
Fundamental and New Approaches to Statistical
Machine Translation

Lucia Specia

Research Group in Computational Linguistics
Unviersity of Wolverhampton

Stafford Street, Wolverhampton, WV1 1SB
L.Specia@wlc.ac.uk,

WWW home page: http://pers-www.wlv.ac.uk/ in1316/

1 Introduction

Statistical Machine Translation (SMT) is an approach to automatic text transla-
tion based on the use of statistical models and examples of translations. Although
Machine Translation (MT) systems developed according to other paradigms are
still in use, mainly rule-based or example-based MT, SMT dominates academic
MT research and has gained significant commercial interest over the last two
decades.

Machine Translation was conceived as one of the first applications of the
newly invented electronic computers back in 1940’s. Communications between
Warren Weaver (director of the Natural Sciences Division of the Rockefeller
Foundation) and his fellow researchers are often mentioned as the first attempt
to use computers for translation, and can be also thought of as a pioneering idea
for using statistical models for the task. According to [17, p.22], Warren Weaver
proposed in 1947:

“Recognizing fully, even though necessarily vaguely, the semantic dif-
ficulties because of multiple meanings, etc., I have wondered if it were
unthinkable to design a computer which would translate. Even if it would
translate only scientific material (where the semantic difficulties are very
notably less), and even if it did produce an inelegant (but intelligible)
result, it would seem to me worth while. Also knowing nothing official
about, but having guessed and inferred considerable about, powerful new
mechanized methods in cryptography - methods which I believe succeed
even when one does not know what language has been coded - one natu-
rally wonders if the problem of translation could conceivably be treated
as a problem in cryptography. When I look at an article in Russian, I say
‘This is really written in English, but it has been coded in some strange
symbols. I will now proceed to decode’.”

This view of the translation problem as a cryptography problem and a “de-
coding process” is strongly connected to the fundamental model of Statistical
Machine Translation proposed much later, the Noisy Channel Model (Section
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2). The formalization of such model was the basis for the first systems for SMT,
based on word alignment techniques for the word-by-word translation (Section
3). Currently, the most successful systems exploit more elaborate models based
on phrase translation (Section 4) and on a number of parameters to weight
alternative phrases for ambiguous inputs and also weight different aspects of
translation according to their relevance for a given language pair, translation
task and type / genre / domain of text (Section 5 and 7). The search for the
best translation among a number of possibilities is performed by a decoder, which
uses a search strategy and heuristics to prune the search space (Section 6). A key
aspect in the field of SMT is to automatically evaluate alternative outputs for
improved system development and comparisons among different systems (Sec-
tion 8). Some pointers to recent developments in the field are given in Section
9.

Disclaimer: This material gives a very basic overview on the topic of SMT. For
broader reviews, see [29] and [21].

2 The Noisy Channel Model and the Main Components
of an SMT system

The Noisy Channel Model was proposed in the field of Information Theory, by
Claude Shannon in 1948 . Shannon’s goal was to maximize the amount of in-
formation that could be transmitted over an imperfect (noisy) communication
channel (like a noisy phone line). It has been used as underlying framework
in different areas related to language processing, including Speech Recognition,
Spell Checkers, Optical Character Recognition and Machine Translation. It as-
sumes that the original text has been accidentally scrambled or encrypted (using
a different alphabet, for example) and the goal is to find out the original text by
“decoding” the encrypted/scrambled version, as depicted in Figure 1.

I I*O
DecoderNoisy Channel

Fig. 1. The Noisy Channel Model: Message I is the input to the channel (e.g., text in
native language). I gets encrypted into O using certain coding scheme (e.g., text in
foreign language). The goal is to find a decoder that can reconstruct the input message
as faithfully as possible into I∗

In a probabilistic framework, finding I∗, i.e., the closest possible text to I, can
be stated as finding the argument that maximizes the probability of recovering
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the original input given the noisy text, that is

argmax
text

P (text|noisy)

The Noisy Channel Model is formalized by using the Bayes Theorem:

P (A|B) =
P (B|A)P (A)

P (B)

such that recovering the original text is done by modeling the probability of the
noisy text given the input text, that is, P (noisy|text). In the case of machine
translation, this problem is usually exemplified by the task of translating from
a foreign (or French) language sentence f into an English sentence e. Given f ,
we seek the e that maximizes P (e|f), that is, the most likely translation:

argmax
e

P (e|f)

Using the Bayes Theorem, this problem can be decomposed as:

argmax
e

P (e|f) = argmax
e

P (f |e)P (e)

P (f)

Since the source text f is constant across any alternative translation e, it can be
disregarded, and therefore:

argmax
e

P (e|f) = argmax
e

P (f |e)P (e)

The generative models resulting from the decomposition of P (e|f) produce
the two of the three fundamental components of a basic SMT system: the trans-
lation model P (f |e) and the language model P (e). The translation model
conditions the search for the best translation on the input text, while the lan-
guage model searches for the best translation regardless of the input text. These
two components are usually seen as proxies to what is considered to constitute
a good translation, respectively: adequacy and fluency. The third major compo-
nent is the decoder, a module that performs the search for the best translation
e given the space of all possible translations (or a subset of it) based on the
probability estimates P (e) and P (e|f) (see Section 6).

The rationale for decomposing the problem into two other (simpler) problems
using Noisy Channel and Bayes Theorem can perhaps be more clearly understood
in the context of Speech Recognition. In that scenario, directly modeling the
probability of a written text from speech would be complicated as it would
require a large number of examples of written texts corresponding to speech
inputs. On the other hand, modeling the probability of speech given written
text is a simpler problem, once it is easier to gather examples of that (one could
simply get people to read out loud written texts). The second component, that
is, the probability of a given written text regardless of the speech input is also
simple to model, since one can use a large set of written texts as examples. In
what follows we describe how to estimate the two groups of probabilities from
data.
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2.1 Language Model

The language model tries to estimate the likelihood of a given sentence transla-
tion in the target language: the more common the translation, the more likely
it will be that it is a good translation, particularly in terms of fluency, since
the source sentence is not taken into account. In SMT, this is done by counting
the relative number of occurrences of the sentence in a (preferably very large)
monolingual corpus of the target language.

Formally, the language model component P (e) for a sentence with m words
is defined as the joint probability of a sequence of all words in that sentence:

P (e) = P (w1, w2, ..., wm)

The chain rule can then be applied to decompose such joint probability in a
series of conditional probabilities:

P (e) = P (w1)P (w2|w1)P (w3|w1w2)P (w4|w1w2w3)...P (wm|w1...wm−1)

Maximum Likelinood Estimates Each component in the P (e) formula de-
composed by chain rule, that is, the probability of a word w given a number
of previous words, is estimated using Maximum Likelihood Estimation (MLE),
that is, as the count of occurrences of the complete sequence, divided by the
count of the conditional sequence. For example:

P (w3|w1w2) =
count(w1w2w3)

count(w1w2)

N-gram Language Models Given the variability of human language, the
chances of finding significant occurrences of a given new sentence to translate
even in a very large corpus are very small. In fact, it is very possible that not
a single occurrence of a new long sequence of words will have been seen in the
corpus, and in that case P (e) will be 0, and so will P (e|f), since its equation
is a product of P (e). Therefore, instead of looking for a complete sentence, one
usually counts occurrences of parts of such sentence, more specifically, n-grams,
or sequences of up to n words. The larger the n, the more information about the
context of the specific sequence (larger discrimination). The smaller the n the
more cases will have been seen in the training data, and therefore the better the
statistical estimates (more reliability). In practice, n varies according to the size
of the corpus: the larger the corpus, the longer the n-grams that can be reliably
counted. Most current open-domain systems consider n between 3 and 7.

