 

transformed using the following equation 

𝜇 𝑖𝑘 = 𝐴𝜇𝑖𝑘 +  𝑏  
where A is a regression matrix and b is an additive bias vector. The transformation 

parameters A and b are associated with some broad phonetic class or a set of tied 

Markov states, so that the number of free parameters is significantly less than the 

number of mean vectors. The number of transformations can be determined 

automatically using a regression class tree [6], where each node represents a 

regression class. The occupation count of each node is easily computed because the 

counts are known at the leaf nodes. Thus, given a set of adaptation data, the tree 

may be descended to an appropriate depth and a set of transformations for which 

there is sufficient data is selected. A modification was introduced to this method, 

called constrained MLLR (CMLLR) [6], so that the same linear transform is 

applied to the mean vector and covariance matrix.  

 

3. Vocal Tract Length Normalization (VTLN) warps the frequency scale to 

compensate for vocal tract differences. The warping is usually applied in the 

acoustic processing state (similar to the Bark/Mel frequency warping of the 

perception-based analysis methods in Section 5.3). Typically, two issues need to be 

addressed: how to choose the scaling function and how to estimate the scaling 

function parameters (e.g., warping factor). Several approaches have been proposed 

[82, 83, 128]. The first VTLN methods used a simple linear mapping [128] but this 

approach does not take into account that, due to a shorter vocal tract, female 

speakers have higher formant frequencies than male speakers. This problem can be 

reduced by using a piecewise linear function [83]. The warping factor can be 

estimated by maximizing the model probability given some transcription (ML 

approach). It also can be derived from the signal (e.g., formant frequency [82]). 
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Generally, the findings are that piecewise linear models work as well as the more 

complex models, and that simple acoustic models can be used to estimate the warp 

factors.  

7 Language Modeling 

In the statistical framework, the sequence of words is selected by the recognizer so 

that it maximizes the product between the probabilities of observing the acoustic 

evidence X when the speaker utters W, 𝑃 𝑋 𝑊 , and the sequence of words W that 

will be utter, 𝑃 𝑊  in a given task. The first probability is estimated by the acoustic 

models, described in Section 6, and the second one is estimated by the language 

model. The goal of the language model is to model the sequence of words in the 

context of the task being performed by the speech recognition system. In continuous 

speech recognition, the incorporation of a language model is crucial to reduce the 

search space of sequence of words. In this section, algorithms for language modeling 

are described.  

7.1 N-gram Language Models 

The language model 𝑃 𝑊  can be decomposed as 

𝑃 𝑊 = 𝑃 𝑤1 ,𝑤2 ,… ,𝑤n  
= 𝑃 𝑤1 𝑃 𝑤2 𝑤1 𝑃 𝑤3 𝑤1 ,𝑤2 …𝑃 𝑤𝑛  𝑤1 ,𝑤2 ,… ,𝑤𝑛−1  

=  𝑃 𝑤𝑖 𝑤1 ,𝑤2 ,… ,𝑤𝑖−1 

n

i=1

 

where 𝑃 𝑤𝑖 𝑤1 ,𝑤2 ,… ,𝑤𝑖−1  is the conditional probability that wi will occur given 

the previous word sequence 𝑤1 ,𝑤2 ,… ,𝑤𝑖−1. Unfortunately, it is impossible to 

compute the conditional word probabilities 𝑃 𝑤𝑖  𝑤1 ,𝑤2 ,… ,𝑤𝑖−1  for all words and 

all sequence lengths in a given language. Even if the sequences are limited to 

moderate values of i, there would not be data enough to estimate reliably all the 

conditional probabilities. Thus, the conditional probability can be approximated by 

estimating the probability only on the preceding N-1 words (i.e., a Markov model of 

order N-1) defined by  

𝑃 𝑊 ≈ 𝑃 𝑤𝑖  𝑤𝑖−𝑁+1,𝑤𝑖−𝑁+2 ,… ,𝑤𝑖−1 

n

i=1

. 

This approximation is commonly referred to N-gram model [129]. If the model is 

estimated using only the two preceding words (N=3), the model is called 

trigram, 𝑃 𝑤𝑖 𝑤𝑖−2,𝑤𝑖−1 . Similarly, the model is bigram, 𝑃 𝑤𝑖  𝑤𝑖−1 , for one 

preceding word (N=2), and unigram, 𝑃 𝑤𝑖  when no preceding word is used (N=1). 

The probability for the sequence ―cats sleeps a lot‖ can be estimated as follows 

Bigram model 
P(cats sleep a lot) = P(cats| <START>) P(sleep|cat) P(a|sleep) P(lot|a) P(<END>|lot) 
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Unigram model 
P(cats sleep a lot) = P(cats) P(sleep) P(a) P(lot) 

Note that for the bigram model, some tokens were added to the sentence so that 

𝑃 𝑤𝑖  𝑤𝑖−1  for i=1 is meaningful (<START> in the beginning of the sentence) and the 

sum of all probabilities of all strings is equal to 1 (<END > in the end of the sentence).  

The conditional probabilities 𝑃 𝑤𝑖  𝑤𝑖−𝑁+1,𝑤𝑖−𝑁+2,… ,𝑤𝑖−1  can be estimated by 

the relative frequency that a given word wi  occurs given the preceding 

words 𝑤𝑖−𝑁+1,𝑤𝑖−𝑁+2 ,… ,𝑤𝑖−1, i.e., 

𝑃 𝑤𝑖  𝑤𝑖−𝑁+1,𝑤𝑖−𝑁+2,… ,𝑤𝑖−1 =
𝐹 𝑤𝑖−𝑁+1,𝑤𝑖−𝑁+2,… ,𝑤𝑖−1,𝑤𝑖 

𝐹 𝑤𝑖−𝑁+1,𝑤𝑖−𝑁+2,… ,𝑤𝑖−1 
 

where F is the number of occurrences of the sequence of words in its argument given 

some training corpus (text available for building a model). The training corpus needs 

to be as representative of the task as possible.  

