
N-VERSION PROGRAMMING : A FAULT-TOLERANCE
APPROACH TO RELIABILITY OF SOFTWARE OPERATION

Liming CHEN Algirdas AVlZlENlS

University of California
Los Angeles, CA 90024 USA

Xerox Corporation Computer Science Department
El Segundo, CA 90245 USA

Abstract

N-version programing is defined a s t h e independent
generation of N2 2 func t iona l ly equiva len t prograns
f r an the sme i n i t i a l spec i f ica t ion . A methodology of
N-version programing has been devised and th ree types
o f spec ia l mechanisms have been iden t i f i ed tha t are
needed to coordinate t h e execution of an N-version
software un i t and to canpare t h e correspondent r e s u l t s
generated by each version. Two experiments have been
conducted to test t h e f e a s i b i l i t y of N-version
programing. The r e s u l t s o f these experiments a r e
discussed. In addi t ion , c o n s t r a i n t s a r e iden t i f i ed t h a t
must be met f o r e f f e c t i v e appl ica t ion of N-version
programing.

1. Approaches to Software Fault-Tolerance

The usual method to a t t a i n r e l i a b i l i t y of software
operation is fault-avoidance (or in to le rance) [l I. A l l
software defec ts a r e eliminated pr ior to operation. If
m e defec ts remain, t he operation is r e l i a b l e only as
long a s t he d e f e c t s a r e not involved i n progran
execution. In most l a rge and canplex software systems
these fault-avoidance condi t ions have not been
successfu l ly a t t a ined , regard less of a very l a r g e
investment of e f f o r t and resources, and software
crashes have occurred during operation. "his
observation leads to the conjec ture t h a t for r e l i a b l e
software operation, redundant software i n m e form is
required t o de t ec t , to i s o l a t e , or to recover fran
effects of t he thus f a r uneliminated software defec ts .

Achievement of high r e l i a b i l i t y o f opera t ion through
t h e use of redundant system elements is a f u n d a e n t a l
p r i n c i p l e i n fault-tolerance of hardware (phys ica l)
f a u l t s 141. "he use of redundant software to recover
from software malfunction, however, r e q u i r e s spec ia l
caution due to the id iosyncra t ic c h a r a c t e r i s t i c s o f
software. I n cont ras t with hardware, i n which physical
f a u l t s predominate, software d e f e c t s a r e t ime-invariant
defec ts . Errors a r e produced by using the sane inpu t s
which t r igge r t he same d e f i c i e n t elements o f a progran.
Therefore, executing dupl ica te copies of a program does
n o t improve t h e r e l i a b i l i t y of opera t ion with respect
to software defec ts . Furthermore, while t h e main cause
of hardware u n r e l i a b i l i t y is a randan f a i l u r e . t h a t o f
software is its complexity. The canplexi ty o f software
l eads t o several d i f f i c u l t i e s . F i r s t , it is d i f f i c u l t
to cons t ruc t error-free software. Second, software is
unl ike ly t o perform canple te self-checking on its own
outputs. Third, it i s ' d i f f i c u l t t o perform run-time
d iagnos is o f software i n order to l o c a t e t h e source of
a software error. These observa t ions lead to the
conclusion t h a t i f redundant software is used i n an
attempt t o achieve software fault-tolerance, then it

Reprinted from FTCSB 1978, pp. 3-9,0 IEEE

Proceedings of FTCS-25, Volume 111
0-8186-7150-5/96 $6.00 0 1996 IEEE

should t r y t o meet the following cons t ra in ts : (1) It
does not r e q u i r e complete self-checking; (2) it does
not r e l y upon run-time software d iagnos is ; and (3) it
m u s t conta in independently developed a l t e r n a t i v e
rout ines for the sane func t ions ,

Experience with fau l t - to le rance of hardware
(phys ica l) f a u l t s suggests t h a t func t iona l ly equivalent
a l t e r n a t i v e rout ines may be employed to improve
r e l i a b i l i t y of software opera t ion . Recently, two
d i s t i n c t approaches have been inves t iga ted which anploy
a l t e r n a t e software rout ines a s a means to achieve
software fault-tolerance. In t h e approach o f recovery
blocks [2, 33 these rout ines a r e organized i n a manner
s imi l a r to t he dynamic redundancy (standby sparing)
technique i n hardware [41. The prime o b j e c t i v e is to
perform run-time software error de tec t ion and to
implement error recovery by tak ing an a l t e r n a t e path
o f operation.

A po ten t i a l a l t e r n a t i v e to recovery blocks is to use
software redundancy analogously t o the s t a t i c
(r ep l i ca t ion and voting) redundancy approach i n
hardware 143. The prime o b j e c t i v e here is t o mask t h e
e f f e c t s o f software d e f e c t s a t t h e boundaries o f
designated program modules. The f i r s t t echnica l
discussion of t h i s approach i n which one of t he au thors
took pa r t occurred i n February 1966 a t t h e IEEE
Workshop on t h e Organization of Reliable Automata i n
Pac i f ic Palisades, Ca. Several suggestions t h a t t h i s
approach might be a v i a b l e method of software fau l t -
tolerance were published a few years l a t e r
[l , 5, 6, 7, 81. In 1975, an experimental research
pro jec t e n t i t l e d , "N-Version programing" was i n i t i a t e d
a t UCLA to sys temat ica l ly i n v e s t i g a t e the f e a s i b i l i t y
o f t h i s approach [l , 9, 103.

2. Concepts o f N-Version Programming

N-version programing is defined a s t h e independent
generation o f N L 2 f u n c t i o n a l l y equivalent prograns,
ca l led "versions", f r an the same i n i t i a l spec i f ica t ion
[91. (This term is prefer red to " d i s t i n c t software,ft
[81, s ince it bears no implication about t h e

which is vague and d i f f i c u l t t o
quantify or even qua l i fy , among the N versions o f a
program.) "Independent generation o f programs" here
means tha t t h e programing efforts a r e car r ied o u t by N
ind iv idua ls or groups t h a t do not i n t e r a c t with respect
to the programing process. Wherever possible,
d i f f e r e n t algorithms and programing languages or
t r ans l a to r s a r e used in each e f f o r t .