N-gram language models are formalized by applying the Markov assumption
that one can approximate the probability of a word given its entire history by
computing the probability of a word given the last few words. For example, a
bigram language model would consider only one previous word:

P (e) = P (w1)P (w2|w1)P (w3|w2)P (w4|w3)...P (wm|wm−1)

while a trigram language model would consider two previous words:

P (e) = P (w1)P (w2|w1)P (w3|w1w2)P (w4|w2w3)...P (wm|wm−2wm−1)
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Smoothing Even short sequences of words like bigrams or trigrams can be
rare or inexistent in the monolingual corpus used to estimate the probabilities.
To avoid 0-counts and a P (e) = 0 as a consequence, probability estimates are
usually smoothed. Several smoothing strategies can be used for guaranteeing
non-zero probabilities even to previously unseen sentences. The simplest one is
called add-one smoothing and consists in adding one to all the counts of n-grams.
For example, the MLE counts for unigrams and bigrams become, respectively:

P (wi) =
count(wi) + 1

N + V

and

P (wj |wi) =
count(wiwj) + 1

count(wi) + V

where N = number of tokens in the corpus, and V = vocabulary or number of
types, that is, all different words seen in the corpus. Better strategies include
interpolation and backoff models.

Perplexity If a given translation sentence for which P (e) is being computed
is a long one, P (e) will be the product of many small numbers, resulting in
a much smaller final number, which can be difficult to read and process due
to underflow problems. A common way to compare language model scores for
different translation sentences is to compute the perplexity of such sentence as:

− 1

N
log2(P (e))

where N is the number of words in the translation sentence. By normalizing
the value according to the size of the sentence, the perplexity of a given system
remains more or less constant regardless of the different sizes of sentences to be
translated. As P (e) increases, perplexity decreases: the lower the perplexity, the
better the language model.

Although recent work has tried to improve language models by considering
linguistic information, for example, the syntax-based language models [10], the
language model component is usually a simple, token-based model, in most SMT
systems. Off-the-shelf language modeling toolkits like SRILM [40] are used by
most SMT systems.

2.2 Translation Model - Word-Based Models

Given the input sentence f , the translation model aims to estimate a general
model of P (f |e) by looking at a parallel corpus with examples of translations
from f to e. We assume here that such corpus has already been aligned at the
sentence level by using some standard algorithm like the one in [15]. Extracting
probability estimates P (f |e) for the whole sentences f and e is not feasible, for
the same sparsity reasons as explained for language models, that is, it is unlikely
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that we can find enough occurrences of complete sentences aligned to each other.
We therefore need to work on shorter portions of the sentences.

We start with a simple translation model that translates words in isolation,
that is, a word-by-word translation model. This can be done by using word
alignment methods that will be described in Section 3. Here we assume we
have the basic component produced by a word alignment method: a translation
table, or t-table, which shows, for a given word in f , all its possible translations
in e with their corresponding probability estimates, extracted from a parallel
sentence-aligned corpus. For example, Table 1 shows some hypothetical entries
for the English source word take with its lexical translations into Portuguese
and corresponding translation probabilities.

Table 1. Example of t-table entries for the English-Portuguese translation of take

e P (e|f)

pegar 0.4
tomar 0.2
levar 0.1
receber 0.15
aceitar 0.075
tirar 0.05
tomada 0.001
. . . . . .

Ideally, given sentence f to be translated, each of its single words will have
at least one entry in the translation table (usually many). According to the
simplest translation model, which actually consists of the word alignment model
IBM Model 1, the best translation e will be the one that maximizes the lexical
alignment a between f = (f1, ..., fJ) and e = (e1, ..., eI), that is:

P (f |e) =

J∏
j=1

I∑
aj=0

P (aj)P (fj |eaj )

where each source word fj corresponds to one and only one target word (or
NULL) and the target words are unconstrained, that is, each can link to an
arbitrary number of words (including zero). The alignment variable a is assigned
a value aJ1 , where each element aj represents the position of the target word
eaj to which fj corresponds. By make the assumption that each variable aj is
independent, the optimal alignment a is given by:

a = argmax
aJ1

J∏
j=1

P (aj)P (fj |eaj )
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IBM Model 1 can thus be used as a translation model, but it does not produce
very good translations. In the next section we will see better word alignment
models. As it will be discussed in Section 4, in the state-of-the-art SMT systems
are based on phrase translation where phrases are extracted from word alignment
models that build on IBM Model 1.

As we will see in Section 5, although the Noisy Channel Model was used as
main underlying framework in the first SMT systems, in most recent systems
the translation problem is modeled using probabilities extracted from a parallel
corpus in both directions, that is, one can use both the probability of the source
text given the target text and the probability of the target text given source
text: P (e|f) and P (f |e), and these can be extracted using the same procedures.

3 Word Alignment

Word alignment constitutes the basis for SMT. Five basic models are normally
used for this purpose, they are commonly called IBM Models 1-5, as they were
proposed by IBM researchers [5, 6].

3.1 IBM Model 1

The simplest model, IBM Model 1, was outlined in Section 2.2. We now outline
how the actual lexical translation probabilities are learned from sentence-aligned
parallel text. This is done by using the Expectation Maximization (EM)
algorithm. The EM algorithm works as follows [21, p.88]:

1. Initialize the model, typically with uniform distributions. This means that
each input word f in the parallel corpus is assumed to be translated with
equal probability into any output word e.

2. Apply the model to the data (expectation step). This means applying the
current probability distribution to align the words.

3. Learn the model from the data (maximization step). This means collecting
counts given the current model applied to the data to estimate an improved
model, that is, a model considering the actual frequencies of different possible
alignments.

4. Iterate steps 2 and 3 until convergence.

Details on the mathematical framework of the use of EM for word alignment
are given in [21]. As a simple example to illustrate how EM works, consider the
following parallel corpus of three sentence pairs when translating from German
to English [21, p.91]: (das haus, the house),(das buch, the book),(ein buch, a
book). Table 2 shows the application of IBM Model 1 EM training.

IBM Model 1 is a model of lexical translation and has many flaws, mainly
because it is very week in deadline with reorderings (all reorderings are equally
likely), or adding or dropping words. The other IBM models present the following
advances on top of IBM Model 1:



VIII

Table 2. Example of application of IBM Model 1 EM training, taken from [21, p.91]

e f Initial 1st iter. 2nd iter. 3rd iter. . . . Final

the das 0.25 0.5 0.6364 0.7479 . . . 1
book das 0.25 0.25 0.1818 0.1208 . . . 0
house das 0.25 0.25 0.1818 0.1313 . . . 0
the buch 0.25 0.25 0.1818 0.1208 . . . 0
book buch 0.25 0.5 0.6364 0.7479 . . . 1
a buch 0.25 0.25 0.1818 0.1313 . . . 0
book ein 0.25 0.5 0.4286 0.3466 . . . 0
a ein 0.25 0.5 0.5714 0.6534 . . . 1
the haus 0.25 0.5 0.4286 0.3466 . . . 0
house haus 0.25 0.25 0.5714 0.6534 . . . 1

– IBM Model 2: adds absolute alignment model;
– IBM Model 3: adds fertility model;
– IBM Model 4: adds relative alignment model;
– IBM Model 5: fixes deficiency.