Trigram language models are mostly used by large-vocabulary continuous speech 

recognition systems [16, 93].  

7.2 Model Complexity 

An approach to evaluate a language model is the word recognition error rate. 

However, this approach requires a working speech recognition system. Alternatively, 

we can measure the average number of possible words that follow any given word 

sequence in the language. This is the derivative measure of entropy known as test-set 

perplexity [1, 129]. Given a language model 𝑃 𝑊 , where W is a word sequence with 

Q words, the entropy of the language model can be defined as 

𝐻 𝑊 = −
1

𝑄
log2 𝑃 𝑊  

= −
1

𝑄
 log2 𝑃 wi wi−N+1, wi−N+2,… , wi−1 .

𝑄

𝑖=1

 

Note that as Q approaches infinity, the entropy approaches the asymptotic entropy of 

the source defined by the measure 𝑃 𝑊 . This means that the typical length of the 

sequence must approach infinity, which is of course impossible. Thus, 𝐻 𝑊  should 

be estimated on a sufficient large Q. The perplexity of the language is then defined as 

𝑃𝑃 𝑊 = 2𝐻 𝑊 =  P w1 , w2,… , wQ 
−1

Q . 

For a digit recognition task (vocabulary has 10 words: ‗zero‘ to ‗nine‘ plus ‗oh‘), 

where every digit can occur independently of every other digit, the language 

perplexity is 11. In the 5000-word Wall Street Journal task (read speech), the 

language perplexity is 128 for a bigram language model and 176 for a trigram 

language model [23]. Language models with low perplexity indicate a more 

predictable language. However, since the perplexity is not related to the complexity of 

recognizing some acoustic pattern, reducing the language model perplexity does not 

guarantee an improvement in speech recognition performance [7]. 
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The perplexity can also be interpreted as the geometric mean of the word 

branching factor (an estimate of the size of the word list that the recognizer must 

chose when deciding which word was spoken).  

7.3 Smoothing N-grams 

Due to the sparseness of data, not all n-grams can be reliably estimated. For a 

training corpus of millions of words, and a word vocabulary of several thousand 

words, more than 50% of word trigrams are likely to occur either once or not at all in 

the training set [16]. This problem can be reduced by smoothing the N-gram 

frequencies [129].  

One simple smoothing technique is to interpolate trigram, bigram, and unigram 

relative frequencies. Considering a trigram model (N=3), the interpolation is defined 

as 

𝑃 𝑤𝑖  𝑤𝑖−2,𝑤𝑖−1 = 𝜆3

𝐹 𝑤𝑖−2,𝑤𝑖−1,𝑤𝑖 

𝐹 𝑤𝑖−2,𝑤𝑖−1 
+ 𝜆2

𝐹 𝑤𝑖−1 ,𝑤𝑖 

𝐹 𝑤𝑖−1 
+ 𝜆1

𝐹 𝑤𝑖 

 𝐹 𝑤𝑖 
 

where the nonnegative weights satisfy 1+2+3=1. The smoothing probabilities, 1, 

2, 3, are obtained by applying the principle of cross-validation. The problem with 

this approach is that it uses information from lower-order distributions even when the 

estimate of the probability of an N-gram is reliable. 

Backoff smoothing methods provide a better smoothing than interpolation because 

lower-order counts are only used when an N-gram count is not reliable. One very 

famous method is the Katz smoothing (or Katz backoff) [130]. This method reduces 

(using a discounting factor) the unreliable probability estimates given by the observed 

frequencies and redistributes the discounted probability mass among the N-grams that 

never occurred in the training data. For a bigram model, Katz smoothing is defined as 

𝑃𝐾𝑎𝑡𝑧  𝑤𝑖  𝑤𝑖−1 =

 
 
 

 
 
𝐹 𝑤𝑖−1,𝑤𝑖 

𝐹 𝑤𝑖−1 
if 𝑟 > 𝑘 

𝑑𝑟
𝐹 𝑤𝑖−1 ,𝑤𝑖 

𝐹 𝑤𝑖−1 
if 0 < 𝑟 ≤ 𝑘

𝛼 𝑤𝑖−1 𝑃 𝑤𝑖 if 𝑟 = 0

  

where r is the count for an N-gram 𝑤𝑖−1,𝑤𝑖 , k is a count threshold (in the range of 5 to 

8), dr is a discount coefficient, and  is a normalization coefficient defined by 

𝛼 𝑤𝑖−1 =
1 − 𝑃𝐾𝑎𝑡𝑧  𝑤𝑖  𝑤𝑖−1 𝑤𝑖 :𝑟>0

1 − 𝑃 𝑤𝑖 𝑤𝑖 :𝑟>0

. 

The ML estimate is used when the N-gram count exceeds some threshold k 

(assuming that it is a reliable estimate). When the count is below the threshold and 

above zero, the same ML count is used but weighted by a discount factor. The 

discounted probability mass is then distributed among the zero-count bigrams 

according to the next lower-order distribution, e.g., unigram model. The discount 

factor is based on the Good-Turing estimate (an estimate that adjusts the count of an 

N-gram by the N-grams that have the same count)  
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𝑑𝑟 =

𝑟∗

𝑟
−
 𝑘 + 1 𝑛𝑘+1

𝑛1

1—
 𝑘 + 1 𝑛𝑘+1

𝑛1

 

where 𝑟∗ is the adjusted count of an N-gram that occurs r times. Another backoff 

method is the Kneser-Ney [130]. Unlike the described methods, Kneser-Ney 

smoothing uses a modified backoff distribution based on the number of contexts 

where each word occurs in, rather than the number of occurrences of the word. 