The i n i t i a l s p e c i f i c a t i o n is a formal spec i f ica t ion
i n a s p e c i f i c a t i o n language. The goal o f t he i n i t i a l
spec i f ica t ion is to s t a t e t h e func t iona l requirements
canple te ly and unanbiguously, while leaving the widest

113

poss ib l e choice of implementations t o the N programing
efforts. It a l s o s t a t e s a l l t h e spec ia l f e a t u r e s t h a t
a r e needed in order to execute t h e set of N vers ion i n
a faul t - tolerant manner. An i n i t i a l spec i f i ca t ion
should.def ine: (1) the funct ion to be implemented by an
N-version software un i t ; (2) da ta f o n a t s for t h e
special mechanisms: comparison vec to r s (,k-vectors") ,
comparison s t a t u s i n d i c a t o r s (ltcs-indicators"), and
synchronization mechanisms; (3) t h e cross-check po in t s
k kc-points") for c-vector generation; (4) t h e
canparison (matching or vot ing) a lgori thn; and (5) t h e
response to t h e possible outcanes of matching or
voting. We note t h a t "canparison" is used a s a general
term, while "matching" r e f e r s to the N = 2 case , and
"voting', to a majori ty dec i s ion with N 2. The
canparison a lgo r i thn e x p l i c i t l y s t a t e s t h e al lowable
range o f discrepancy i n nunerical r e s u l t s , i f such a
range exists.

N vers ions of t h e program a r e independently
generated with r e spec t to t h e i n i t i a l spec i f i ca t ion .
Though d i f f e ren t i n t h e i r implmentat ion, t h e N
vers ions a r e assmed to b e func t iona l ly equivalent .
Together, these N versions a r e s a i d to form an N-
version software un i t . h r i n g the developnent o f an
N-version progran, t h e performance of each vers ion must
s a t i s f y some acceptance criteria of its own before it
can be integrated i n t o t h e N-version software u n i t . An
acceptance progran can be used to d r i v e a s i n g l e
version fo r its acceptance t e s t i n g . To d r i v e an N-
version software mi t a supervisory progran c a l l e d a
d r i v e r , is n e e d e d . It is a modified acceptance
program with add i t iona l c a p a b i l i t i e s to coordinate t h e
execution of N ve r s ions and to vo te or to match t h e i r
correspondent r e s u l t s . The integrated set of an N-
version software u n i t and its d r i v e r is sa id to be an
N-version progran.

Three types of spec ia l mechanisms a r e needed to
execute an N-version software u n i t and to match or vo te
t h e correspopndent r e s u l t s generated by each vers ion.
These spec ia l mechanisms a re : (1) comparison (c-)
vectors , (2) comparison s t a t u s (cs-) ind ica to r s , and
(3) synchronization mechanisms. The points a t which
c-vectors a r e generated and employed for matching or
voting a r e ca l l ed cross-check (cc-) p i n t s .

a r e d a t a s t r u c t u r e s represent ing a subset
of a vers ion 's local program s t a t e which is
in t e rp re t ab le by t h e d r ive r . Meaningful i n t e r p r e t a t i o n
of a c-vector, however, can only be achieved when a
cc-point condi t ion has been s a t i s f i e d . A c-vector
generated by a version a t a cc-point contains tw types
of information. The canparison va r i ab le s (c-var iables)
of a c-vector point t o values of va r i ab le s which a r e t o
be matched with t h e i r coun te rpa r t s from other vers ions.
The s t a t u s flags of a c-vector i nd ica t e whether or no t
some s ign i f i can t events have taken place during t h e
generation of these c-var iables . Exanples of such
events are: end of f i le, exception condi t ions detected
by t h e system, or cond i t ions defined i n t h e i n i t i a l
spec i f i ca t ion . When majori ty of vers ions produces t h e
r e s u l t s t h a t agree (i .e , f a l l within t h e al lowable
range of discrepancy) , these r e s u l t s a r e t r ea t ed a s
acceptable r e s u l t s fran t h i s N-version software un i t .
Any version which generates results t h a t d i f f e r frcm
the acceptable results is designated a s a disagreeing
version.

Cs-indicators a r e used to i n d i c a t e ac t ions to be
taken a f t e r matching or vot ing o f correspondent c-
vec to r s when a cc-point condi t ion is s a t i s f i e d . The
ac t ions to be taken a t t h e c c - p i n t s a f t e r t h e exchange
of c-vectors depend on: (1) whether a l l ve r s ions
d e l i v e r t he c-vectors within specif ied time, and (2)
whether the c-vectors agree or disagree. Possible
outcanes a re : (1) cont inuat ion, (2) termination of one
or more vers ions, and (3) cont inuat ion a f t e r changes i n

C-vectors

t h e c-vectors of one or more vers ions on t h e b a s i s of a
ma jo r i ty decis ion.

Synchronization mechanisms a r e used to synchronize
t h e execution s t e p s of an N-version software un i t .
Each vers ion uses these mechanisms to s igna l to t h e
d r i v e r t h a t a c-vector is ready. The d r i v e r uses these
mechanisms to con t ro l h e n a version should be
ac t iva t ed . They a r e a l s o used by t h e d r i v e r t o prevent
vot ing or matching before a l l correspondent c-vectors
a r e ready. Original ly , a version is i n an i n a c t i v e
s t a t e . When invoked by t h e d r i v e r , it e n t e r s i n t o a
wai t ing s t a t e . A t t h i s s t a t e it wa i t s f o r a
synchronization s igna l represent ing a request for
se rv ice f r an the d r ive r . When t h i s s igna l is received,
it t r a n s f e r s i n t o a running s t a t e . If any terminat ing
condi t ion is signaled by t h e cs- indicators , then t h e
execution of t h i s version is terminated and it goes
back t o i n a c t i v e s t a t e . Otherwise, it gene ra t e s a c-
vector upon t h e s a t i s f a c t i o n of a cc-point condi t ion,
then it uses a synchronization s igna l to n o t i f y t h e
d r i v e r t h a t a c-vector is ready, and then r e t u r n s to
wai t ing s t a t e . The s t a t e t r a n s i t i o n s for a version a r e
i l l u s t r a t e d i n Figure 1. It should be noted t h a t s t a t e
t r a n s i t i o n s due t o system resource a l loca t ion and
dea l loca t ion a r e not of d i r e c t concern to N-version
programing and a r e not discussed here.