3.2 IBM Model 2

According to IBM Model 1, the translation probabilities of the target words
in any order are all the same. Alignment models from IBM Model 2 deal with
reorderings in a better way, by assuming that words that follow each other in
the source language will also follow each other in the target language. This is
done by using an explicit model for alignment based on the positions of the
source and target words. The translation of a foreign source word in position i to
a target word in position j is modeled by an alignment probability distribution

a(i|j, le, lf )

where lf is the length of the input sentence f and le is the length of the target
sentence e. The translation under IBM Model 2 is a two-step process with a
lexical translation step (IBM Model 1) and an alignment step.

3.3 IBM Model 3

IBM Model 3 introduces the notion of fertility to cover for the fact that source
words may be aligned to a specific number of target words. Often one word in
the source is aligned to one word in the target (fertility = 1) , but it also happens
that one source word can be aligned to n multiple target words (fertility = n),
or even zero target words (fertility = 0). The fertility of source words is modeled
directly with a probability distribution:

n(φ|f)
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for each foreign word f , this probability distribution indicates how many φ =
0, 1, 2... target words it usually translates to.

Fertility deals explicitly with dropping source words by allowing φ = 0. The
NULL token is introduced to allow accounting for words in the target that have
no correspondent in the source. One could model the fertility of the NULL token
for insertion of words by the conditional distribution n(φ|NULL). However, the
number of inserted words depends on the sentence length, so the NULL insertion
is modeled in a separate step. This results in four steps for the translation process
according to IBM Model 3:

– Fertility is modeled by the distribution n(φ|f);
– NULL insertion is modeled by the probabilities p1 (one NULL token after

each word) and p0 = 1− p1 (no NULL token);
– Lexical translation is handled by IBM Model 1;
– Distortion is modeled in a similar way as the reordering in IBM Model 2,

with a probability distribution d(j|i, le, lf ).

IBM Model 3 is already a powerful model for word-by-word translation, as
it accounts for translation of words (t-table), reordering (distortion), insertion
of words (NULL insertion), dropping of words (words with fertility 0) and one-
to-many translations (fertility > 0).

3.4 IBM Model 4

IBM Model 4 further improves IBM Model 3 by providing a better formula-
tion of the distortion probability distribution d(j|i, le, lf ). In IBM Model 3, for
large source and target sentences (therefore large le and lf ), the estimates for
movement will be sparse and not very realistic. In the translation process, large
phrases tend to move together; words that are adjacent in the source tend to be
next to each other in the target. IBM Model 4 introduces a relative distortion
model. In such model, the placement of the translation of a source word is based
on the placement of the translation of the preceding word. See [21, p.107-110].

3.5 IBM Model 5

According to IBM Models 3-4, it is possible for multiple target words to be placed
in the same position, that is, nothing prohibits the placement of a target word
into a position that has already been filled. In other words, some impossible
alignments have positive probabilities. IBM Model 5 fixes this problem, i.e.,
eliminates deficiency. It does so by keeping track of the number of vacant word
positions and allowing for placement only into these positions. The distortion
model is therefore based on such vacancies.

In practice all IBM Models are relevant for SMT, since the final word align-
ment can be produced iteratively starting from Model 1 and finishing with Model
5. For more details about the IBM Models, see [19]. All IBM models are imple-
mented in Giza++ [32], a word alignment toolkit used by most SMT systems.
Several extensions of the IBM models have been proposed, particularly popular
ones are based on Hidden-Markov Models [43].
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4 Phrase-Based Models

When translating a sentence, it is common for contiguous sequences of words
to translate as a unit. To account for that, current SMT systems are not based
on word-by-word translation, but on the translation of phrases. The translation
model is therefore based on phrases as units, as opposed to words [24]. A phrase
is simply a contiguous sequence of words, usually not linguistically motivated.
The notions of NULL translation and fertility are not necessary anymore: each
source phrase is non-empty an translates to exactly one non-empty target phrase.
However, the phrases are not necessarily equal in length.

This model allows taking into account the local context of the words being
translated. The more parallel training data available, the longer phrases one can
model, and therefore the higher the chances of good quality translations.

A phrase-based translation model yields much better translations than word-
based models. The basic model is yet a very simple one, consisting of three main
steps:

1. The source sentence is split into phrases.
2. Each phrase is translated in isolation based on probabilities estimates for

phrases.
3. The translated phrases are permuted into their final order.

The source sentence can be split in many different phrases. The choice of
phrases is guided by the existing phrases in a phrase translation table. In
what follows we describe a simple phrase-based translation model consisting of
phrase probabilities extracted from corpus and a basic reordering model, and
how to extract the phrases to build a phrase-table.

4.1 Translation Model - Phrase Translation Models

The mathematical formulation for phrase-based models is the same as that for
word-based models, that is:

argmax
e

P (e|f) = argmax
e

P (f |e)P (e)

However, for the phrase-based models, P (f |e) is further decomposed into:

P (f̄ I1 |ēI1) =

I∏
i=1

φ(f̄i|ēi)d(starti − endi−1 − 1)

Where the source sentence f is broken up into I phrases f̄i, each f̄i is translated
into a target phrase ēi and the phrase probability is represented by φ(f̄i|ēi).

In the formula, d(starti−endi−1−1) represents a distance-based reorder-
ing model. In such reordering model, the reordering of a phrase is relative to
the previous phrase: starti is the position of the first word of the source phrase
that translates into the ith target phrase; endi is the position of the last word
of that source phrase.
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The reordering distance, computed as (starti− endi−1− 1), is the number of
words skipped (forward or backward) when taking source words out of sequence.
For example, if two contiguous source phrases are translated in sequence, than
starti=endi−1 + 1, that is, the position of the first word of phrase i is the next
after the position of the last word of the previous phrase. In that case, the
reordering cost will be zero, i.e., a cost os d(0) will be applied to that phrase.
This model therefore penalizes movements of phrases over large distances.

While the phrase translation probabilities are learned from data (see Section
4.2), instead of estimating the reordering probability from data as well, the
reordering is handled by a pre-defined model: an exponentially decaying cost
function:

d(x) = α|x|, in this case: d = α|starti−endi−1−1)|

with a value for the parameter α ∈ [0, 1].

4.2 Learning a Phrase Translation Table

Similar to the t-table in word-based models, the phrase-based models use a prob-
abilistic dictionary extracted from parallel corpora. However, in phrase-based
models, the entries in such dictionary are not only word pairs, but also phrase
pairs of (in principle) any length. For example, Table 3 shows some entries for
the English phrase of course and its translations into Portuguese.

Table 3. Example of phrase-table entries for English-Portuguese translation of of
course

e P (e|f)

certamente 0.25
naturalmente 0.25
, certamente , 0.15
, naturalmente , 0.1
como era de se esperar 0.02
. . . . . .