Another difference is that Kneser-Ney uses an absolute discounting (estimated on 

held out data). For a bigram model, Kneser-Ney smoothing is defined as 

𝑃𝐾𝑁 𝑤𝑖 𝑤𝑖−1 =  

max 𝐹 𝑤𝑖−1,𝑤𝑖 − 𝐷, 0 

𝐹 𝑤𝑖−1 
if 𝐹 𝑤𝑖−1,𝑤𝑖 > 0

𝛼 𝑤𝑖−1 𝑃𝐾𝑁 𝑤𝑖 otherwise

  

where 𝑃𝐾𝑁 𝑤𝑖 = ℂ 𝑤𝑖  ℂ 𝑤𝑖 𝑤𝑖
  is the number of unique words preceding wi. 

The normalization coefficient  is defined by 

𝛼 𝑤𝑖−1 =
1 −  

max 𝐹 𝑤𝑖−1,𝑤𝑖 − 𝐷, 0 
𝐹 𝑤𝑖−1 

𝑤𝑖 :𝐹 𝑤𝑖−1 ,𝑤𝑖 >0

1 −  𝑃𝐾𝑁 𝑤𝑖 𝑤𝑖 :𝐹 𝑤𝑖−1 ,𝑤𝑖 >0

 

Chen and Goodman [130] proposed one additional modification to Kneser-Ney 

smoothing, the use of multiple discounts, one for one counts, another for two counts, 

and another for three or more counts. This formulation, Modified Kneser–Ney 

smoothing, typically outperforms the regular Kneser–Ney smoothing. More 

information on smoothing can be found on [130-132]. 

8 Decoding 

The goal of the decoder is to search for the most likely word sequence W given 

some observed acoustic data X, that is, 

𝑊 = argmax
𝑊∈𝜔

𝑃 𝑊 𝑃 𝑋 𝑊 . 

One approach is to search for all possible word sequences. However, for large 

vocabulary sizes, the search can become prohibitive (even with the current computing 

capability). Several techniques have been developed to reduce the computational load 

by using dynamic programming to perform the search and limiting the search to a 

small part of the search space. Therefore, it is not guaranteed that the decoder can find 

the most likely W. 

Before details of decoding are described, it is important to note that the 

multiplication of the acoustic model probability and the language model probability is 

not performed in real applications. The problem is that HMM acoustic models usually 

underestimate the acoustic probability (due to independence assumption) giving to the 

language model little weight. A solution for such problem is to add a weight to raise 
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the language model probability (also known as language model scaling factor, LMSF) 

[8], as follows 

𝑊 = argmax
𝑊∈𝜔

𝑃 𝑋 𝑊 𝑃 𝑊 𝐿𝑀𝑆𝐹  

where LMSF > 1 (between 5 and 15, in many systems) and is determined empirically 

to optimize the recognition performance. This weighting has a side effect as a penalty 

for inserting new words. A solution is to add a scaling factor that penalizes word 

insertions called word insertion penalty (WIP), as follows 

𝑊 = argmax
𝑊∈𝜔

𝑃 𝑋 𝑊 𝑃 𝑊 𝐿𝑀𝑆𝐹𝑊𝐼𝑃𝑁  

where N is the number of words in the sentence W. Thus, if the language model 

probability decreases (large penalty), the decoder will prefer fewer longer words. If 

the language model probability increases (small penalty), the decoder will prefer a 

greater number of shorter words instead. The insertion penalty is also determined 

empirically to optimize the recognition performance. 

8.1 Search Space 

The search space can be described by a finite state machine, where the states are 

the words and the transitions are defined by the language model. Fig. 26 shows an 

example of a finite state machine for a bigram language model. A start state was 

added to the model, where the transition between the state and the word states has a 

probability according to the language model. Each word transition has a probability 

equal to the corresponding bigram probability.  

The combination of the language model with the acoustic models produces an 

HMM that models all acceptable sequence of words. The states of the HMM search 

space are replaced by the word HMMs. Given that the search space is now modeled 

by an HMM, the most likely word sequence can be found by using the Viterbi 

algorithm. 

The complexity of the decoder is highly dependent on the complexity of the search 

space. In large-vocabulary continuous speech recognition, the number of words in the 

vocabulary produces a large state search HMM. The problem is increased by the sub-

word (e.g., phonemes, syllables) modeling, commonly used in continuous speech 

recognition systems. In this case, each word is obtained by concatenating sub-word 

models. So the search space can go from thousands of states to millions of states. 

Thus, the decoder has to efficiently search throughout the search space. 

8.2 Viterbi Search 

The Viterbi search is a breadth-first search algorithm with dynamic programming. 

That is, all paths through the search space are pursued in parallel and gradually are 

pruned away as the best path (minimum cost) emerges.  
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Fig. 26. Search space for a bigram language model.  

The Viterbi search is time-synchronous because it completely processes time t 

before going on time t+1. Therefore the search can be performed in real time. For 

every time t, all the states are updated by the best score from all states in time t-1. 

Thus, each state at time t has a single best predecessor. This information allows the 

algorithm to determine the best state sequence for the entire search by tracking back 

the best predecessors at the end of the search. 

The problem with Viterbi search is that it becomes computationally infeasible 

when the search space contains a huge number of states (for example, large 

vocabulary speech recognition systems). The complexity of the Viterbi search is 

O(N
2
T) (assuming that every state can transition to every state at each time step). One 

way to reduce such problem is limiting the search space. A widely used search 

technique that explores portions of the search space is the beam-search [129]. 