INVOKED (INACTIVE) INVOKED

SERVICE REQUIRED-,

CROSS-CHECK POINT
CONDITION
SATISFIED \
CROSS-CHECK POINT
CONDITION
SATISFIED \

TERMINATING CONDITION

RUNNING

Figure 1 S t a t e Transi t ions o f a version

A l imi t a t ion o f t h e N-version approach r e s u l t s f r a n
the f a c t t h a t a l l N vers ions o f t he program o r ig ina te
f r a n the same i n i t i a l spec i f i ca t ion , which is
e f f e c t i v e l y t h e "hard core" o f t h i s method. Its
co r rec tness , completeness, and unambiguity have to be
assured p r io r to the N-version programing e f f o r t . It
is our conjecture t h a t e i t h e r formal co r rec tness
proofs , or exhaust ive va l ida t ions of i n i t i a l
spec i f i ca t ions when they a r e s t a t ed in compact, formal
spec i f i ca t ion languages 1111 a r e much more l i k e l y t o
succeed within acceptable c o s t bounds than proofs or
va l ida t ions of t h e d e t a i l e d implementations t h a t
o r i g i n a t e f r an such spec i f i ca t ions . Once t h e
spec i f i ca t ions have been accepted a s c o r r e c t , t h e
proofs or va l ida t ions of t h e programs can be replaced
by t h e run-time software faul t - tolerance provisions.

The second major observat ion concerning N-version
programing is t h a t its success a s a method for run-
time to l e rance of software f a u l t s depends on whether
t h e r e s idua l software f a u l t s i n each version a r e
d i s t ingu i shab le . We de f ine d i s t ingu i shab le sof tware
f a u l t s a s f a u l t s t h a t w i l l cause a disagreenent between
c-vectors a t t h e spec i f i ed cc-points during t h e
execution o f t h e N-version program t h a t was generated
fran t h e i n i t i a l spec i f i ca t ion . f i s t i n g u i s h a b i l i t y is
affected by t h e choice o f c-vectors and cc-points, a s
well a s by t h e nature o f t he f a u l t s thmselves . It is
a fundamental conjecture of t h e N-version approach t h a t
t h e independence of programing e f f o r t s w i l l g r e a t l y
reduce t h e p robab i l i t y o f i den t i ca l software d e f e c t s

114

occuring i n two or more versions. Together with a
reasonable choice of c-vectors and c c - p i n t s t h i s is
expected to turn N-version programming i n t o an
e f f e c t i v e method t o achieve to le rance o f software
f a u l t s . The e f fec t iveness o f t h e e n t i r e approach
depends on the v a l i d i t y of t h i s conjec ture , t h e r e f o r e
it is c r i t i c a l l y important t o keep the i n i t i a l
spec i f ica t ion f r e e of any flaws t h a t would b i a s t h e
independent programers toward introducing the same
software defec ts .

The research e f f o r t a t UCLA addresses two thus f a r
unanswered questions: (1) Which c o n s t r a i n t s (e.g.,
need for formal spec i f i ca t ions , s u i t a b l e types of
problems, na ture of algorithms, timing c o n s t r a i n t s ,
i-tc.) have t o be s a t i s f i e d to make N-version
programing f eas ib l e a t a l l regard less o f t he c o s t ?
(2) How does the cost-effectiveness of t h e N-version
programing approach compare to the t w o a l t e r n a t i v e s :
non-redmdant (" fau l t - in to le ran t") programing [l], and
the "recovery block" [2 , 31 approach? The s c a r c i t y of
previous results and an absence of formal t h e o r i e s on
C-version programing has led us to choose an
experimental approach i n t h i s inves t iga t ion . ?he
approach has been to choose m e conveniently
access ib le programing problems, t o a s s e s s t h e
app l i cab i l i t y of N-version programing, and then to
proceed to generate a set o f programs. Cnce generated,
t h e prcgrans are executed i n a simulated mul t ip le -
hardware system, and the r e su l t i ng observations a r e
applied to re f ine the methodology and to build up
theo re t i ca l concepts o f N-version programing. A more
de ta i l ed discussion o f t h e research approach and g w l s
can be found i n 191, and a de t a i l ed d iscuss ion of
experimental results i n [lo] .

3 . A Comparison of Approaches

In canparison to N-version programing the recovery
block approach has one apparent advantage. In sane
s i tua t ions , a mf tware system evolves by replacement o f
m e of its modules with newly developed ones. The
replaced modules can be used as supplmentary
a l t e rna te s t o the new modules. 'Ihe production cost is
lower i n t h i s case.

However, t he re a r e a l s o ce r t a in disadvantages
associated with the recovery block approach. Fir-st ,
t h e system s t a t e before e n t r y i n t o a recovery block
must be saved u n t i l sane reasonable r e s u l t s are
obtained fran the block. Considerable s torage overhead
may then be involved for nested recovery block
structures. Second, spec ia l precautions a r e needed to
coordinate pa ra l l e l processes within a nested recovery
block s t ruc tu re . Ctherwise t h e interdependencies anong
these processes may requi re tha t a long chain of
process e f f e c t s should be undone a f t e r a process has
f a i l ed [ZI. Third, some intermediate output frcxn a
recovery block may not be r e v e r s i b l e in a real-t ime
environment. Therefore, no recovery ac t ion can be
performed before the incor rec t output causes i ts
daaage. Fourth, spec ia l system support is necessary t o
a l l e v i a t e t he above weaknesses. This limits t h e
genera l i ty o f appl ica t ions o f t h e recovery block
technique.

t h a t i n most cases only qlreasor~ableness" ra ther than
"correctness" may be checked for by acceptance tests.
The lack o f established procedures to es t imate the
e f fec t iveness of acceptance tests leaves it hard to
determine i f it is s u f f i c i e n t t o use a given acceptance
test f o r a v e r y c r i t i c a l appl ica t ion .

In view o f t he above d i f f i c u l t i e s , t h e N-version
programing approach o f f e r s some advantages over t h e
recovery blocks. In t h i s approach, self-checking is
not required. Some redundant software can be
eliminated; t h i s seems a t t r a c t i v e f r an the coverage
p i n t of view [12]. It a l s o o f f e r s t he p o s s i b i l i t y o f
imnediately masking sane software f a u l t s so t h a t t he re
is no delay i n operation.

In c e r t a i n appl ica t ions , N-version programing a l so
makes b e t t e r use of e x i s t i n g hardware fault-tolerance
resources. For ins tance , t he re a r e recent system
des igns f o r aerospace appl ica t ions t h a t use redundant
hardware a t t he system l eve l to a t t a i n fault-tolerance.
The SIFT design [133, t h e Symnetric Multiprocessor [141
and the cen t r a l computer complex i n t h e Space Shu t t l e
[151 are some exanples. In these systems, copies o f
iden t i ca l programs a r e executed i n t h ree o r more
iden t i ca l processor-memory u n i t s , and voting of t he
results allows de tec t ion and masking of hardware
f a u l t s . Since f u l l system r e l i a b i l i t y requi res the
r e l i a b l e operation o f both hardware and software, these
des igns a r e vulnerable to software def ic ienc ies . The
adoption of N-version p r o g r m i n g may allow such
systems t o t o l e r a t e both hardware and software f a u l t s
without de lays caused by t h e acceptance t e s t i n g used i n
t he recovery block approach.