The most common way to extract such phrases from corpora, together with
their translation probabilities, is by applying a set of heuristics to word-aligned
parallel corpora. The word-alignment can be produced using IBM Models as
explained in Section 3. The heuristics try to extract phrase pairs which are
consistent with the word alignment. For example, consider the word alignments
produced for the English-German sentence pair in Figure 2, in both directions
and then their intersection/union.

Since the parallel corpus can be handled in both directions (f → e and e→
f), it is trivial to generate word alignments in both directions. By intersecting
such two alignments, one can get a high-precision alignment with high-confidence
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Fig. 2. Word alignments produced for the English-German sentence pair
in both directions and their intersection (black points) and union (addi-
tional grey points) as taken from the Moses SMT system description [23]:
http://www.statmt.org/moses/?n=Moses.Background.

alignment points. By taking the union of the two alignments, one can get a high-
recall alignment with additional alignment points.

Phrase pairs which are consistent with such word alignments can then be
extracted. A phrase pair (f̄ , ē) is consistent with an alignment A if all words
f1, ..., fn in f̄ that have alignment points in A have such alignment points with
words e1, ..., en in ē and vice-versa, that is:

(ē, f̄) consistent with A ⇔
∀ei ∈ ē : (ei, fj) ∈ A⇒ fj ∈ f̄

AND ∀fj ∈ f̄ : (ei, fj) ∈ A⇒ ei ∈ ē
AND ∃ei ∈ ē, fj ∈ f̄ : (ei, fj) ∈ A
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The heuristics described here are those implemented in the Moses SMT sys-
tem. The heuristics start with the intersection of the bidirectional alignments
and then add additional alignment points. The idea is to loop over all possible
target phrases and find the minimal source phrase that matches each of them in
a consistent way.

Given an alignment matrix like the one shown in Figure 2, starting from the
intersection of the two certain word alignments, new alignment points that exist
in the union of two word alignments can be added. A new alignment point must
connect at least one previously unaligned word. First, the algorithm expands to
only directly adjacent alignment points. It checks for potential points starting
from the top right corner of the alignment matrix, checking for alignment points
for the first target word, then continues with alignment points for the second
target word, and so on. This is done iteratively until no alignment point can
be added anymore. In a final step, it adds non-adjacent alignment points, with
otherwise the same requirements.

For example, given the intersection/union of the English ↔ German align-
ment shown in Figure 2, the phrases in Figure 3 would be extracted [21, p.
134].

Fig. 3. Phrase pairs that can be extracted from the alignment in Figure 2 [21, p. 134].

michael – michael
michael assumes – michael geht davon aus ;
michael assumes – michael geht davon aus ,
michael assumes that – michael geht davon aus , dass
michael assumes that he – michael geht davon aus , dass er
michael assumes that he will stay in the house
– michael geht davon aus , dass er im haus bleibt
assumes – geht davon aus ;
assumes – geht davon aus ,
assumes that – geht davon aus , dass
assumes that he – geht davon aus , dass er
assumes that he will stay in the house – geht davon aus , dass er im haus bleibt
that – dass ;
that – , dass
that he – dass er ;
that he – , dass er
that he will stay in the house – dass er im haus bleibt ;
that he will stay in the house – , dass er im haus bleibt,
he – er
he will stay in the house – er im haus bleibt ;
will stay – bleibt
will stay in the house – im haus bleibt
in the – im
in the house – im haus
house – haus
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Estimating Phrase Translation Probabilities Once all phrases consistent
with word alignments are extracted from all sentence pairs in the parallel corpus,
the phrase translation probabilities φ(f̄i|ēi) are learned from the word-aligned
parallel corpus using Maximum Likelihood Estimation (MLE), that is, counts of
such phrase pairs in the corpus:

φ(f̄ |ē) =
count(ē, f̄)∑
f̄i
count(ē, f̄)

The phrase-based SMT models described so far (see Section 4) consist of
three factors:

– the phrase translation table φ(f̄ |ē): the foreign phrase f̄ matches the English
phrase ē;

– the reordering or distortion model d: the phrases are reordered appropriately;
and

– the language model P (e): the output is fluent English.

The product of these three model components forms a standard phrase-
based SMT model:

argmax
e

P (e|f) = argmax
e

I∏
i=1

φ(f̄i|ēi)d(starti − endi−1 − 1)

|e|∏
i=1

P (ei|e1...ei−1)

5 Log-linear Models

State-of-the-art SMT systems like Moses [23] use an extended version of the
phrase-based SMT models described in Section 4, namely a log-linear model.
This extension allows weighting each of the standard phrase-based SMT model
components according to their relevance: with uniform weights, we may produce
adequate phrases but using an inadequate or non-fluent order, or vice-versa.
Therefore, for a certain language-pair, text domain, etc., it might be better
to give more weight to a specific component. Formally, this can be done by
introducing weights λφ, λd, λLM to the phrase table, distortion and language
model components, respectively:

argmax
e

P (e|f) =

argmax
e

I∏
i=1

φ(f̄i|ēi)λφd(starti − endi−1 − 1)λd
|e|∏
i=1

P (ei|e1...ei−1)λLM

Log-linear models are very well known models in the Machine Learning com-
munity, and they have the following general form:

p(x) = exp

n∑
i=1

λihi(x)
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We can see that our phrase-based SMT model is an instance of such general
model where:

– random variable x = (e, f , start, end)
– n = 3 (number of feature functions h)
– feature function h1 = log φ
– feature function h2 = log d
– feature function h3 = log LM

For further clarification, we can rewrite the phrase-based SMT model equa-
tion as:

P (e, a|f) = exp

[
λφ

I∑
i=1

log φ(f̄i|ēi)

+λd

I∑
i=1

log d(ai − bi−1 − 1)

+λLM

|e|∑
i=1

logP (ei|e1...ei−1)


In such framework, each sentence pair is seen as a vector of features, and

the model as a set of corresponding feature functions. The feature functions
are trained separately and then combined assuming that they are independent
of each other (see Section 7). Besides the advantage of providing weights for
different components, log-linear models allow a natural way to include additional
model components in the form of feature functions. Additionally to the already
described components, some of the commonly used feature functions in most
standard phrase-based SMT systems are given in what follows.

5.1 Bidirectional Phrase Translation Probabilities

The use of the Noisy Channel Model results in considering the inverted con-
ditional translation probability, that is, P (f |e) when translating from f into e.
However, in the training data it might happen that an unusual source phrase f̄
is mistakenly aligned to a common target phrase ē, yielding a very high φ(f̄ |ē).
Whenever f̄ is found in the test data, it is highly likely that it will be translated
as ē, because it has a high translation probability and also a high language model
probability, since it is a common target phrase.

In order to avoid such mistakes, a common strategy is to use the condi-
tional probability of the phrases in the direct direction, i.e., φ(ē|f̄). In fact, most
systems use both translation directions as feature functions and this usually out-
performs using a single direction. The probability estimates φ(ē|f̄) are obtained
in the very same way as for φ(f̄ |ē), but using word alignments in the opposite
direction.
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5.2 Bidirectional Lexical Probabilities

Rare phrase pairs will have very high phrase translation probability: if they are
seen only once or a few times, but are not aligned with anything else, then

φ(ē|f̄) = φ(f̄ |ē) = 1

This often overestimates how reliable rare phrase pairs are, and can thus be
problematic, especially if the phrases were extracted from noisy data.