The beam-search only keeps the best partial paths. At the end of time t, the state 

with the highest probability Pmax is found. Then, every other state at time t with 

probability less than BPmax, where B is a threshold (or beam width) less than 1, is 

excluded from consideration at time t + 1. This method significantly reduces the 

computational cost of the search, with little or no loss of accuracy [23]. The beam 

search combined with the Viterbi algorithm produces one of the most powerful search 

strategies for large vocabulary speech recognition.  
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8.3 Stack Decoding 

The stack decoding algorithm is a depth-first technique based on the forward 

algorithm in which the most promising path is pursued until the end of the acoustic 

data [129]. The algorithm defines the search space as a tree where the branches 

correspond to words, not-terminal nodes correspond to incomplete sentences, and 

terminal nodes correspond to complete sentences. Thus, the stack decoding algorithm 

uses an objective function to search for the optimal word path in the tree search space. 

The algorithm can be summarized as 

1. Initialize the stack with a null hypothesis (scores from all possible one-word 

hypotheses). Arrange the entries in descending order. 

2. Pop the hypothesis with the highest score off the stack, name it as current-

hypothesis.  

3. If current-hypothesis is a complete sentence, output it and terminate. 

4. Extend current-hypothesis by appending a word in the lexicon to its end. Compute 

the score of the new hypothesis and insert it into the stack. Do this for all the words 

in the lexicon. 

5. Go to 2. 

Unlike the Viterbi, the stack decoder compares the goodness of partial paths of 

different lengths to direct the search. Since stack decoding is asynchronous, it 

becomes necessary to detect when a phone/word ends, so the search can extend to the 

next phone/word. These two decisions are basically comparing partial theories with 

different lengths, so one function can be used for both decisions (for example, 

normalized forward probability)[23]. 

The problem with stack decoding is that the extension of a path implies the 

calculation of the probability that the immediate segment corresponds to every 

word/phone in the vocabulary. One way to reduce such computational burden is to 

extend a path by only those words that have some acoustic similarity to the observed 

acoustic sequence. This pruning process is referred to as fast match [129, 133]. The 

fast match is a computationally cheap method that selects a limited list of such words. 

Then, the expensive calculation can be performed on such list. On a 20,000-word 

dictation task, the fast match scheme was about 100 times faster than the simple stack 

decoding method with only 0.34% increase in word error rate [23].  

8.4 N-best and Multipass Search 

The complexity of the knowledge sources (e.g., acoustic and language models) 

together with the increasing size of vocabulary has been affecting the 

efficiency/feasibility of search algorithms by increasing the complexity of the search 

space. An alternative is to divide the decoding process into stages, where more refined 

knowledge sources are applied as the processing progresses through the stages. This 

processing strategy is referred to as multipass search [23]. As the decoding progresses 

through the stages, the set of hypotheses is reduced so that more refined and 

computationally demanding knowledge sources can be used to produce the most 

likely sequence. Therefore, the multipass strategy using gradually more refined 

knowledge sources could generate better results than a search algorithm with limited 
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models due to computation and memory constraints. For example, the first stage 

could use word-internal context-dependent phones with a bigram language model to 

generate a set of hypotheses. Then, in the second stage, cross-word context dependent 

phones with trigram language model could be used. This two-stage multipass 

decoding would produce performance comparable to a single-pass Viterbi search, but 

with less computational resources [134]. 

N-best paradigm is the most known multipass search strategy. The basic idea is to 

use computationally inexpensive knowledge sources to find N alternative sentence 

hypotheses. Then, each of these hypotheses is rescored with more expensive and more 

accurate knowledge sources in order to determine the most likely utterance. Table 6 

shows an example of a 10-best list generated for a North American Business sentence.  

Table 6. An example 10 –best list for a North American Business sentence (adapted from [23]). 

1. I will tell you would I think in my office 

2. I will tell you what I think in my office 

3. I will tell you when I think in my office 

4. I would sell you would I think in my office 

5. I would sell you what I think in my office 

6. I would sell you when I think in my office 

7. I will tell you that I think in my office 

8. I will tell you why I think in my office 

9. I will tell you would I think on my office 

10. I Wilson you think on my office  

The N hypotheses can be represented by a more compact hypotheses 

representation: word lattice or word graphs. Fig. 27 shows the respective word lattice 

and word graph for the 10-best list in Table 6. Word lattices are composed by word 

hypothesis associated with time interval. Word graphs are directed acyclic graphs, in 

which arcs are labeled by words. Arcs can also carry score information such as the 

acoustic and language model scores. In general, word graphs are used to represent N-

best lists, because it provides an explicit specification of word connections. Besides, 

word lattices and word graphs are so similar that often these terms are used 

interchangeably. 

Several algorithms can be modified to provide an N-best list of hypotheses [23, 

134, 135]. The stack decoding algorithm produces a complete sentence by choosing 

the best partial hypothesis (hoping that it will lead to the best path). Instead of 

selecting only the best partial hypothesis, the algorithm could select, according to the 

same objective function, the N-best hypotheses. Another algorithm that can be 

extended is the forward-backward. Forward-backward search algorithms use an 

approximate time-synchronous search in the forward direction to facilitate a more 

complex and expensive search in the backward direction. A simplified acoustic or 

language model is used to perform a fast and efficient forward-pass search in which 

the scores of all partial hypotheses that fall above a pruning beam width are stored. 

Then a normal within-word beam search is performed in the backward direction to 

generate a list of the N-best hypotheses. The backward search yields a high score on a 

hypothesis only if there also exists a good forward path leading to a word-ending at 

that instant of time.  
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Fig. 27. Examples of word lattice (top) and word graph (bottom) for the N-best list in Table 6 

(adapted from [23]). 