4. Implementation of N-Version Programing

For the reason o f convenience , t h e following
discussion w i l l a s s m e t h a t N-3. An extension to N > 3
is q u i t e straightfoward.

4.1 Special Mechanisms

Implementation of s p e c i a l mechanisms (c-vectors,
cs - ind ica tors , and synchronization mechanisms), i n a
3-version progran is i l l u s t r a t e d by Figures 2, 3, and
4. The schemata shown i n these f igu res have been
written w i t h t he PL/I compiler i n mind. It should be
noted t h a t a s a result of emphasis on r eadab i l i t y , t he
length of some i d e n t i f i e r s or l a b e l s may n o t be allowed
i n m e implementations.

VERSIONi : PROCEDURE OPTIONS (TASK) ;

} . E X T E R N A L '

DCL 1 C-VECTORi

T { s t a tus f l ags
DCL (D i S A G R E E i , G O O D B Y E)
DCL (SERVICEi , C O M P L E T E i) EVENT
DCL FINIS BIT(I) I N I T (' O ' B) ;
o ther dec lara t ions ;
DO WHILE (TFINIS);

WAIT (SERVICE1) ;
COMPLETION (SERVICEi) = 'O'B;
I F 1 G O O D B Y E & TDISAGREEi

comparison var iab les

EIT(1) ' E X T E R N A L ;
EXTERNAL;

THEN CALL PRODUCE;
ELSE FINIS = ' 1 'B;
COMPLETION (COMPLETEi) = ' 1 'B;

F ina l ly , we a l s o note t h a t t h e e f fec t iveness o f t h e
acceptance test is of ten qu i t e d i f f i c u l t t o measure.
In many cases , t h e procedure used to v e r i f y r e s u l t s
f r an the execution of a program can be a s canplex a s PRODUCE : PROCEDURE ;
t he program itself. For exanple, it is easy to check produce C-VECTORi ;
t he consistency o f t he nunber of elements i n a set E N D P R O D U C E ;
before and a f t e r execution of a sorting routine. It. is
more d i f f i c u l t t o ver i fy t h a t a l l o f t he da ta i tems a r e
indeed sorted a s spec i f ied . It is even more d i f f i c u l t Figure 2 A Schema f o r the i - t h Version t o ver i fy t h a t the e l m e n t s of t he set before and a f t e r
t h e sor t ing a re the same. Therefore, it is obvi.ous

E N D ;

END VERSIONi

of Code

115

ACCEPTANCE: PROCEDURE OPTIONS (MAIN) ;
DCL VERSIONi ENTRY;
DCL 1 C VECTORi EXTERNAL,

GOODBYE B I T (1) EXTERNAL ;
DCL S E R V I C E i EVENT EXTERNAL,

COMPLETEi EVENT EXTERNAL;
o t h e r declarat ions ;
COMPLETION (S E R V I C E i) = ' 1 ' B ;
COMPLETION (COMPLETEi) = ' O ' B ;
CALL VERSIONi TASK EVENT (F I N I S i) ;
DO WHILE (need more s e r v i c e) ;

W A I T (COMPLF?Ei)i
COMPLETION (COMPLETEi) = ' O ' B ;
process C VECTORi;
IF -~need gore se rv ice THEN GOODBYE = ' 1 ' B ;
COMPLETIGN (S r R V I C E i) = ' 1 'B ;

END;
WAIT (F I N I S i) ;
END ACCEPTANCE ;

F i g u r e 3 A Schema for an Acceptance Program

DRIVER: PROCEDURE OPTIONS (MAIN) ;
DCL (VERSION1 , VERSIONZ, VERSION3) ENTRY;
declare (C VECTOR1 , C VECTORZ, C VECTOR3);
DCL (D ISAGFEEl , DISAGEEEZ, DISAGEEE3, GOODBYE)

B I T (1) EXTERANL;
DCL (SERVICEI , COMPLETE1 ,

SERVICEZ, COMPLETEZ,
SERVICE3, COMPLETE3) EVENT EXTERNAL;

other declarat ions;
i n i t i a l i z e (S E R V I C E i . COMPLETE11 as i n ACCEPTANCE:
CALL V E R S I O i 1 TASK EVENT (F I N I S l) ;
CALL VERSIONZ TASK EVENT (F I N I S Z) ;
CALL VERSION3 TASK EVENT (F I N I S 3) ;
DO WHILE (need more s e r v i c e) :

WAIT (COMPLETE1 ,-COMPLETE2, COMPLETE3) ;
process (C VECTOR1 , C VECTORZ, C VECTOR3) ;
I F l D I S A G R r E 1 THEN CORPLETIONICOf lPLETEl) = ' O ' B :
I F .DISAGREE2 THEN COMPLETI3N (COMPLETEZ) = 0 ' B f
I F l D I S A G R E E 3 THEN COMPLETION(COMPLETE3)='O'B;
I F ineed-more-service THEN GOODBYE='l ' B ;
COMPLETION(SERVICE1) = I 1 '6;
COMPLETION(SERVICEZ)= ' 1 ' B ;
COMPLETION (SERVI CE 3) = ' 1 ' B ;

END ;
WAIT (F I N I S 1 , F I N I S Z , F I N I S 3) ;
END DRIVER;

F i g u r e 4 A Schema f o r a Driver

When Figures 2, 3, and 4 are appl ieo "i" m u l d be
replaced by 1 , 2, or 3. VERSIONi is t h e i - t h vers ion
of a 3-version software u n i t , ACCEPTANCE is the
acceptance progran with r e spec t t o VERSIONi and D R I V E R
r ep resen t s a d r ive r which exe rc i se s a +version
sof tware un i t . C-VECTORi r ep resen t s a c-vector t o be
produced by t h e i-th vers ion. The cs-indicator
DISAGREEi shows whether or no t C-VECTORi ag rees with
t h e correspondent acceptable r e s u l t s . Another cs-
i n d i c a t o r , GOODBYE, r ep resen t s wbether or no t a normal
terminat ing condi t ion is s a t i s f i e d . The
synchronization pr imit ive, SERVICEi, is used to s igna l
a request fran the d r ive r for t h e se rv ice of t h e i - t h
vers ion. Another synchronization p r imi t ive , CCMPLETEi,
is used by t h e i - th version t o s i g n a l t h e t h a t
C-VECTORi is ready.

d r i v e r

From Figures 2, 3, and 4 , it is evident t h a t t h e
implementation of spec ia l mechanisms for N-version
programing is r e l a t i v e l y simple. This is i l l u s t r a t e d
by t h e exanple i n Appendix 1.