In order to judge whether phrase pairs are reliable, one can decompose them
into their word translations, that is, consider the lexical weighting of the
phrases. Essentially, we can use the probability distributions for lexical transla-
tions, as in word-based translation models, for which the statistics are usually
more reliable. Since phrases are actually extracted from word-alignments, we can
easily consider the alignment of words within phrases.

Most lexical weighting feature functions therefore rely on word-based IBM
models. Based on the word alignment within a phrase, we can compute the
lexical translation probability of a phrase ē given the phrase f̄ by [21, p.139]:

lex(ē|f̄ , a) =

length(ē)∏
i−1

1

|{j|(i, j) ∈ a}|
∑
∀(i,j)∈a

w(ei|fj)

In this feature function, each target word ei is generated by aligned source words
fj with the word translation probability w(ei|fj). If ei is aligned to multiple
source words, the average of the corresponding translation probabilities is taken.
If ei is not aligned to any source word, it is aligned to NULL, which is also
factored in as a word translation.

Similar to the phrase translation probabilities, both translation directions
can be considered: lex(ē|f̄) and lex(f̄ |ē).

5.3 Word Penalty

To control the translation length in terms of the source text length and com-
pensate for the bias of the language model towards shorter phrases (the fewer
the n-grams, the higher the global language model score), it is common to in-
troduce an explicit word penalty ω, where ω < 1 increases the scores of shorter
translations, and ω > 1 increases the scores of longer translations.

5.4 Phrase Penalty

When translating a sentence, the first step, as previously discussed, is to seg-
ment the sentence into phrases. There are usually many possible segmentations
(according to the multiple possible phrases in the phrase-table) and all segmen-
tations are in principle equally likely: only the chosen phrase translations with
their translation, reordering, and language model scores can (indirectly) deter-
mine the choices for the input sentence segmentation.
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Depending on the data, longer (and fewer) phrases or shorter (and more)
phrases may be more appropriate. A way to bias the choice towards longer or
shorter phrases is to introduce a phrase penalty factor ρ. Likewise the word
penalty, ρ < 1 increases the scores of fewer and longer phrases, and ρ > 1 in-
creases the scores of shorter and more phrases. Intuitively, in general one prefers
longer and fewer phrases, since they include more context and therefore are more
likely to be correct. On the other hand, longer phrases are less frequent and can
thus be less statistically reliable. In practice, the value for phrase penalty func-
tion is usually defined beforehand and its weight is learned according to the
actual data.

5.5 Lexicalized Reordering

The standard distance-based reordering model uses a cost that is linear to the
reordering distance, that is, skipping over two words will cost twice as much as
skipping over one word. Such model generally penalizes movement: unless the
language model prefers translations with placement of words in a different order
in the translation, very little reordering is done in practice. While this model
works well for close language pairs like French and English, it is not appropriate
for distant pairs like Chinese and English.

More elaborate reordering models conditioned on specific factors can also
be used, and different reordering probabilities for each phrase pair can also be
learned from data, since some phrases are reordered more frequently than others.
A lexicalized reordering model conditions reordering on the actual phrases.
[21] proposes three reordering types:

– monotone order (m);
– swap with previous phrase (s); and
– discontinuous (d).

Formally, they introduce a reordering model p0 that predicts an orientation
type, m, s or d, given the phrase pair currently used in the translation:

orientation ∈ {m,s,d}

p0(orientation|f̄ , ē)
The probability distribution can be learned from the data using the word-

alignment information: whenever a phrase pair is extracted, the orientation type
of that specific occurrence is also extracted. The number of times each phrase
pair is found with each of the three alignment orientation types is thus counted.
The probability distribution p0 is estimated based on this counts using MLE:

p0(orientation|f̄ , ē) =
count(orientation, ē, f̄)∑

o count(o, ē, f̄)

where o assumes the three orientation types.
A number of variations of this lexicalized reordering model can be considered.

For example, one can combine the orientation information with:
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– whether the model is conditioned on the foreign phrase f̄ or on both f̄ and
ē; and

– whether the ordering is unidirectional or bidirectional: for each phrase, the
ordering of itself with respect to the previous phrase is considered. In bidi-
rectional models, the ordering of the next phrase with respect to the current
phrase is also modeled.

The number of features created with a lexical reordering model depends on
the types of combinations considered. For example, in Moses a “msd” model is
implemented using three features, one each for the probability that the phrase
is translated monotone, swapped, or discontinuous. If bidirectional models are
used, then the number of features doubles - one for each direction.

6 Decoding

Given any type of SMT model (word- or phrase-based), the component respon-
sible for finding the best scoring translation (the “argmax” in the equations
previously given) is called decoder.

Decoding is a hard problem, as there is an exponential number of options. In
fact, an exhaustive search in the entire search space would make the problem a
NP-complete one [20]. In practice, most SMT systems implement heuristic search
methods. With such methods, there is no guarantee that the “best” translation
will be found, although usually the one found is either the best or close to it.
The decoder in most SMT systems is based on implementations of a beam search
process, similar to that proposed for speech recognition [18]. The target sentence
is generated left to right in form of hypotheses. In what follows we describe a
standard decoder used by systems like Moses. The description is strongly based
on that by [21].

6.1 Decoding by Hypothesis Expansion

Given a source sentence, a number of phrase translations could be applied to
translate it. Each such applicable phrase translation is called a translation
option. This is illustrated in Figure 4, where a number of phrase translations
for the Spanish source sentence “Maria no daba uma bofetada a la bruja verde”
are given.

The search starts with an initial state where no foreign source words f are
translated/covered and no English target words e have been generated. New
states are created in the graph by extending the English output with a phrasal
translation that covers some of the source words not yet translated. At every
expansion, the current cost of the new state is the cost of the original state mul-
tiplied with the feature functions under consideration, for example, translation,
distortion and language model costs of the added phrasal translation (a high cost
is associated with a low probability). Final states in the search are hypotheses
that cover all source words. Among these, the hypothesis with the lowest cost
(highest probability) is selected as best translation.
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Fig. 4. Translation options for the Spanish source sentence “Maria no daba uma bofe-
tada a la bruja verde” into English, as taken from the Moses SMT system description:
http://www.statmt.org/moses/?n=Moses.Background.

The initial decoding steps for the Spanish source sentence “Maria no daba
uma bofetada a la bruja verde” into English, given the translation options shown
in Figure 4, are illustrated in Figure 5.

Fig. 5. Partial illustration of the search process for the Spanish source sentence
“Maria no daba uma bofetada a la bruja verde” into English, given the transla-
tion options shown in Figure 4, as taken from the Moses SMT system description:
http://www.statmt.org/moses/?n=Moses.Background.

In the search graph in Figure 5, starting from the initial hypothesis, the first
expansion is the source word Maria, which is translated as Mary. This word is
then marked as translated (with an asterisk). The initial hypothesis may also
be expand by translating the source word bruja as witch. New hypotheses are
then generated from the expanded hypotheses. For example, given the first ex-
panded hypothesis once can generate a new hypothesis by translating no as did
not. The first two foreign words Maria and no are marked as being already cov-
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ered. Following the back pointers of the hypotheses we can read of the (partial)
translations of the sentence.