9 Speech Recognition Evaluations 

Since the beginning of the speech research, several speech recognition systems 

have been developed for all kinds of purpose. Most of the work was on tasks and 

speech data elaborated by the developers themselves. The problem is that it is almost 

impossible to replicate results to perform any type of comparison. Differences in the 

measurement methodology, task conditions, or testing data can lead to an erroneous 

comparison between systems.  

The efforts from several agencies (NIST, Evaluations and Language resources 

Distribution Agency - ELDA7, DARPA) and the availability of speech resources 

(LDC, ELRA) and has been facilitating the evaluation of speech recognition systems. 

The development of standard frameworks for evaluation has provided the means to 

researchers and developers to assess the performance of systems on standard corpora 

under well-defined task conditions. Such evaluations allow speech researchers to 

evaluate the system performance with respect to amount of training data, 

speaker/channel/environment variability, memory and computational requirement.  

Several campaigns have been organized to perform such assessment. Besides 

assessing systems performance, these campaigns has been helping the research 

                                                           
7 http://www.elda.org/ 
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community to share information about the area and to show the most promising 

technologies. This section looks at some evaluation campaigns.  

9.1 Technology and Corpora for Speech to Speech Translation - TC-STAR 

TC-STAR8 is a European integrated project focusing on Speech-to-Speech 

Translation (SST). To encourage significant breakthrough in all SST technologies, 

annual open competitive evaluations are organized. Automatic Speech Recognition 

(ASR), Spoken Language Translation (SLT) and Text-To-Speech (TTS) are evaluated 

independently and within an end-to-end system. The project targets a selection of 

unconstrained conversational speech domains (speeches and broadcast news) and 

three languages: European English, European Spanish, and Mandarin Chinese. The 

evaluation data comprises of recordings of the European Parliament Plenary Sessions 

(EPPS) (3 hours for English, 3 hour for Spanish), National Parliament Sessions in 

Spanish (3 hours) and Broadcast News in Mandarin (Voice of America).  

Three TC-STAR evaluation campaigns took place from 2005 to 2007. In the first 

campaign only two core technologies were evaluated: ASR and SLT. In the remainder 

evaluations, all three core technologies were evaluated. 

9.2 DARPA Programs 

 Since the 1970s, DARPA devised several speech recognition tasks with increasing 

complexity. The tasks challenged the speech research community resulting in several 

speech resources and systems throughout the years. Most of the evaluations were designed 

by NIST.  
One of the first projects was the ARPA SUR (Speech Understanding Research) in 

1971. A five-year contract project, the ARPA SUR had the goal of developing a 

recognition system with 90 percent sentence accuracy for continuous-speech sentences, 

using thousand-word vocabularies, not in real time. Of four principal ARPA SUR projects, 

the only one to meet the stated goal was Carnegie Mellon University's Harpy system, 

which achieved a 5 percent error rate on a 1,011-word vocabulary on continuous speech 

using a type of language model. 

Toward the end of the 1980s, the collection of a new corpus for military application 

started a new speech recognition task. The Resource Management (RM)[74] task was to 

perform speech recognition to be used in a military environment in order to query a ships 

database about the locations and properties of naval ships throughout the world. The 

vocabulary was about 1000 words, and the spoken queries were read, in a sound booth, 

from a computer generated list of possible commands to the system. The WER at the end 

of the trials for this task was on the order of 2% (the only curve before 1991 in Fig. 

28)[136].  

After the RM task, the DARPA program moved to another read speech task: the Wall 

Street Journal [85]. Also knows as the North American Business (NAB) task, the goal was 

to recognize read speech (speaker-independent mode) from the Wall Street Journal, with a 

vocabulary size as large as 64,000 words (participants could submit to a 5,000-word 

condition). Since new words appear on a day-to-day basis in the newspaper, systems had 

to deal with out-of-vocabulary (OOV). The participants had to use predefined language 

                                                           
8 http://www.tc-star.org 
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models in their systems to facilitate the comparison across sites. The systems were also 

evaluated on different conditions (e.g., speaker/language model adaptation and 

noise/channel compensation). The WER for the 5,000The WER at the end of the trials for 

this task was on the order of 6.6% [93]. 

In parallel to the WSJ task, a task for enabling users to make travel plans using 

spontaneous speech was developed: the Airline Travel Information System (ATIS) [12]. 

The goal was not only to transcribe the speech, but also to understand it so that the query 

could be successfully performed. Thus, systems had to deal OOV words without affecting 

the meaning of the already recognized speech. The task vocabulary was about 2500 words. 

The WER ranged was reduced from 15.7% (in 1991) to 2.5% (in 1994) [93, 136].  

9.3 National Institute of Standards and Technology 

Since the mid 1980s, the National Institute of Standards and Technology (NIST)9 

have been helping to advance the state-of-the-art by designing evaluation tools, 

coordinating periodic evaluation tests, and making data available for several speech 

domains. Fig. 28 shows the performance of some speech recognition systems 

evaluated on NIST campaigns in the past twenty years. 

 

Fig. 28. NIST Speech-to-Text Benchmark Test History10. 

 

                                                           
9 http://www.itl.nist.gov/iad/mig/ 
10 http://www.itl.nist.gov/iad/mig/publications/ASRhistory/index.html 
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9.3.1 NIST Rich Transcription Evaluation Project 

The goal of the Rich Transcription evaluation series11 is to create recognition 

technologies that will produce transcriptions which are more readable by humans and 

more useful for machines. This evaluation series is organized by NIST and happens 

since 2002.  