4.2 Inexact Votinz

For nunerical computations, twu types of dev ia t ions
may appear i n t h e r e s u l t s . The first type is an
"expected" dev ia t ion due to t h e inexact hardware
r ep resen ta t ion or t h e d a t a s e n s i t i v i t y of a p a r t i c u l a r
algoritfnn. The second type is an Ymexpected"
dev ia t ion due t o e i t h e r inadequate design or
implementation of an algorithm, or a malfunction of
hardware. E i the r type of dev ia t ion may cause r e s u l t s
obtained fran d i f f e r e n t nunerical a lgori thms to
d i sag ree with each o the r . me standard vot ing process
which r equ i r e s t h a t t h e majori ty of correspondent
r e s u l t s should have exac t ly t h e same values to
determine an acceptable result is not app l i cab le here .
Different vot ing processes need t o be devised t o handle
vot ing with non-identical results. These vot ing
processes will be ca l l ed " inexact voting".

In general , adap t ive and non-adaptive vot ing a r e t w o
a l t e r n a t i v e s which may be appl ied to perform inexact
vot ing. Assune t h a t R1, R2, and R3 a r e correspondent
r e s u l t s used to determine t h e voted r e s u l t , R. Then i n

t h e approach of adapt ive vot ing, a s suggested i n [161,

where (1) W1, W2, W3, a r e weights of R1, R2, R3
re spec t ive ly ; (2) W1, W2, W3 a r e p o s i t i v e values; and
(3) Wl+W2+W3=1. These weights may be dynamically
ca l cu la t ed based on t h e values of R1, R2, and R3. The
major i n t e n t is to favor acceptable r e s u l t s and to
minimize t h e effect of a disagreeing r e s u l t . In o t h e r
w r d s , R is constructed to be a continuous funct ion of
R1, R2, and R3, t h a t w i l l s n w t h o u t t h e e f f e c t of a
disagreeing r e s u l t . To c m p u t e t h e weights of
correspondent r e s u l t s , s eve ra l schemes a r e ava i l ab le .
The performance of a scheme is influenced by its
"tolerance" parameter, which is a measure of t h e
allowable noise l e v e l and could be opt imal ly determined
f r a n the magnitudes of expected r e s u l t s and noisy
r e s u l t s .

R = Wl*Rl + W2rR2 + W3aR3,

The adapt ive vot ing approach may s u f f e r from t h e
following disadvantages: (1) The optimal t o l e rance
parameter is d i f f i c u l t t o determine unless t h e
c h a r a c t e r i s t i c s of t h e expected values and noisy values
a r e knom well i n advance. (2) The remaining e f f e c t of
noise may no t b e acceptable i n m e cases . (3) If t h e
voted r e s u l t w i l l be used a s input for nex t cyc le of
canputat ion then t h e accunulation o f r e s idua l e f f e c t s
of noise may cause a s e r ious problem. (4) If
implemented i n sof tware, t h e adapt ive voter may be
q u i t e slow.

As a c o n t r a s t , t h e non-adaptive vot ing approach uses
an allowable discrepancy range and d i f f e rences of p a i r s
of correspondent results i n determining R. Assume t h a t
6 is t h e al lowable discrepancy range, and D i j is t h e
absolute value of t h e d i f f e rence between R i and R j .
Then an acceptable R may be reached by adopting one of
t h e following tm s t r a t e g i e s : (1) i f maximun (D12, D23,
D31) 6 or (2) if minimimun (D12, D23, D31) <_ 6.
The first s t r a t e g y r equ i r e s D12, D23, D3l be known
before R can be determined. I n t he second s t r a t egy ,
however, i f D12 L 6 R can be determined without
knowing D23 and C Y .

The non-adaptive voting approach is no t without
flaws. F i r s t , t h e value of 6 is very d i f f i c u l t to
determine dynamically for each instance o f voting.
Second, t h e s t r a t e g y which uses t h e p r inc ip l e of
maximun (D12, D23, D32) L 6 is too r i g i d s ince an
erroneous r e s u l t may e a s i l y cause a D i j which is l a r g e r
than S . Acceptable r e s u l t s may no t be reached even
when two of t h e th ree correspondent r e s u l t s a r e
reasonably close. Third, t h e s t r a t e g y which uses t h e
p r inc ip l e of minimun (D12, D23, D31) 6 may encounter

116

s i t u a t i o n s where each version may have d i f f e r e n t
effects on the outcane of voting. These s i t u a t i o n s a r e
i l l u s t r a t e d be t t e r with the following exanples. AsSUlle
t h a t t he allowable discrepancy range is 0.9 and (i)
expected R I = 117.0, (ii) expected R2 = 116.5, and
(iii) expected R3 = 115.8. In t h i s case , (i) i f Only
Rl or A3 is erroneous, an acceptable R can still be
generated, (ii) but i f R2 is erroneous then no
acceptable R can be generated.

'herefore , t he re is no inexac t voting approach which
can be applied s a t i s f a c t o r i l y t o a l l cases. The
success of an approach usua l ly depends o n t h e
des igner ' s knowledge about (1) t he d a t a s e n s i t i v i t y of
each algorithm, (2) the l i m i t a t i o n s o f hardware
representa t ions , and (3) the allowable ranges o f
d i screpancies fo r each instance o f voting.

5. F e a s i b i l i t y S tudies o f N-version Programming

A t an e a r l y s t a g e of t h e inves t iga t ion of N-version
prograrming, it was decided to conduct a few
experiments to gain m e ins igh t i n t o the f e a s i b i l i t y
of t h i s technique. Three o b j e c t i v e s were set for the
experiments. They were: (1) to study t h e g e n e r a l i t y
and the ease of t h e implementation o f N-version
programing; (2) to gain q u a l i t a t i v e and q u a n t i t a t i v e
da ta on e f fec t iveness of 3-version programing; and (3)
to observe and iden t i fy problems or d i f f i c u l t i e s i n
using 3-version programing.

Three c r i t e r i a were used to select t a r g e t problems
f o r f e a s i b i l i t y s tud ie s . F i r s t , a t a r g e t problem needs
to be r e l a t ive ly complex 50 t h a t t h e r e is reasonably
good poss ib i l i t y t h a t res idua l software d e f e c t s w i l l
occur i n i t s implementing programs. Second, t h e
progran implementing a t a r g e t problem should be o f
manageable s i z e to f a c i l i t a t e t h e ins t runenta t ion
e f f o r t s . Third, s ince programing is an expensive
a c t i v i t y , it is very d e s i r a b l e t h a t a t a r g e t problem
should allow convenient generation of mul t ip le vers ions
of a progrzn.