The algorithm described so far can be used for exhaustively searching through
all possible translations. However in practice it is optimized by discarding hy-
potheses that cannot be part of the path to the best translation and by using
the concept of comparable states that allow defining a beam of good hypotheses
and pruning out hypotheses that fall out of this beam.

6.2 Hypothesis Recombination

Hypothesis Recombination is a strategy for optimizing search that takes advan-
tage of the fact that a given translation can be reached by different paths in the
search graph. When that happens, the more costly hypothesis can be disregarded
and excluded from the search graph.

Two hypotheses can be recombined not only if they are identical, but even
if they look similar, for example if they agree in:

– the source words covered so far;
– the last n target words generated;
– the end of the last source phrase covered.

If there are two paths that lead to two hypotheses that agree in these prop-
erties, only the cheaper hypothesis is kept, e.g., the one with the least cost so
far. The other hypothesis cannot be part of the path to the best translation, so
it can be safely discarded.

Hypothesis recombination is very useful for reducing spurious ambiguities in
the search, therefore allowing a more efficient search. However, it does not solve
the decoding exponential complexity problem. This requires riskier methods for
search space reduction, which will be discussed in what follows.

6.3 Stack-based Beam Search Decoding

A common way to organize hypothesis in the search space is by using “hypothesis
stacks” based on the number of source words translated. One stack contains all
the hypothesis that have translated one given source word, another stack contains
all the hypothesis that have translated two source words in their path, and so
on. Figure 6 shows the representation of hypothesis stacks.

The initial hypothesis is placed in the stack for hypotheses with 0 source
words covered. New hypotheses are then generated by committing to phrasal
translations that covered previously untranslated source words. Each derived
hypothesis is placed in a stack based on the number of foreign words it covers.
We proceed through these hypothesis stacks, going through each hypothesis in
the stack, deriving new hypotheses for this hypothesis and placing them into the
appropriate stack. A stack has limited space, so after a new hypothesis is placed
into a stack, the stack may have to be pruned if it becomes too large. In the end,
the best hypothesis from the stack covering all foreign words is taken as the best
translation.
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Fig. 6. Hypothesis stacks, as taken from the Moses SMT system description:
http://www.statmt.org/moses/?n=Moses.Background.

The idea of using stacks for decoding is therefore to keep only a number
of hypothesis that are “promising” by limiting the sizes of the stacks: is the
stack gets too large, we prune the worst hypotheses from it. However, there is
no guarantee that hypotheses pruned at early stage because they did not look
promising are actually bad and would not redeem themselves later and lead to
the best overall translation. This is due to the fact that we cannot compute the
path in the graph until completion to find out the real cost of each hypothesis,
since it is too expensive. Therefore, the decoder tries to make good guesses at
which hypotheses are too bad to lead to the best overall translation.

The stack size can be defined by threshold pruning or histogram prun-
ing. Histogram pruning keeps a certain number n of hypotheses (e.g., n = 100).
A relative threshold cuts out a hypothesis with a probability less than a factor
of the best hypotheses (e.g., = 0.001). According to [21, p.166], this threshold
can be seen as a “beam of light that shines through the search space. The beam
follows the (presumably) best hypothesis path, but with a certain width it also
illuminates neighboring hypotheses that differ not too much in score from the
best one”, and therefore the term beam search.

Alternative decoding algorithms include A* search, beam search on coverage
stacks, greedy hill-climbing and finite-state transducers (see [21]).

6.4 Future Cost Estimation

As previously described, the general procedure for pruning is to compare the
hypotheses that cover the same number of foreign words and prune out the
inferior hypotheses. If the judgment of what inferior hypotheses are is based on
the cost of each hypothesis so far, it can bias the search to translating the easy
part of the sentence first, that is, the search will prefer to start the sentence with
the easy part and discount alternatives too early.
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Therefore, the measure for pruning out hypotheses during the search has to
take also into account an estimate of the future cost. The future cost estimation
means estimating how hard it is to translate the untranslated part of the source
sentence. It should favor hypotheses that already covered difficult parts of the
sentence and have only easy parts left, and discount hypotheses that covered
the easy parts first. Using the cost so far and the future cost estimation, we can
prune out hypotheses that fall outside the beam.

Only some of the feature functions are usually considered for the compu-
tations of the future cost, mainly language model and translation model. For
the translation model, for a given translation option, once can simply lookup
its translation cost (i.e., probability) from the phrase-table. For the language
model, since we do not know the preceding target words for a translation op-
tion, an approximation may be done by computing the language model score
for the generated target words alone: if only one target word is generated, its
unigram probability is used; if two words are generated, the unigram probability
of the first word and the bigram probability of the second word are used, and so
on.

This procedure can be used to calculate the cost for each translation option.
The cheapest way to translate the sequence of source words is the one including
the cheapest translation options. Therefore, one can approximate the cost for a
path with a sequence of translation options by the product of the cost for each
option.

6.5 N-Best Lists

For some applications, besides the actual best translation for a given source sen-
tence, it can be helpful to have the second best translation, third best translation,
and so on. A list of n “best” translations is called a n-best list. Post-edition
systems using richer features than the ones common to an SMT system could
be applied on n-best lists to re-score the translations, for example.

7 Parameter Estimation in Log-Linear Models

As discussed in Section 5, state-of-the-art SMT systems are based on discrim-
inative phrase-based models, more specifically, log-linear models. Such models
consist of a number of feature functions and weights associated with each feature
function. In this section we describe the most common strategy to estimate such
weights: the Minimum Error-Rate Training (MERT) algorithm [31].

MERT assumes that the best model is the one that produces the smallest
overall error with respect to a given error function, that is, a function that evalu-
ates the quality of the system translation. Therefore, the idea is to use the same
function that will be considered for assessing the final translation evaluation in
the training of the internal parameters of the system. As we will discuss in Sec-
tion 8, most evaluation metrics are based on n-gram comparisons between the
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system output (hypothesis) and one or more human (and therefore, good qual-
ity) translations (references). Hence MERT uses a development set containing
a number of source sentences and their reference translations to, over several
trials or iterations, optimize the feature functions weights such as to make the
system translations as close as possible to the reference translations according to
a certain evaluation metrics, commonly BLEU [34]. The trials are performed by
considering the n-best lists produced by translating each input sentence using
the current model.

Formally, given an error function E(ê, e) defining the amount of error in some
hypothesized translation ê with respect to a known good actual translation e,
then the objective function is:

λK1 = argmin
λ̂K1

∑
(e,f)∈C

E(argmax
ê

Pλ̂K1
(ê|f), e)

MERT works by iteratively generating random values for λK1 , which it then
tries to improve by minimizing each parameter λk in turn while holding the
others constant. At the end of this optimization step, the optimized λK1 yielding
the greatest error reduction is used as input to the next iteration. Details about
the algorithm can be found in [31] and [29, p.30-31].

8 Evaluation

The ability to automatically assess the quality of MT systems is an important
aspect of this feld and has attracted considerable attention in recent years. Most
research papers report results in terms of BLEU [34], although it has a number
of well-known limitations and there are a number of alternative metrics. In this
section we describe BLEU and a few other popular metrics for MT evaluation.