The set of research tasks can be categorized into two main tasks: 

1. Speech-to-Text Transcription (STT): consists of generating a sequence of words 

from audio data. Systems were evaluated using the Word Error Rate (WER) metric. 

2. Metadata Extraction (MDE): consists of extracting metadata information from the 

audio. Some of the sub-tasks were:  

─ Speaker diarization: find the segments of time in which each speaker is talking. 

No information about the number of speakers or training data for each speaker 

was available. 

─ Events detection: detect events like filler word (e.g., ‗hummmm‘, ‗huh-huh‘), 

word correction, sentence boundaries, and interruption point in broadcast news 

speech and conversational telephone speech in English. 

─ Speaker Attributed Speech-To-Text: convert spoken words into streams of text 

with the speaker indicated for each word. 

─ Speech Activity Detection: detect when someone in a meeting space is talking, 

─ Source Localization: determine the three dimensional position of a person who 

is talking in a meeting space. 

The conditions of the tasks included:  

─ Processing time: categories (based on Real Time) are used to classify the systems. 

─ Domain: broadcast news speech, conversational telephone speech, and meeting 

room speech (sub-domains include small room and a lecture room) in English. In 

2004, the speech –to-text task used audio data from Chinese (Mandarin) and 

Arabic broadcast news and conversational telephone speech. 

─ Microphone (only for the meeting room speech): multiple distant microphones 

(Meeting-MDM curve in Fig. 28), multiple microphone arrays, single distant 

microphone (Meeting-SDM curve in Fig. 28) and individual head microphone 

(Meeting-IHM curve in Fig. 28). 

The WER for the meeting room (conference room) using individual head 

microphone went from 32.7% in 2004 to 25.5% in 2009. As evident by the result that 

the meeting domain continues to be the most difficult actively researched domain for 

speech recognition. 

9.3.2 Conversational Telephone Recognition Evaluation 

The goal of the Conversation Telephone Recognition evaluation series was to 

evaluate the state-of-the-art in conversational speech recognition over the telephone. 

Four main evaluations were conducted from 1997 to 2001. Besides English, 

                                                           
11 http://www.itl.nist.gov/iad/mig/tests/rt 
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participants could submit systems for other languages, such as, Arabic, German, 

Mandarin, and Spanish (not all languages were available at every evaluation). 

The data for testing and training came from the Switchboard [13] and Callhome 

[14] corpora. The data for the non-English language came from the set of Callhome 

corpora. The evaluation data for each non-English language was about 20 

conversations (each conversation is on average 5 minutes long) and about 20 

conversations for the English task. Since the data are recorded conversations, each 

conversation is represented as a sequence of "turns", where each turn is the period of 

time when one speaker is speaking. The beginning and ending times of each of these 

turns were supplied as side information to the recognition system. 

All the evaluations for the English language were mainly ran on the Switchboard 

corpus. This corpus consists or recordings in a telephone-based discussion over topics 

that were selected by an automated system. Most of the data comes from college 

students around United States. The first use of Switchboard data for speech 

recognition was in 1993, with a reported error of 90%. In 1995, the performance 

improved to 48% and by 2001 the performance reached the 19% WER. These results 

can be compared in the curve labeled as Switchboard in Fig. 28. The 2001 evaluation 

evaluate systems on excerpts from cellular phones resulting in a 29.2% WER (curve 

labeled as Switchboard Cellular in Fig. 28). 

9.3.3 Broadcast News Recognition Evaluation 

The goal of the Broadcast News Recognition evaluation12 is to measure objectively 

the state of the art and help to motivate the research on the problem of accurately 

transcribing broadcast news speech. The evaluation campaign occurred between 1996 

and 1999. The performance measure was WER (and character error rate for 

Mandarin). The campaign provided annotated acoustic training/development data and 

language model data.  

The evaluation data was excerpts from radio and television programs in English, 

Spanish and Mandarin. The English evaluation data was approximately three hours of 

television news programs from CNN, ABC, and C-SPAN, as well as news radio 

broadcasts from NPR and PRI. In 1997, it was included evaluation data from two 

languages (one hour per language): Spanish (1 radio and 2 television stations) and 

Mandarin (2 radio and 1 television stations). The evaluation data included a 

combination of read speech and spontaneous speech, as well as a combination of 

recording environments in broadcast studios and in the field. Given the diversity in 

the data in 1996, the sites had to report results on six focus conditions. The focus 

ranged from the fluent, apparently read, speech of news anchors, to spontaneous, 

disfluent, speech collected in various potentially noisy environments. In the remaining 

evaluations, sites had to report results only on a single evaluation set. In addition to the 

regular submission, sites could submit results for systems with processing time less 

than 10xRT in the 1998 and 1999 campaigns.  
The Broadcast News evaluations started with WERs of 31% in 1996 experienced a low 

WER of 13% in 1998, and ending the era, in 1999 with a WER of 15% [136], as shown in 

Fig. 28 (Broadcast Speech curve). 

                                                           
12 http://www.itl.nist.gov/iad/mig/tests/bnr/ 
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9.4 Evaluation de Systemes de Transcription Enrichie d’Emissions 

Radiophoniques - ESTER 

The goal of ESTER evaluation campaign13 is to evaluate automatic broadcast news 

transcription systems for the French language. The ESTER campaign implemented 

several tasks divided into three main categories: orthographic transcription, event 

detection and tracking (e.g. speech vs. music, speaker tracking) and information 

extraction (e.g. named entity detection). ESTER is organized jointly by the 

Francophone Speech Communication Association (AFCP), the French Defense 

expertise and test center for speech and language processing (DGA/CEP), and the 

Evaluation and Language resources Distribution Agency (ELDA), is part of the 

EVALDA project dedicated to the evaluation of language technologies for the French 

language. The ESTER campaign [137] was held in two phases from 2003 to 2005. 