5.1 The 3-version Y E S Frogran Experiment

MESS Qini-Text Editing Sygtem) was a program
assignnent for the graduate seminar course E2262,
offered a t UCLA i n t h e Spring quar te r o f 1976. A
preliminary repor t on Y S S is contained in [91. The
spec i f ica t ion of M E S S and 2 de t a i l ed descr ip t ion of t h e
r e s u l t s can be found in [lo!.

From the experience and the results o f t h e HESS
experiment t h e following conclusions were reached: (1)
The methodology used to implement N-version
programing (see Sections 2 and 4) is r e l a t i v e l y simple
and can be generalized to other s i m i l a r appl ica t ions .
(2) The r e s u l t s a t ta ined f ran executing +version
programs a re encouraging. The ef fec t iveness of
3-version programing seems to warrant fu r the r
inves t iga t ion . (3) The 3-version redundancy was
succesfu l ly applied a t subroutine (module) l e v e l ,
r a the r than a t canple te program leve l . This s h o w t h a t
s e l e c t i v e appl ica t ion of N-version redundancy t o
ce r t a in c r i t i c a l parts o f longer programs can be a
p rac t i ca l a l t e rna t ive .

5.2

RATE, standing for Region Approximation and
Temperature Estimation, is a program for computing
dynamic changes of temperatures a t d i s c r e t e poin ts i n a
pa r t i cu la r region of a plain. The temperature changes
a r e governed by the followi?g equation:

The 3-version R4TE FV0gt-F Experiment

where the coe f f i c i en t s A , B, C, D, E, and F a r e some
cons tan ts ,

The problem s p e c i f i c a t i o n fo r RATE (given i n [lo])
s t a t e s t h e requirements for a stand-alone RATE program
lhis s p e c i f i c a t i o n is wr i t ten to make a RATE program
e a s i l y ins t runentab le fo r t h e p u r p s e o f conducting
experiments on 3-version programing.

There are four types o f output d a t a s t r u c t u r e s
described i n t h e problem spec i f ica t ion fo r RATE. The
MESSAGE type of da ta informs the d r i v e r about
execution termination condi t ions or the time a t which
r e s u l t s a r e produced. The FAClDR type o f d a t a
represents t h e s i z e and the u n i t s o f t h e spec i f ied
region. The G R I D type of d a t a represents a point i n
t h e concerned region and its previous and Current
temperatures. ?he CUTPUT-REWEST type of d a t a
i n d i c a t e s t h e p i n t s and the times fo r which outputs
a r e requested. Each o f these types o f d a t a can be
t r ea t ed a s a c-vector t h a t represents r e s u l t s t o be
voted upon.

The problen s p e c i f i c a t i o n fo r RATE a l s o g ives an
algorithm s p e c i f i c a t i o n fo r : (1) terminating condi t ions
for program execution; (2) cc-points a t which r e s u l t s
should be produced; and (3) an algorithm t h a t
implements a nunerical approximation for solving t h e
p a r t i a l d i f f e r e n t i a l equation shown above. Three
a l g o r i t h s , (ALCI, ALC2, Affi3) were se lec ted t h a t
implemented th ree d i f f e r e n t nunerical methods to so lve
the partial d i f f e r e n t i a l equation. While an ind iv idua l
RATE s p e c i f i c a t i o n can employ only one of these
a l g o r i t h s . t h e ex is tence of t h ree d i f f e r e n t choices
provides a higher probabi l i ty of avoiding r e l a t ed
programing e r r o r s i n t h e N-version programing
experiment.

The problem of RATE was given a s a programing
assignnent f o r t he greduate seminar course, E2262,
of fe red a t UCLA i n the Spring quar te r of 1977. The
s tudents were asked to form teams o f two people t o
so lve t h e RATE problem. There were th ree s tudents who
preferred to w r k alone and t h e i r reques ts were
granted. Tota l ly , t he re were 18 teams thus formed.
Two of these teams fa i l ed t o turn in t h e i r programs.
That l e f t 16 programs a v a i l a b l e for t h i s inves t iga t ion .
The RATE s p e c i f i c a t i o n was d i s t r ibu ted to a l l 18
programing teuns. Algorithms 1, 2, and 3 were
spec i f ied i n s i x cases. Each of t he RATE programs was
wr i t ten i n P l / I (F) , and executed on the IBM 360/91.
Each program consisted of more than 600 P l / I
s tatements. The period allowed for the developnent of
t h e R4TE programs was four weeks.

The R4TE programs were col lec ted and tes ted aga ins t
s i x text cases . Based on the results of these tests,
the bes t four programs were selected for fu r the r
experiments. Besides, t h e r e were th ree programs
developed by t h e authors. Hence, we had 7 programs
a v a i l a b l e for subsequent s tud ie s on the f e a s i b i l i t y o f
3-version programing.

Three of t h e se lec ted programs implemented ALG1.
Two each o f t h e remaining four programs implemented
ALC2 and ALC3 respec t ive ly . The seven programs were
ins t runented , grouped in to 12 combinations, and tes ted
with 32 test cases . Tota l ly , there were 384 cases
tes ted . Among them:
(1) 290 cases contained
(2) 71 cases contained one bad version,
(3) 18 cases contained two bad versions, and
(4) 5 cases contained three bad versions.

no bad version,

Naturally, t h e 290 cases o f th ree good versions
generated acceptable r e s u l t s , and the 18 cases
containing two bad versions and the 5 cases containing
three bad versions generated unacceptable r e s u l t s . For
the 71 cases containing a s i n g l e bad version, 59 cases

117

generated acceptable results and 12 cases generated
unacceptable results. These 12 cases contained a
version which malfunctioned i n a way t o cause t h e
system to abor t t he execution o f t he involved +version
uni t .

Based on these r e s u l t s , we have observed t W
d i f f i c u l t i e s which requi re spec ia l a t t en t ion i n N-
version programing: (1) In m e s i tua t ions , one
version of code developed an e r ro r t h a t caused the
operating system of the IBM 360/91 canputer t o take
over execution, An exanple is the improper handling of
conversion e r r o r s by a version. A s a r e s u l t , both t h e
involved version and its associated 3-version program
were aborted by t h e operating system. Even though t h e
o ther tm versions were executing properly, t he
3-version program could not proceed fu r the r pas t t h i s
point to generate c o r r e c t r e s u l t s . (2) The log ic being
implemented by one version o f t h e code may be correct,
inco r rec t , or it may be a l toge ther missing. For cases
in which missing log ic is t h e cause o f i n c o r r e c t
software operation, error symptoms f r an f au l ty versions
tend to be t he same. There is a p o s s i b i l i t y t h a t
f a u l t y but i den t i ca l results (due to missing log ic) may
outvote cor rec t r e s u l t s .