A common element of all automatic metrics is their use of human transla-
tions, i.e., the reference translations. The intuition behind such metrics is that
automatic translations should resemble human translations. In order to measure
the level of resemblance, these metrics consider the partial string matching be-
tween the machine and the reference translations. Single words or phrases can be
considered as matching units. Most of these metrics can be applied when either a
single reference or multiple references are available. Since a source sentence can
usually have more than one correct translation, the use of multiple references
allows avoiding biases towards one specific correct translation.

A few recent metrics consider also inexact matches, for example, using lem-
mas instead of word forms and considering paraphrases or entailments at the
lexical or sentence level to compute matches.

8.1 Edit Rate Metrics

Edit or error rate measures estimate the amount of changes that must be applied
to the automatic translation in order to transform it into a reference translation.
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WER
Word Error Rate (WER) [41] and [30] is a measure based on the Levenshtein or
edit distance [26]. It computes the minimum number of substitutions, deletions
and insertions that have to be performed to convert the automatic translation
into the human reference. This metric does not recognize word reorderings: a
word that is translated correctly but in the wrong position will be penalized as a
deletion in the machine translation and an insertion in the reference translation.

PER
Position-independent Word Error Rate (PER) [41] addresses a shortcoming of
the WER: it does not penalize reorderings. PER compares the words in the
machine and reference translations without taking into account the word order,
that is, the machine and reference translations are considered as unordered sets.

TER and HTER
Translation Edit Rate (TER) [37] also measures the edit distance between ma-
chine and reference translations. The idea is to approximate the amount of post-
editing that would be needed by a human to correct the translations. Besides
the standard edit operations (insertions, deletions, and substitutions of single
words), TER considers “shifts” of word sequences. All edits, including shifts of
sequences of any length, have equal cost:

TER =
#edits

#reference words

For multiple references, the number of edits is computed for each reference
individually, and the one with the fewest number of edits is chosen. In the search
process for the minimum number of edits, shifts are prioritized over other edits:
a greedy search process tries to find the shifts that most reduce the number of
insertions, deletions and substitutions.

Human-targeted Translation Edit Rate (HTER) is a semi-automatic varia-
tion of TER in which the references are build as human-corrected versions of the
machine translations in order to guarantee that the edit rate is measured as the
minimum of edits necessary to make the system output a fluent and adequate
translation. The goal is to find the closest possible reference to the system output
from the space of all possible fluent and adequate references. HTER was found
to correlate better with human scores than TER [37].

TERp
Translation Edit Rate Plus (TERP) [38] is an extension of TER that (1) aligns
words in the system output and reference translation not only if they are ex-
act matches, but also when the words have the same stem or are (potentially)
synonyms; (2) uses paraphrase probabilities to align phrasal substitutions in the
system output and reference translation; and (3) optimize the costs of differ-
ent types of edits to maximize the correlations with human judgments. Besides
TER’s standard edit operations (matches, insertions, deletions, substitutions and
shifts), TERp adds three new operations: stem matches, synonym matches and
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phrase substitutions. Two words match at the stem level if they share the same
stem, and at the synonym level if they belong to the same synset in WordNet
[14]. Two phrases are considered paraphrases if they belong to a pre-computed
probabilistic database of paraphrases extracted using bilingual parallel corpora
as described in [4].

The optimization process is a hill climbing search for costs that maximize
the correlation of the global TERp score with human scores. This results in the
same cost for each edit operation regardless of the actual words involved in the
operation, except for phrase substitutions. The cost for phrase substitutions is
given by:

cost(p1, p2) = w1 + w1 + edit(p1, p2) ∗ (w2logPr(p1, p2)) + w3Pr(p1, p2) + w4)

where w1, w2, w3, w4 are the four free parameters of the edit cost, edit(p1, p2)
is the TERp edit cost to align p1 to p2 (excluding phrase substitutions) and
Pr(p1, p2) is the probability of paraphrasing p1 as p2.

Other differences with respect to TER are the fact that TERp is, by default,
case insensitive, uses a list of stop words to constrain the shift operation (stop
words and punctuations are only shifted if together with a non-stop word) and
is capped at 1.0 (a system output cannot be more than 100% wrong).

8.2 Precision, Recall and F-measure Metrics

Precision-oriented metrics focus on lexical precision, i.e., the proportion of lexical
units (typically n-grams of varying size) in the automatic translation which are
covered by reference translations. Recall-oriented metrics focus on lexical recall,
i.e., the proportion of lexical units in the reference translations which are covered
by the machine translation. F-measure metrics combine lexical precision and
recall.

BLEU and some of its variations

Bilingual Evaluation Understudy (BLEU) [34] is the most widely used metric
for MT evaluation in general and computes lexical matching among n-grams,
that is, matches at the n-gram level (from 1 up to some maximum n, usually 4)
between the system and the reference translation. BLEU rewards translations
whose word choice and word order is close similar to the reference. The number
of n-gram matches normalized by the number of total n-grams in the system
translation, and therefore it is a precision-oriented metric.

Let count(ngram) be the count of ngram in a given system output sentence
and countclip(ngram) be the minimum number of times that ngram appears
(matches) in its reference translation. BLEU sums such clipped n-gram matches
for all sentences in the test corpus, normalizing them by the number of candidate
n-grams in the test corpus. For a given n, this results in the modified precision
score, pn, for the entire corpus:
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pn =

∑
C∈{Candidates}

∑
ngram∈C

countclip(ngram)∑
C′∈{Candidates}

∑
ngram′∈C′

count(ngram′)

Given multiple pns for different n-gram precisions, up to some maximum n,
BLEU then averages them. The score for a given test corpus is the geometric
mean of the modified n-gram precisions, pn, using n-grams up to a length N
(usually 4) and positive weights wn = N−1 summing to one:

BLEU = BP · exp

(
N∑
n=1

wn log pn

)
Since the denominator contains the total number of hypothesis n-grams, to

avoid giving preference to short translations, a brevity penalty is used:

BP =

{
1, if c > r

e(1−r/c), if c ≤ r

The brevity penalty penalizes system output sentences that are much shorter
than the reference translation. It contrasts the total number of words c of all
system outputs with reference length r. If multiple references are used, r is
defined by summing the lengths of the closest reference to each system output.

A large number of improvements have been proposed to BLEU. [3], for exam-
ple, weights the n-grams in BLEU according to frequency information computed
based on a corpus of reference translations. The two weighting schemes are used,
: tf.idf (Term Frequency * Inverse Document Frequency) and S-Score.

Using tf.idf, the n-grams are weighted in the following way:

tf.idf(i, j) = (1 + log(tfij))log(N/dfi)

where:
tfij is the number of occurrences of the word wi in the document dj ;
dfi is the number of documents in the corpus where the word wi occurs;
N is the number os documents in the corpus.
Using S-score, the n-grams are weighted in the following way:

S(i, j) = log
(Pdoc(i,j) − Pcorp−doc(i)) ∗ (N − dfi)/N

Pcorp(i)

where:
Pdoc(i,j) is the relative frequency of the word wi in the document dj ;
Pcorp−doc(i) is the relative frequency of the word wi in the other documents

of the corpus;
(N−dfi)/N is the proportion of texts in the corpus where wi does not occur;
Pcorp(i) is the relative frequency of the word wi in the whole corpus.
Weighting n-grams has showed to improve correlation of BLEU scores with

human judgements for adequacy
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NIST

NIST is a recall-based version of BLEU by the National Institute of Standards
and Technology [13]. It differs from BLEU in the way n-gram scores are averaged,
the weights given to n-grams and the way the brevity penalty is computed. While
BLEU relies on the geometric mean, NIST computes arithmetic mean. Moreover,
while BLEU uses uniform weights for all n-grams, NIST weights more heavily n-
grams which occur less frequently, as an indicator of their higher informativeness.
For example, very frequent bi-grams in English like “of the” should be weighted
low, since they are very likely to happen in many sentences and the match might
therefore be merely by change. Finally, the modified brevity penalty minimizes
the impact of small variations in the length of the system output on the final
NIST score.