The second campaign, ESTER 2 [138], also was held in two phases from 2007 to 

2009.  
The orthographic task was further divided into two sub-tasks, according to the 

processing time: systems operating in real-time or less (named TTR task) and otherwise 

(named TRS task). In the TTR task, participants were asked to process 8 hours of data.  

The training data was composed by audio from several radio stations. Some 

transcriptions were provided for a small part of the data. Text resources from a French 

newspaper (around 450 million words) were provided for the development of language 

models. In the second campaign, more training data was available to the participants and 

two African radio stations were included in the task.  

In the first campaign, the test set consisted of 10 hours of radio broadcast news shows 

taken from the same radio stations in the training set, plus an extra radio. In the second 

campaign, the test set consisted of 7 hours from radio stations in the training set. 

The WER in the first campaign was 16.8% for the TTR task and 11.9% for the TRS 

task. In the second campaign, TRS was the only task and yielded a WER of 10.8%. A 

comparison has showed that most systems have improved; despite the test data was more 

difficult in the second campaign (more spontaneous speech, a larger proportion of 

telephone speech, the presence of strong accent and of background noises).  

10 Developments in Speech Recognition 

Automatic speech recognition still remains far from being a solved problem. The 

characteristics of the different applications (environment, noise, number of speakers, 

channel, vocabulary, speaker, language, and so on) impose different requirements that 

are not achieved by any system nowadays. However, major developments have been 

accomplished so that such problems can be one day solved.  

The increase of computer processing has accelerated the development of the 

speech recognition systems. Decades ago, changes in the design of recognition 

systems were due to the capability of computer processing. The increase of the 

computer power has enabled us to run more complex algorithms and more meaningful 

experiments in less time.  

                                                           
13 http://www.afcp-parole.org/ester/ 
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The availability of corpora (speech and text) has enabled us to study speech and 

language so that better models can be created. In fact, such availability is crucial for 

system development because there are more ASR systems developed for English than 

any other language. In some languages, we are still far of having a fully functional 

speech recognition system because of lack of such resources. The internet has been 

helpful in providing text resources (electronic newspapers, magazines) for developing 

speech recognition systems for several languages [139-142]. Organizations such as 

Linguistic Data Consortium (LDC)14, European Language Resources Association 

(ELRA)15, National Institute of Standards and Technology (NIST)16 have been 

collecting and distributing speech resources to research and development. 

Several speech research tools are available for any researcher who wants to 

develop a speech recognition system. There are recognition engines (Sphinx [90], 

HTK [77], Julius [143], CSLU Toolkit [144], ISIP Foundation Classes [145]) that 

allow the development of large-vocabulary speech recognition systems or tools to 

build language models (CMU Statistical Language Modeling [146] and SRI Language 

Modeling [147]). 

The development of methods and algorithms to extract information from the 

speech and to model speech information has been fundamental to advance the speech 

recognition state-of-the-art. The development of perceptually motivated speech 

representations MFCC and PLP provided the standard speech features for successful 

speech recognition systems. The feature normalizations, like CMS, RASTA and 

VTLN improved the robustness of such features to channel, noisy, and speaker 

variability. The shift to the statistical framework was the landmark to the introduction 

of HMMs, which has been the cornerstone of speech recognition systems for decades. 

The importance of HMMs increased with the development of several algorithms for 

training (e.g., MMI, MPE) and adaptation (e.g., MAP, MLLR). These methods 

produced better acoustic models allowing porting speech recognition systems to new 

domains or tasks. The algorithms (e.g., stack decoding) and strategies (e.g., N-best) of 

search have enabled the expansion of the vocabulary and the use of several 

knowledge sources to provide the best possible transcription.  

The development of new methods, the increasing computing power, and the 

availability of speech resources has expanded the range of speech-enabled 

applications. The first applications were designed for isolated word recognition with a 

small vocabulary. Today, the effort on speech recognition is on conversational speech 

over telephone, broadcast news, and meeting speech that is characterized by 

continuous speech, different channels, multiple speakers, different languages, and 

large vocabulary.  

Substantial effort has been employed to port speech technology to new tasks and 

languages. The adaptation capability of several speech recognition systems together 

with the increasing availability of speech and text data for a large number of 

languages have enable the development of speech technologies for languages other 

than English.  

                                                           
14 http://www.ldc.upenn.edu 
15 http://www.elra.info 
16 http://www.itl.nist.gov/iad/mig/ 

http://www.nist.gov/
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10.1 Speech Recognition in Portuguese 

One of the basic requirements for developing speech recognition systems for a 

given task or language is data (speech or text). The number of publications on speech 

recognition can demonstrate such issue. Researchers have complained about few data 

samples or no samples at all. The result is that most of the research was performed on 

data readily available, that is, English data. Even in countries where English is not the 

official language (or the second language), Systems were tested on English corpora. 

However, this scenario has been changing in the past decade through the cooperation 

among researchers around the world.  

Several research centers, universities, government and private companies have 

been collaborating so speech can be collected and systems can be developed. Such 

collaborations result in more speech resources in less time and possibly at a lower 

cost. Consequently, more robust and reliable speech-enable applications can be 

developed.  