6. Conclusions

The r e s u l t s obtained f r m the MESS and the RATE
experiments a re of mixed nature. There a r e severa l
encouraging points: (1) The methodology f o r
implementing N-version programming is r e l a t i v e l y simple
and can be generalized to other s imi la r appl ica t ions ;
(2) In m e cases , +version p r o g r m i n g has been
e f f e c t i v e in preventing f a i l u r e due t o d e f e c t s
loca l ized i n one version o f code; and (3) tJ-version
programing can be a p rac t i ca l approach i f it is
s e l e c t i v e l y applied a t subroutine leve l . On t h e o ther
hand, t he re a re sane negat ive points: (1) I n t h e
envi roment of sane opera t ing systems, c e r t a i n
implementation d e f e c t s of a version may cause i ts
associated +version progran to be aborted by t h e O.S.;
and (2) I f missing program functions a r e t h e
predminant software de fec t s , then N-version
programing may not be an e f f e c t i v e approach.

I n addi t ion t o the experimental r e s u l t s , we have
. ident i f ied Sane s i t u a t i o n s i n which N-version
programing appears to be n o t e f f e c t i v e or is n o t
appl icable . The most s i g n i f i c a n t l i m i t a t i o n s a r e
discussed below.

(1) In a real-t ime environment a system f a i l u r e may
be caused by performance l i m i t a t i o n s r a the r than
functional problems. TWO typ ica l exmples a r e timing
c o n s t r a i n t v i o l a t i o n s and resource contentions. A
l i k e l y source for these problems is systen overload.
N-version programing may produce adverse e f f e c t s i n
these s i t ua t ions .

(2) In ce r t a in o ther c i rcuns tances , t he re e x i s t s no
unique path t o the so lu t ion of a problem. Step-by-step
matching or voting of correspondent results cannot be
used a s a c r i t e r i o n o f cor rec tness . Therefore, N-
version programing is not appl icable for s i t u a t i o n s i n
which d i s t i n c t mul t ip le s o l u t i o n s (or intermediate
so lu t ions) exist .

(3) In still o ther cases a long sequence of ou tputs
may n o t lend itself t o be spec i f ied in a spec i f i c
order. In these cases , t he outputs from the component
vers ions cannot be r e a d i l y compared.

(4) In m e s i t u a t i o n s t h e sequence of ou tputs from
a version is context-dependent. Any e r ro r t h a t pushes
the rest o f output o f f its proper pos i t ion makes the
subsequent comparison of r e s u l t s meaningless.

(5) I n t h e event t h a t an allowable range o f
discrepancy cannot be e a s i l y determined, t h e problem of
inexac t voting is d i f f i c u l t t o handle. Acceptable
r e s u l t s a r e d i f f i c u l t to reach i n t h i s case.

Although t h e above conclusions have a s i g n i f i c a n t
nunber of negative poin ts , it should be noted t h a t only
a very small portion of the f i e l d o f N-version
programing has been touched. Some negative results
might be due t o inexperience of programmers, inadequate
s e l e c t i o n o f problems, or improper cont ro l of
environment for conducting these s tud ie s . Furthermore,
t he re a r e severa l v a r i a t i o n s of N-version programing.
This approach might be more e f f e c t i v e when it is
applied to t he s p e c i f i c a t i o n or design o f a program
1171. It is a l s o poss ib le t h a t N-version programming
can aid progran t e s t ing more e f f e c t i v e l y than it can
perform run-time software d e f e c t masking. Therefore,
it is believed t h a t a t t h e present s t a g e o f t h e
inves t iga t ion N-version programing remains an
i n t e r e s t i n g and p o t e n t i a l l y e f f e c t i v e approach t o
software fault-tolerance.

7. Acknowledgment

This research was supported by t h e U.S. National
Science Fomdation, Grant No. MCS 72-03633 A @ . The
au thors wish to acknowledge the generous and

e n t h u s i a s t i c advice and cooperation received from Prof.
Daniel M. Berry and the proaramscontributed by t h e
s t u d e n t s of h i s Software Engineering c l a s s e s i n 1976
and i n 1977. Valuable advice and criticism was
received f ran Professors J.A. Goguen, J r . and D.F.
Martin of UCLA, and fran tw r e f e r e e s o f t h i s paper.

8. References

[13 A. Avizienis, "Fault-Tolerance and Fault-
Intolerance: Complementary Approaches t o Reliable
Computing," Proc. 1975 I n t . Conf. Reliable Software,
458-454.

[21 B. Randell, "System S t r u c t u r e fo r Software
Fault-Tolerance," IEEE Trans. Software Fngr., Vol.
SE-1, June 1975, 220-232.

[21 B. Randell, "System S t r u c t u r e fo r Software
Fault-Tolerance," IEEE Trans. Software Fngr., Vol.
SE-1, June 1975, 220-232.

[31 H . Hecht, "Fault-Tolerant Software fo r Real-Time
Applications," ACM Computing Surveys, Vol. 8, Dec.
1976, 391-407.

[41 A. Avizienis, "Fault-Tolerant Computing:
Progress, Problems and Prospects Information
Processing 77 (Proc. IFIP Congress 19771, 405-420.

[51 X.R. Elmendorf, "Fault-Tolerant Programming ,"
Proc. 1972 I n t . Symp. Fault-Tolerant Computing, June
1972, 79-83.

161 H. Kopetz, "Software Redundancy i n Real Time
Systems," Proc. IFIP Congress 1974, 182-186.

[71 E. Girard and J.C. Rault , "A Programming
Technnique f o r Software Re l i ab i l i t y , " Proc. 1973 IEEE
Symp. on Computer Software Re l i ab i l i t y , 44-50.

[81 M.A. F i sch le r , et . a l . , "Dis t inc t Software: An
Approach t o Reliable Computing,', Proc. 2nd USA-Japan
Computer Conference, Tokyo, Japan, 1975, 1-7.

191 A. Avizienis and L. Chen, "Ckl the Implementation
of N-version Programming for Software Fault-Tolerance
b r i n g Execution," Proceedings o f COMPSAC 77, (F i r s t
IEEE-CS In te rna t iona l Computer Software and Application
Conference), Nov. 1977, 149-155

118

[l o] L. Chen, "Improving Software R e l i a b i l i t y by N-
version UCLA Computer Science Dept.

.Technical Remrt , University of Cal i fornia Los
Angeles, 1978.