By computing the geometric mean, as opposed to NIST’s arithmetic mean,
BLEU is equally sensitive to proportional differences in matches for all values of
N . Low number of matches for large Ns can therefore highly influence the final
score.

The weights of n-grams are computed according to n-gram counts over the
set of reference translations:

info(w1...wn) = log2

(
count(w1, ..., wn−1)

count(w1, ..., wn)

)
Based on such weights, NIST’s is computed as:

NIST =

N∑
n=1


∑

allw1...wnthatmatch

info(w1...wn)∑
allw1...wninsysoutput

l

·exp

{
β log2

[
min

(
Lsys

Lref
, l

)]}

where:

β is chosen to make the brevity penalty factor = 0.5 when the number of
words in the system output is 2/3 of the average number of words reference
translation;

N = 5;

Lsys is the number of words in system output translation;

Lref is the average number of words in a reference translation, averaged over
all reference translations.

Meteor

METEOR (Metric for Evaluation of Translation with Explicit Ordering) [25] is
a metric that balances recall and precision of unigram matches. It includes a
fragmentation score which accounts for word ordering, enhances token matching
considering stemming and synonymy lookup and allows tuning to weight scoring
components in order to optimize correlation with human judgments at document
or sentence level.

The basic components of METEOR are: an Fmean and a discount factor Pen.
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METEOR = (1− Pen) · Fmean

A matching algorithm performs word-to-word alignment between the system
output and reference translations. The matches are computed against each ref-
erence separately and the best match is then selected. Different parameters of
METEOR allow the unigram matches to be exact word matches, or generalized
to stems, and synonyms. Resources are offered for stem – Porter stemmer [35]
– and synonymy – WordNet [14] – for English only. Based on those matchings,
precision and recall are calculated, resulting in the following Fmean metric:

Fmean =
P ·R

α · P + (1− α) ·R

where: P = unigram precision, that is, fraction of words in the system output
that match words in the reference, and R = unigram recall, that is, fraction of
the words in the reference translation that match words in the system output.

The matching algorithm returns the fragmentation fraction, which is used
to compute the discount factor Pen as follows. The sequence of matched uni-
grams between system output and reference translation is split into the fewest
(and longest) possible chunks, where the matched words is each chunk are ad-
jacent and in identical order in both strings. The number o chunks ch and the
total number of matching words in all chunks m are then used to calculate the
fragmentation count frag = ch/m. The discount factor Pen is then computed
as:

Pen = γ · fragβ

The parameters of METEOR determine the relative weight of precision and
recall (α), the maximum penalty weight (γ), and the functional relation between
the fragmentation and the penalty (β). These are originally set as α = 0.9,
β = 3.0 and γ = 0.5, based on previous experiments performed by METEOR’s
authors. However, such parameters can be optimized for better correlation with
human judgments on a particular quality aspect (fluency, adequacy, etc.), data
collection, language pair or evaluation unit (system, document or sentence level,
e.g.). Experiments performed using simple hill climbing search was used to max-
imize correlation with human judgments for fluency and adequacy for different
language pairs are described in [25], while experiments aiming to maximize hu-
man judgments on ranking translations are presented in [1].

8.3 Some recent developments in MT evaluation

Metrics proposed more recently go beyond lexical or n-gram matching by using
linguistic knowledge, for example, by comparing the system output and reference
translation in terms of their syntactic dependencies [16], or by checking whether
one entails the other [33].
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Other metrics are based on machine learning, where a number of features are
combined in a model based on some training data, which shows to be particularly
useful for sentence-level MT evaluation [2].

Finally, some metrics avoid the use of reference translations aiming at pro-
viding a sentence-level quality score for MT systems in use, that is, a score for
translations produced given any new input sentence [39].

Other metrics, as well as results from competitions comparing several SMT
systems and MT systems developed according to other paradigms can be found
in the proceedings of the WMT workshops1: [7–9].

9 Advanced Topics

SMT is a very popular research topic at the moment and hence there are a num-
ber of new directions and advanced topics that could be mentioned. Perhaps the
most prominent direction which has been studied for a number of years is that
of introducing some structure into the flat phrase-based SMT models. Existing
attempts include models that allow gaps in their phrases [36] and hierarchical
models [12], in which Synchronous Grammars are used to structure the sentences
or phrases by replacing words with their part-of-speech tags, for example. While
syntactic information can be used to produce such structures [44, 45], the hierar-
chy does not need to be defined in terms of linguistic constituents. Hierarchical
models are implemented in the Joshua SMT system [27].

Using syntax seems like a promising direction and it has been exploited not
only directly in the translation model, but also in the language model [11], and for
pre-processing (for example, making the syntax of the source language “look like”
the syntax of the target language) or post-processing (for example, by re-ranking
the n-best list according to the probabilities produced for each candidate by a
statistical parser). The general motivations for the use of syntactic knowledge
involving addressing several of the limitations of current phrase-based models,
allowing:

– producing more grammatical output, particularly in the case of long-distance
dependencies;

– having more accurate control over re-ordering;
– having more accurate control over use of function words;
– having better syntactic and semantic disambiguation;
– etc.

Adding other types of linguistic knowledge in the models is also an interesting
topic. For example, Moses allows using linguistic knowledge at the word level,
like part-of-speech tags or lemmas of the words, as factors within its factored
model implementation [22].

Other topic of crescent interest is that of fully-discriminative models. While
log-linear models are discriminative, some of the current feature functions are

1 http://www.statmt.org/wmt10/
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generative (e.g., P (f |e). Fully discriminative models like the ones proposed by
[42, 28] are a promising topic, although they still have issues with scalability.

These and many other recent developments in the field of Statistical Machine
Translation will be discussed during the tutorial.
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28. Liang, P., Bouchard-Côté, A., Klein, D., Taskar, B.: An End-to-end Discriminative
Approach to Machine Translation. In: 21st International Conference on Computa-
tional Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics. pp. 761–768 (2006)

29. Lopez, A.: Statistical Machine Translation. ACM Computing Surveys 40(3), 1–49
(2008)

30. Nießen, S., Och, F.J., Leusch, G., Ney, H.: An evaluation tool for machine transla-
tion: Fast evaluation for mt research. In: 2nd International Conference on Language
Resources and Evaluation (LREC). Athens, Greece (2000)

31. Och, F.J.: Minimum error rate training in statistical machine translation (2003)
32. Och, F.J., Ney, H.: A systematic comparison of various statistical alignment mod-

els. Computational Linguistics 29(1), 19–51 (2003)
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