In the last decade, several collaborative efforts have been started on producing 

speech corpora and advancing the state-of-the-art speech recognition for Portuguese 

languages The FalaBrasil research group has been developing and making available 

several resources for the Portuguese language, such as pronunciation dictionary, 

language and acoustic models, text and speech corpora. The Núcleo Interinstitucional 

de Lingüística Computacional (NILC)17 is focused on research and development in 

computational linguistics and natural language processing. Some of the resources 

produced by NILC are text corpora and lexicons. Linguateca18 is a distributed 

language resource center for Portuguese, providing resources like corpora and lexica 

for the Portuguese language. Recently, in a collaborative research at the Speech 

Digital Processing Laboratory, a BP data was collected [148]. Several projects have 

also been proposed so speech technology can be shared among researchers: 

─ POrting Speech Technologies to other varieties of Portuguese19 (PoSTPort) (2008-

2010): the goal is porting spoken language technologies originally developed for 

European Portuguese to other varieties of Portuguese, namely those spoken in 

South-American and African countries. 

─ Spoltech (1999-2001): the goal was to extend a speech recognition and synthesis 

toolkit to BP in a collaborative research from universities in Brazil and in the 

United States [149]. Some of the results of this collaboration are the Spoltech 

corpus (microphone speech from a variety of regions in Brazil with phonetic and 

orthographic transcriptions) and the BP CSLU toolkit20.  

One example of research group that has been performing a collaborative research 

to advance the speech technology for Portuguese is the internally recognized Spoken 

Language Systems Laboratory (L²F) at INESC-ID. Among all the contributions, the 

laboratory has developed a speech recognition system for European Portuguese, 

called Audimus. This recognizer has been the platform for several advances in speech 

recognition for Portuguese. An overview is given in the next section. 

                                                           
17 http://nilc.icmc.sc.usp.br/nilc/tools/corpora.htm 
18 http://www.linguateca.pt/ 
19 https://www.l2f.inesc-id.pt/wiki/index.php/PoSTPort 
20 http://www.cslu.ogi.edu/toolkit/ 
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10.1.1 AUDIMUS Speech Recognition System 

AUDIMUS is a speaker independent, large-vocabulary continuous speech 

recognizer [150, 151]. The system is based on a HMM model with output 

probabilities estimated by MLP. The structure of the system is shown in Fig. 29. 

 

Fig. 29. AUDIMUS Speech Recognition System (adapted from [151]). 

The acoustic modeling combines monophone posterior probabilities generated by 

three MLPs trained on three distinct feature sets. The first set consists of log-energy 

and 12th order PLP cepstral coefficients (plus their first time derivative) resulting in a 

26-dimensional feature vector. The second set consists of log-energy and 12th order 

log-RASTA cepstral coefficients (plus their first time derivative) resulting in a 26-

dimensional feature vector. The third set consists of 28 Modulation SpectroGram 

(MSG) coefficients. The MSG speech representation captures the slow modulations 

that encode phonetic information, critical-band frequency analysis, automatic gain 

control, and sensitivity to spectro-temporal peaks in the signal. The contextual 

information is captured by appending the adjacent feature vectors. The PLP and log-

RASTA features are appended with 6 feature vectors before and after the current 

feature vector. The MSG feature is appended with 7 feature vectors from each side.  

Each feature set is the input data for its respective MLP. Each MLP has two fully 

connected non-linear hidden layers with 2,000 units each and 39 softmax output units 

(corresponding to 38 Portuguese phones plus silence). The probabilities associated 

with the same phone are merged by multiplying the probability values, which 

internally to the decoder corresponds to perform an average in the log-probability 

domain. 

The lexicon includes multiple pronunciations, resulting in more than 100,000 

entries. The corresponding out-of-vocabulary (OOV) rate is 0.71%. A 4-gram back-

off language model was created by interpolating 4-gram newspaper text language 

model built from over 604 million words with a 3-gram model based on the 

transcriptions news (approximately 51 hours from a Portuguese corpus) with 532,000 

words. The language models were smoothed using Knesser-Ney discounting and 

entropy pruning. The perplexity obtained in a development set (approximately 6 hours 

of data) was 112.9. 

AUDIMUS uses a dynamic decoder that builds the search space as the composition 

of three Weighted Finite-State Transducers (WFSTs): the HMM/MLP transducer (one 

single state HMM per monophone with a fixed minimum duration), the lexicon 
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transducer, and the language model transducer. The WER of such system in a 

broadcast news task (13 hours of test data) in European Portuguese was 21.5%.  

In recent work [152], the system was adapted for BP (BP) broadcast news. All 

manually transcribed, the training data was about 851 minutes (131,000 words), 

development data was about 102 minutes (15,000 words) and test data was about 106 

minutes (18,000 words). The corresponding out-of-vocabulary rate was 3.3% using 

the European Portuguese lexicon. The language model was reduced to a 3-gram back-

off model (the perplexity was 197). This system achieved a WER of 26.9%.  

11 Final Considerations 

In the past decades, several advances in automatic speech recognition were 

accomplished. The technology progressed from systems that could recognize digits or 

a few words from only one speaker to speaker-independent, large vocabulary, 

continuous speech recognition. The number of deployed speech-based applications 

reflects the advances over the years.  

The availability of speech resources and the increasing computer power has been 

also facilitating the development of new technologies. Today, researchers who could 

not develop a complete speech recognition system can focus on a specific problem by 

using speech recognition toolkits. Text and corpora has been distributed all over the 

world so better speech recognition systems can be developed. New methods and 

systems can be developed faster with the possibility of running several experiments. 

Despite the advances, the problem is still not solved. Speech recognition systems 

still suffer from degraded/noisy speech. Several basic technologies (e.g., speech 

activity detection) need to be solved. There are not enough speech resources for every 

language. There are not as many computers as speech researchers want to use to 

perform recognition.  

In summary, there is a lot of work to do before speech recognition systems can 

decode the linguistic message as human do under several conditions. Better 

understanding of the problem with the collaboration of specialists from all involved 

areas (engineering, computer science, phonetics, linguistics and so on) can provide a 

better prospect solving such problem. 
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