[111 B.H. Liskov and V . Berzins. "AI ADDraiSal o f
Progran spec i f i c a t ions, 1, Computation st r &ut- e s Craup
Memo 141-1, MIT Laboratory f o r Ccinputer Science, April
1977.

1123 W.C. Bouricius, et. a l . , "Re l i ab i l i t y Modeling
Techniques for Self-Repairing Computer Systems,1t m.
ACM 1969 Annual Conf.,295-309.

C131 J.H. Wensley e t . a l . , "The Design, Analysis, and
Verif icat ion of t he S I F T Fault-Tolerant System," PE.
2nd I n t . Conf. Software Engineering, Oct. 1976,

[141 A.L. Ho@cins, Jr., and T.B. Smith 111, "?he
Archi tectural Elements of a Svmnetric Fault-Tolerant

aa-269.

Multiprocessor," IEEE T r a n s . C$nputers, Vol. C-24, May
19-75 , 43&505.

[151 J.R. Sklaroff , "Redundancy Management Technique
for Space Shu t t l e Canputers,lt IBM J. of Res. and Dev.,

Ti61 R.B. Broen. "New Voters for Redundant Systems,"

Vol. 20, Jan. 1976, 20-25.

- - -
Trans. M E : Journal of Dynanic Systems, Measurement,
and Control, March 1975. 41-45.

[l 7] A.B. Long, C.V. Rammoorthy, e t . a l . , "A
Methodology f o r kve lopnen t and Validation of C r i t i c a l
Software for Nuclear Power P lan t s , " Proc. CCMPSAC '77
(IEEE-CS I n t . Conputer Software & Applications Conf.),
620-626.

Authors

Liminz Chen was born i n Taiwan. He received the ILS.
(' 6 9) i n Psychology f r an the National Taiwan University
and the Y.A. and X.S. degrees i n Psychology and i n
Compter Science fran UCLA. Since 1974 he has been a
Postgraduate Research Engineer associated w i t h t he
Fault-Tolerant Computing project a t UCLA, where he is
canpleting t h e Ph.C. d i s s e r t a t i o n i n Computer Science.
Since Yay 1977, he is associated w i t h t he Xerox Co.
working on software developnent methodology, diagnost ic
programing, and huna? engineering.

A 1 i r d a s Avizienis was born i n Kaunas, Lithuania. He
re:eived the E.S. (' 5 4) , M.S. ('55) and Ph.D. (' 6 0)
degrees i n E lec t r i ca l Engineering from t h e University
of I l l i n o i s . I n 1960 ne i n i t i a t e d research on f au l t -
t o l e ran t canputing and l a t e r directed the JPL-STAR
computer project a t the J e t Propulsion Laboratory,
where he is now an Academic Hember of Technical S t a f f .
Since 1962 ne has been a f acu l ty member a t UCLA, where
he is now a Professor i n the Computer Science
Department. He is : Fellow of the IEEE and the author
of over 50 publ icat ions on computer a r i t hme t i c and
f a u l t tolerance. He was the f i r s t chairman of t h e
IEEE-CS Technical Comnittee on Faul t-Tolerant Computing
and the Chairman of FTCS-1 i n 1971.

Appendix

Assume t h a t a +version software u n i t has heen
iden t i f i ed t o implement a function which can be
act ivated repeatedly t o convert an a r r ay of 10 ASCII
coded d i g i t s i n to a binary nunber. Possible
implementation of 3 vcrsions of a program for t h i s
function are shown i n Figures 5, 6 , and 7. It. is
evident t h a t these implementations a r e simple
de r iva t ions of t h a t i n Figure 2.

CONVERSION1 : PROCEDURE OPTIONS (TASK) ;
DCL NUMBERl BINARY F I X E D (3 1) EXTERNAL;
DCL (SERVICE1 , COMPLETEl) EVENT EXTERNAL;
DCL (DISAGREE1 , GOODBYE) B I T (1) EXTERNAL;
DCL D I G I T S (1 0) BINARY F I X E D (6) EXTERNAL;
DCL F I N I S B I T (1) I N I T (' O ' B) ; . .
DO WHILE (> F I N I S) ;

WAIT (SERVICE1) ;
COMPLETION (SERVICE1) = ' O ' B ;
NUMBERl = 0:
I F lGOODBYE.& 1DISAGREE1
THEN DO I = 1 TO 10;

NUMBERl = NUMBER1 *1 D+
D I G I TS (I - 60 ;

END;
ELSE F I N I S = ' 1 ' B ;
COMPLETION (COMPLETE1) = '1 ' B ;

END;
END CONVERSION7 ;

Figure 5

CONVERSION2: PROCEDURE OPTIONS (TASK) ;
OCL NUMBER 2 BINARY F I X E D (3 1) EXTERNAL;
OCL (DISAGREEZ. GOODBYE) B I T (1) EXTERNAL;
DCL (SERVICE2, .COMPLETE2) EVENT
DCL (D I G I T S (1 0) EINARY F I X E D (6) EXTERNAL;
OCL F I N I S B I T (1) I N I T (' O ' B) ;
DO WHILE (7 F I N I S) ;

EXTERNAL ;

WAIT (SERVICE2) ;
COMPLETION (SERVICEL) = ' O ' B ;
NUMBER2 = 0;
I F TGOODBYE & l D I S A G R E E 2
THEN DO I = 1 TO 10;

NUMBER2 = NUMBER2 +

END;
(D I G I T S (I)-60)*1 O**(1 0 - 1) ;

ELSE F I N I S = ' 1 ' B ;
COMPLEION (COMPLETE2) = '1 ' B ;

END;
END CONVERSIONZ;

Figure 6

CONVERSIONJ: PROCEDURE OPTIONS (M A I N) ;
DCL NUMBER3 B INARY F I X E D (3 1) EXTERNAL;
DCL (DISAGREE3. GOODBYE) B I T (1) EXTERNAL;
DCL C SERVICE^, COMPLETE^) EVENT EXTERNAL;
DCL D I G I T S (1 0) B INARY F I X E D (6) EXTERNAL;
OCL F I N I S B I T (1) I N I T (' 0 ' B) ;
DO WHILE (,FINIS);

WAIT (SERVICE3) ;
COMPLETION (S E R V I C E 3) :: ' O ' B ;
NUMBER3 = 0;
I F TGOODBYE & l D I S A G R E E 3
THEN DO I = 1 TO 10;

NUMBER3 = NUMBER3*1 O+

END ;
MOD(DIGXTS(I), 60) ;

ELSE F I N I S = ' 1 ' 6 ;
COMPLETION(COMPLETE3) 2: ' 1 ' B ;

END;
END CONVERSIONS;

Figure 7

119

